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Abstract. – We introduce a fractional Klein-Kramers equation which describes sub-ballistic
superdiffusion in phase space in the presence of a position-dependent external force field. This
equation defines lower-order moments of Lévy walks which take place in the presence of an
external force field and in phase space. In the velocity coordinate, the probability density
relaxes in Mittag-Leffler fashion towards the Maxwell distribution whereas in the position
coordinate, no stationary solution exists and the temporal evolution of moments exhibits a
competition between Brownian and anomalous contributions.

Classically, Brownian stochastic transport processes are described by the deterministic
Fokker-Planck equation which controls the temporal approach to the Gibbs-Boltzmann equi-
librium [1,2]. In the force-free case Brownian transport is characterised through the Gaussian
probability density function (pdf) and the linear time dependence 〈x2(t)〉 = 2Kt of the mean-
squared displacement in the force-free diffusion limit, its universality being guaranteed by the
central-limit theorem [2, 3]. In a broad variety of systems, however, it has been found that
correlations in space or time give birth to anomalous transport whose pdf is non-Gaussian
and/or whose mean-squared displacement is non-linear in time [3]. These systems include
charge carrier transport in amorphous semiconductors [4], tracer dispersion in convection
rolls and rotating flows [5,6], capillary surface waves [7], the motion of bacteria and the flight
of an albatross [8], intracellular transport [9], transport in micelles [10], 2D dusty plasmas [11],
the dynamics in (bio)polymeric systems [12], and the NMR diffusometry in porous glasses and
percolation clusters [13], among others.

The systems we are interested in fall into the broad class whose force-free diffusion be-
haviour is characterised through the power law form 〈x2(t)〉 ∝ tκ , which separates into subd-
iffusion (0 < κ < 1) and superdiffusion (κ > 1). The continuous time random walk (CTRW)
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model has proved to be a well-suited framework which accounts for such anomalous diffu-
sion for the entire spectrum of κ [14]. Especially in the sub-ballistic superdiffusive domain
1 < κ < 2, Lévy walks which couple long flight times with a time cost have been a successful
tool [15, 16], e.g., in fluid dynamics [6, 17]. The space-time coupling of Lévy walks leads to
finite moments and they are therefore fundamentally different from Lévy flights which exhibit
a diverging variance [18].

In the presence of external force fields, the CTRW approach is less flexible. It has been
realised that fractional equations constitute a tailor-made framework to formulate the underly-
ing dynamics equations in coordinate and phase space; see, for instance, [18–23] and references
therein. In the subdiffusive domain 0 < κ < 1, fractional Fokker-Planck equations (FFPE)
were introduced and investigated in considerable detail by several authors (e.g., [19, 23–25],
among others). These equations can be microscopically derived, and on the phenomenological
level they appear as linear response theories for systems with long power law memory [25].
The approach based on a univariate fractional Fokker-Planck equation is not well suited for
the description of superdiffusion, since it may fail to guarantee the non-negative probabilities
in the presence of external forces, due to an inappropriate ensemble averaging procedure ne-
glecting strong correlations between positions and velocities. In the following, we pursue an
approach embedded in phase space.

Classically, Brownian stochastic transport processes in the phase space spanned by veloc-
ity v and position coordinate x are described by the deterministic Klein-Kramers equation
(KKE). In the low and high friction limits, the KKE reduces to the Rayleigh equation which
describes the relaxation of the velocity pdf towards the Maxwell distribution, and the Fokker-
Planck-Smoluchowski equation controlling the temporal approach of the Gibbs-Boltzmann
equilibrium, respectively [2,26]. In the subdiffusive domain 0 < κ < 1, a fractional KKE was
derived from the Chapman-Kolmogorov equation [27]. The question for a similar consistent
generalisation to systems in the regime 1 < κ < 2 is still open. In this note, we propose the
fractional KKE
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for the description of sub-ballistic superdiffusive anomalous transport. In particular, eq. (1)
describes the lower-order moments of Lévy walk processes in phase space and in the presence
of the external force F (x), see below. In eq. (1), P (x, v, t)dxdv is the joint probability to find
the test particle of mass m with coordinate x, . . . , x + dx and velocity v, . . . , v + dv at time
t. γ denotes the friction constant which quantifies the effective dissipative interaction with
the environment, κ is the velocity diffusion constant and F (x) = −dΦ(x)/dx is an external
force field. The factor �α has dimension [�α] = s−α and is a function of some time scale τ
characteristic for the waiting-time process and of an interaction time scale τ∗ [27]. In the limit
α = 1, eq. (1) corresponds to the standard KKE whereas for 0 < α < 1, the process contains
a scale-free memory of the power law type entering through the fractional Riemann-Liouville
operator 0D
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With respect to its position coordinate x, eq. (1) is a Liouville-type equation which gives

