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[1] The basic conceptual picture and theoretical basis for development of transport
equations in porous media are examined. The general form of the governing equations is
derived for conservative chemical transport in heterogeneous geological formations for
single realizations and for ensemble averages of the domain. The application of these
transport equations is focused on accounting for the appearance of non-Fickian
(anomalous) transport behavior. The general ensemble-averaged transport equation is
shown to be equivalent to a continuous time random walk (CTRW) and reduces to the
conventional forms of the advection-dispersion equation (ADE) under highly restrictive
conditions. Fractional derivative formulations of the transport equations, both temporal
and spatial, emerge as special cases of the CTRW. In particular, the use in this context of
Lévy flights is critically examined. In order to determine chemical transport in field-scale
situations, the CTRW approach is generalized to nonstationary systems. We outline a
practical numerical scheme, similar to those used with extended geological models, to
account for the often important effects of unresolved heterogeneities. INDEX TERMS: 1832
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1. Introduction

[2] Quantification of chemical transport mediated by flow
fields in strongly heterogeneous geological environments
has received an inordinate amount of attention over the last
three decades, and a vast literature dealing with the subject
has developed (see, e.g., the recent reviews by Dagan and
Neuman [1997]). Existing modeling approaches are gener-
ally based on various deterministic and stochastic forms of
the advection-dispersion equation (ADE); the former
include conditioning the domain of interest by known
heterogeneity structures, while the latter include Monte
Carlo, perturbation and spectral analyses. A major feature
of transport, particularly in more heterogeneous domains, is
the appearance of ‘‘scale-dependent dispersion’’ [e.g., Gel-
har et al., 1992]. Contrary to the fundamental assumptions
underlying use of the classical ADE (which assumes a
constant flow field and dispersion coefficients), the very
nature of the dispersive transport seems to change as a
function of time or distance traveled by the contaminant.
Such scale-dependent behavior, also sometimes referred to

as ‘‘preasymptotic’’, ‘‘anomalous’’ or ‘‘non-Gaussian’’, is
what we shall refer to as ‘‘non-Fickian’’ transport.
[3] Efforts to quantify non-Fickian transport have focused

on more general stochastic ADE’s with, e.g., spatially
varying velocity fields. Stochastic analyses have provided
substantial insight into the dispersion process. They have
been shown, through application to well-documented field
experiments, to provide predictions of the temporal variation
of the first and second order moments of tracer plumes in
geological formations characterized by relatively small
degrees of heterogeneity (e.g., the Cape Cod site [Garabe-
dian et al., 1991]). Other variations based on the classical
ADE have also received attention; these include ‘‘patch’’
solutions which include an empirical time- or space-depend-
ent dispersivity, and mobile-immobile and multirate diffu-
sion type models [e.g., Haggerty and Gorelick, 1995;
Harvey and Gorelick, 2000]. However, the vast majority
of these models assume, either explicitly or implicitly, an
underlying Fickian transport behavior at some scale [e.g.,
Sposito et al., 1986; Rubin, 1997]. Also, many of these
approaches are based on perturbation theory, and they are
therefore limited to porous media in which the variance of
the log hydraulic conductivity is small.
[4] Other nonlocal formulations that do not invoke a

Fickian transport assumption have been hypothesized and/
or developed from various mathematical formalisms [e.g.,
Zhang, 1992; Glimm et al., 1993; Neuman, 1993; Deng et
al., 1993; Cushman et al., 1994; Dagan, 1997]. These
formalisms, in general, are founded on a fundamental
separation between advective and dispersive mechanisms;
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they yield solutions (for the concentration) that result in
definition of a dispersion tensor that is usually formulated in
Fourier–Laplace space, whose inversion is difficult to treat
and/or apply.
[5] Practical application of these models, to quantify the

full evolution of a migrating contaminant plume, has not yet
been achieved. In fact, the overwhelming emphasis of these
various studies has been limited to moment characteriza-
tions of tracer plume migration, and/or to determination of
the ‘‘macrodispersion’’ parameter. The complete solutions
are not analytically tractable, and their practical utility
remains largely undemonstrated.
[6] The difficulty in capturing the complexities of tracer

plume migration patterns suggests that local, small-scale
heterogeneities cannot be neglected. Evidently, these unre-
solvable heterogeneities contribute significantly to the
occurrence of non-Fickian transport. The apparent existence
of hydraulic conductivity fields with coherence lengths that
vary over many scales suggests that temporal, as well as
spatial issues must be considered in any mathematical
formulation. Coupled to this problem is the lack of clarity
of how best to use field observations to reduce the inevitable
uncertainties of the model. Frequently, the latter issue
involves the interplay between ensemble averaging (proba-
bilistic approaches) and spatial scales of resolution of non-
stationary geological features.
[7] In this paper, we reevaluate the basic conceptual