rise to the relation d
dt 〈〈x(t)〉〉 = 〈〈v(t)〉〉 between the velocity- and position-averaged random
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variables x and v; by this, the KKE (1) differs fundamentally from the subdiffusive model in
ref. [27]. The action of the friction, force and velocity diffusion in eq. (1) enters through the
non-local memory relation brought about by the fractional operator; i.e., the local fluctuations
of velocity which follow from a Fokker-Planck–like equation in the Brownian case are now
described by a fractional Fokker-Planck equation. The connection to the position coordinate
is assumed to be given through the classical drift term −∂vP/∂x. From these basic physical
assumptions, the fractional KKE (1) emerges.

Let us explore the behaviour predicted by eq. (1) in more detail. By integration over the
spatial coordinate x, the fractional equation for the velocity pdf P (v, t)
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obtains which reduces to its Brownian counterpart in the limit α = 1.
In the force-free limit, eq. (3) corresponds to the fractional Rayleigh equation discussed in

refs. [27, 30]. The relaxation of velocity moments can be inferred directly from eq. (3) in the
force-free case. Accordingly, the fractional relaxation equation [18,31]

d
dt 〈v(t)〉 = −γα 0D

1−α
t 〈v(t)〉 (4)

emerges, where γα ≡ �αγ. For v0 = v(0), its solution

〈v(t)〉 = v0Eα (−γαtα) (5)

features the Mittag-Leffler function Eα (−γαtα) ≡ ∑∞
n=0 (−γαtα)n

/Γ(1+αn) which is mono-
tonically decaying and which interpolates between the initial stretched exponential behaviour
Eα (−γαtα) ∼ exp [−γαtα/Γ(1 + α)] and the final inverse power law pattern Eα (−γαtα) ∼
(γαtαΓ(1 − α))−1 [32]. Thus, the mean relaxation time diverges. The second moment

〈v2(t)〉 = κ/γ + (v2
0 − κ/γ)Eα (−2γαtα) (6)

relaxes in Mittag-Leffler fashion towards the equilibrium value κ/γ, and the pdf P (v, t) equi-
librates towards a Gaussian. In this respect our model differs considerably from the frac-
tional KKEs proposed in refs. [20–22] in which the superdiffusive process is due to the Lévy-
distributed fluctuations in velocity. In thermodynamical systems, by comparison, the velocity
pdf follows the Maxwell distribution P (v) = (2πkBT/m)−1/2 exp

[−mv2/[2kBT ]
]
, the exact

stationary solution of eq. (3), so that we find the Einstein relation κ = kBTγ/m [18,19]. The
velocity-velocity correlation function associated with eq. (3) is

〈v(0)v(t)〉 = v2
0Eα (−γαtα) ∼ v2

0 (γαtα)−1
, (7)

whose long-time behaviour is equivalent to the CTRW-Lévy walk result where the t−α-scaling
follows from the behaviour of the cumulative waiting-time distribution. The difference between
the two processes corresponds to the fact that the distribution of the velocities in a genuine
Lévy walk is bimodal, while in our case it is Gaussian (Maxwell).

This observation corresponds to the physical model underlying eq. (1): in the velocity
space, we assume that the particle undergoes collisions, i.e., random velocity changes, such
that successive collisions are separated by time spans governed through the long-tailed waiting-
time pdf ψ(t) ∼ Aα(t/τ)−1−α, whose characteristic time T =

∫ ∞
0

tψ(t)dt diverges. In this case,
the velocity-velocity correlation function is proportional to the probability that no scattering
took place before time t, and thus 〈v(0)v(t)〉 = v2

0

∫ ∞
t

ψ(t)dt ∝ v2
0(t/τ)−α. The characteristic
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behaviour of this model is that it includes arbitrarily long sojourns but leads to finite moments
of any order and an exponentially decaying pdf P . We note that due to these properties
the fractional KKE (1) is an approximation to genuine Lévy walks which offers the distinct
possibility to study the effects of an external force field on the behaviour of lower-order
moments of a Lévy walk. This statement becomes more transparent in the position space
behaviour predicted by eq. (1).

The velocity average of the fractional KKE (1) can be performed by integration over∫
dv and

∫
vdv, and combination of the two resulting equations. With 〈v2〉 = kBT/m, this

procedure yields the fractional telegrapher’s type equation
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with K ≡ kBT/(mγα), which exhibits a transition from a short-time ballistic behaviour with
〈x2(t)〉 ∼ (Kγ)t2 in the force-free case, to the long-time or high-friction limit governed through
the fractional Fokker-Planck-Smoluchowski equation
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Here, the difference to the fractional Fokker-Planck equation for subdiffusive processes derived
in ref. [23] lies in the temporally local connection between the drift term and the time derivative
of P .

The mean-squared displacement corresponding to eq. (9) with F (x) = 0 is given through

〈x2(t)〉 = 2Kt2−α/Γ(3 − α) (10)

which describes sub-ballistic superdiffusion in analogy to Lévy walks [14]. It is in the presence
of an external force that the fractional KKE (1) reveals interesting dynamical patterns. To this
end, consider the fractional Fokker-Planck equation (9) for non-trivial types of the external
force F (x). Accordingly, the first moment is given by d

dt 〈x(t)〉 = 〈F (x)〉/(mγ) which can be
solved for constant or linear forces. In particular, for the constant drift F (x) = V mγ, the first
moment becomes

〈x(t)〉 = V t , (11)

which corresponds to the traditional drift behaviour [2]. The second moment

〈x2(t)〉 = V 2t2 + 2Kt2−α/Γ(3 − α) (12)

combines this drift with the sub-ballistic behaviour ∝ t2−α such that the variance 〈∆x(t)2〉 ≡
(〈x2(t)〉 − 〈x(t)〉2) is given by eq. (10). This behaviour is analogous to the Galilei-invariant
diffusion-advection model derived in ref. [33] for the subdiffusive case. In our case, the an-
alytical solution is given by the free (superdiffusive) solution explored in detail in ref. [34],
taken at the translated coordinate x − V t. Here, the two-hump solution travels with velocity
V and is symmetric to the point X(t) = V t. It should be noted that due to the behaviour
of the first and second moments, a connection of the form 〈x(t)〉V ∝ V 〈x2(t)〉0 (see, e.g.,
refs. [18, 19]) between the first moment in the presence of the constant drift V to the second
moment in absence of this drift, does not exist, in contrast to the subdiffusive case [23]. Sim-
ilarly, for the Ornstein-Uhlenbeck potential Φ(x) = 1

2mω2x2 which exerts the linear restoring
force F (x) = mω2x, the first moment shows the exponential relaxation

〈x(t)〉 = x0e
−ω2t/γ , (13)
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which contrasts the Mittag-Leffler patterns recovered in the subdiffusive model in ref. [27].
The second moment has the Laplace transform 〈x2(u)〉 = (x2

0 + 2Kuα−2)/(u + 2ω2/γ) whose
inversion leads to

〈x2(t)〉 = x2
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which combines the exponential relaxation of the initial condition x2
0, which was already

found for the first moment, with the confluent hypergeometric function 1F1. Note that the
second term in eq. (14) is equal to the expression 2Kt2−αE1,3−α
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which interpolates between the freely diffusive behaviour (10) for short times, and the long-
time power law pattern