picture of tracer migration in heterogeneous media. We
derive the general form of the governing equations for
conservative chemical transport in heterogeneous geological
formations, for single realizations and for ensemble aver-
ages of the domain. We emphasize quantification of non-
Fickian transport behavior, and show that a general form of
the ensemble-averaged transport equation is a continuous
time random walk (CTRW). In this framework, we show
that non-Fickian transport results from the inapplicability of
the central limit theorem to capture the distribution of
particle transitions (detailed in the next section). Fractional
derivative formulations of the transport equations, both
temporal and spatial, are seen to emerge from another set
of conditions, and are therefore special cases of the CTRW.
We then focus on quantifying transport in nonstationary
media, and discuss how best to deal with the coupled
problem of integrating ensemble averaging with information
on nonstationarity at various scales of resolution.

2. Governing Transport Equations for
Heterogeneous Media

2.1. Physical Framework of the Transport Equations

[8] Contaminants disperse as they migrate within the
flow field of the geological maze we call an aquifer. At
the outset one must choose an underlying physical model of
this process. Two possible models include Taylor dispersion
and multiple transitions. Taylor dispersion is based on
molecular diffusion of particles in a flowing fluid (e.g., in
a pipe) and is governed by an ADE, to be discussed below.
An identical formulation can be obtained by considering
particle movement in a random network and applying the
central limit theorem. The extensive use of the ADE in the
hydrology literature is based essentially on the generic
concept of Taylor dispersion and works well for relatively

homogeneous systems. The particles are assumed to be
transported by the average flowing fluid in the medium
while the ‘‘diffusion’’ is the dispersion due to local medium
irregularities. Larger scale effects (e.g., permeability
changes) are treated as perturbations of this model in
conventional stochastic treatments.
[9] The prime interest in this work is in highly heteroge-

neous systems; in these systems contaminant motion can be
envisioned as a migrating cloud of particles, each of which
executes a series of steps or transitions between changes in
velocity v. The spatial extent of these transitions depends on
the criterion used to define changes in v. The classical
approach is to consider the system divided into representa-
tive elementary volumes (REVs) and determine an average
v and dispersion D in each REV. In our approach we
dispense with the REV idea, because averages can be
unreliable in a system of very wide fluctuations about the
mean value. The change of concentration �C at each
position in a time increment �t is �t � (the net particle
flux). The effective volume contributing the net particle flux
in �t can vary considerably at different positions in the
system. Thus the length scale over which �C varies slowly
in space can change considerably over the system. If one
fixes a sampling volume at each position, it is important to
retain the full distribution (not an average) of the transition
times (determined with a physical model) of flux contribu-
ting to �C. If this distribution is retained, then in our
approach one can still use the limit of a spatial continuum
(as shown below).
[10] The distribution of transition times, y(t), can be

determined in principle from an analysis of the stream tubes
of the flow field and contains the subtle features that can
produce non-Fickian behavior. The physical features neces-
sary for non-Fickian transport are the existence of a wide
range of transition times (causing large differences in the
flow paths of migrating particles) and sufficient encounter
with statistically rare, but rate-limiting slow transitions (e.g.,
low velocity regions) [Berkowitz and Scher, 1995]. These
general ideas will be developed schematically in the next
sections.

2.2. Single Realization Transport Equation

[11] For our point of departure we need a transport equa-
tion framework that can enumerate all these possible paths
and encompass the motion from continuous to discrete over a
range of spatial and temporal scales, for any given realization
of the domain. An excellent candidate is the ‘‘Master Equa-
tion’’ [Oppenheim et al., 1977; Shlesinger, 1996]

@C s; tð Þ
@t

¼ �
X
s0

w s0; sð ÞC s; tð Þ þ
X
s0

w s; s0ð ÞC s0; tð Þ ð1Þ

for C(s, t), the bulk particle concentration at point s and time
t, where w(s, s0) is the transition rate from s0 to s (the
dimension of �sw is reciprocal time). The transition rates
describe the effects of the velocity field on the particle
motion; the determination of w(s, s0) involves a detailed
knowledge of the system. We assume the average effective
range of w(s, s0) is a finite distance. The Master Equation
has been applied in the context of electron hopping in
random systems [e.g., Klafter and Silbey, 1980a], and is
discussed widely in the physics and chemistry literature.
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[12] The transport equation in (1) does not separate the
effects of the varying velocity field into an advective and
dispersive part of the motion; this separation is an approx-
imation based on the assumption of relatively homogeneous
regions in which C(s, t) will be slowly varying over a finite
length scale (the range of transition rates),