∆x(t)2 ∼ Kγ
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. (16)

Accordingly, the mean-squared displacement ∆x(t)2 increases in the course of time even for
long times, despite the restoring Ornstein-Uhlenbeck force. It is straightforward to show in
general that the solution of the fractional Fokker-Planck-Smoluchowski equation (9) does not
have a stationary solution. This is intuitively expected from a Lévy walk whose main charac-
teristic is the continuous approximation to a Lévy stable distribution: only at infinite time,
the Lévy walk has possibly accessed the entire space. Before, there are always large enough
fluctuations by which additional regions can be explored, even against a confining potential.
This typical Lévy walk property is associated with the sharp fronts given by the finite maxi-
mum velocity [14–16]. In our model, these fronts are blurred such that the position pdf falls
off compressed Gaussian fashion for large |x|, but features distinct countermoving humps.
This bimodal character was explored in detail in the enhanced diffusion approach reported
in ref. [34] which corresponds to the force-free limit of eq. (9). Up to second order in the
position coordinate, and to arbitrary order in the velocity coordinate, the FKKE (1) therefore
describes the exact moments of a forced Lévy walk in phase space. The very combination of
pseudo-Markoffian and anomalous properties in the moments calculated above demonstrate
the a priori surprising richness of this process type which has not been realised before.

Formally, the fractional KKE (1) corresponds to the “Lévy rambling” model developed
in ref. [27] but with the force entering symmetrically to friction and diffusion (i.e., 〈v〉 =
−ηvτ∗ + F (x)τ∗/m in eq. (62) of ref. [27]). In that sense, eq. (1) corresponds to an approx-
imation to the Lévy walk model in which the particle undergoes continuous motion between
scattering events which change the velocity coordinate. Friction and force remain events which
enter through an effective time scale τ∗, i.e., they correspond to point-like interactions in the
long-time limit t � max{τ, τ∗}. This gives rise to the fact that the spatial distribution does
not reach an equilibrium state, or, in other words, that space and time do not decouple in
the underlying eqs. (1) and (9) so that the variables x and t cannot be separated, also a typ-
ical property of CTRW-Lévy walks. Consequently, the identity K ≡ kBT/(mγα) inherent in
eq. (9) does not represent a generalised Einstein relation, as it is a non-equilibrium property.

How does our FKKE (1) compare to the previously proposed FKKE for superdiffusion
from ref. [30]? Both models produce the same Mittag-Leffler relaxation towards the Maxwell
distribution in v-space, and have identical form in the force-free case. However, it is the
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distinct behaviour in x-space in the presence of a non-trivial force which sets our new model
equation apart from the previous approach: here, the behaviour in position space is a pro-
nounced non-equilibrium process. Thus, the slow but incessant evolution of the position space
distribution defined by eqs. (1) and (9) reflecting the non-equilibrium character of Lévy walks
opens up new vistas in the modelling of complex dynamical processes in external fields.

We have introduced a new fractional approach to the phase space description of superdiffu-
sive sub-ballistic transport processes. The obtained fractional KKE leads to the Mittag-Leffler
relaxation of the velocity distribution towards the classical Maxwell-Boltzmann equilibrium.
In contrast, the long-time or high-friction limit of the spatial distribution does not possess a
stationary solution. The process is characterised by a combination of the classical time evolu-
tion found for the first moment, such as the exponential relaxation of the initial condition in
the presence of a linear force field, with a time dependence which is governed by the fractional
order α, i.e., the “memory strength”. The fractional KKE fulfils a generalised Einstein rela-
tion in velocity space. In coordinate space, no analogous generalisation of the Einstein relation
exists. These properties set the present approach apart from previous fractional models. We
expect that the present study contributes to a better understanding of superdiffusive transport
and instigates future research on the role of “equilibrium” in anomalous transport processes.
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