C s0; tð Þ � C s; tð Þ þ s0 � sð Þ 	 rC s; tð Þ

þ 1

2
s0 � sð Þ s0 � sð Þ : rrC s; tð Þ ð2Þ

(with the dyadic symbol : denoting a tensor product).
Substituting (2) into (1) leads to a continuum description
(i.e., local diffusion in a pressure field p(s)) and a partial
differential equation (pde), for a single realization of the
domain:

@C s; tð Þ
@t

¼
X
s0

w s; s0ð Þ � w s0; sð Þð ÞC s; tð Þ þ
X
s0

w s; s0ð Þ s0 � sð Þ

	rC s; tð Þ þ
X
s0

w s; s0ð Þ 1
2

s0 � sð Þ s0 � sð Þ : rrC s; tð Þ:

ð3Þ

[13] We note that (3) is close to the form of an ADE with
the exception of the term proportional to C(s, t). This term is
present due to the asymmetry of the transition rates (due to
the bias of the pressure field) and/or the nonstationary
medium (due to the explicit position dependence of the
rates; see (4)). It makes a contribution to the final form of
the pde for diffusion in a force field. If the system is
stationary this term vanishes (as we show below) and thus
reduces to the form of an ADE. One can already observe in
(3) generalized velocity and dispersion coefficients (in
terms of w(s, s0)); however we have not yet separated out
the effects of the flow field and determined transport
coefficients. In order to fully determine the final pde and
separate the advection and diffusion contributions, we must
specify the w(s, s0) in terms of p(s), the pressure field.
[14] A general form for a nonstationary medium is

w s; s0ð Þ � W s0 � s; s0ð Þ� p s0ð Þ � p sð Þð Þ ð4Þ

where the asymmetry in the rates is due to p(s0) � p(s), the
pressure difference at s0 and s, and the explicit dependence
of the overall rate W on location (� is a function of the
pressure difference only). The overall rate W(s0 � s, s0) is
symmetric under exchange of s0 and s in the first argument.
We specify the �-function, so that (4) is written as

w s; s0ð Þ � W s0 � s; s0ð Þ� p s0ð Þ � p sð Þð Þ � F s0 � s; s0ð Þ

	 lþ 1

2
p s0ð Þ � p sð Þð Þ

� �
ð5Þ

where in (5) nonlinear terms in the pressure difference have
been neglected (i.e., terms proportional to (rp)2) and a
contribution to the transition rates is retained even for
vanishing pressure difference. The significance of the latter
step can be seen by realizing that F(p(s0) � p(s)) is a simple
advection contribution (with a permeability proportional to
F ) and the term Fl is proportional to a local diffusion

contribution to the rates. The l term retains the scattering
effects of the medium (i.e., the transfers between ‘‘stream
tubes’’) even in the limit of very small local pressure
differences. It is also closely associated with the effect of
‘‘local’’ dispersion.
[15] We now also assume F(s0 � s, s0) will be slowly

varying over some finite length scale. We expand in a
Taylor series to second order in s0 � s,

F s0 � s; s0ð Þ � F s0 � s; sð Þ þ s0 � sð Þ 	 rF

þ 1

2
s0 � sð Þ s0 � sð Þ : rrF: ð6Þ

In (6), the gradient operates on the second argument, s0.
Combining (5) and (6), and substituting into the first term
on the right side of (3), we have

w s; s0ð Þ � w s0; sð Þ � F s0 � s; s0ð Þ lþ 1

2
p s0ð Þ � p sð Þð Þ

� �

�F s0 � s; sð Þ l� 1

2
p s0ð Þ � p sð Þð Þ

� �
� F s0 � s; sð Þ

	 p s0ð Þ�p sð Þð Þ þ s0 � sð Þ 	 rFþ1

2
s0 � sð Þ s0 � sð Þ : rrF

� �

	 lþ 1

2
p s0ð Þ � p sð Þð Þ

� �
: ð7Þ

Now using a similar expansion for the pressure difference,
we have

p s0ð Þ � p sð Þ � s0 � sð Þ 	 rp sð Þ þ 1

2
s0 � sð Þ s0 � sð Þ : rrp sð Þ:

ð8Þ

Substituting (8) into (7) and using

X
s0

F s0 � s; sð Þ s0 � sð Þ ¼ 0 ð9Þ

because F is symmetric under exchange of s0 and s in the
first argument, we obtain for the expression in (7), summed
over s0,

r 	 D sð Þ
l

rp sð Þ
� �

þr 	 rD sð Þ ð10Þ

where the dispersion tensor is defined as

D sð Þ � 1

2

X
s0

F s0 � s; sð Þ s0 � sð Þ s0 � sð Þl: ð11Þ

We insert (10) into (3) and use (4)–(6), (8), (9) (see
Appendix A) to obtain

@C s; tð Þ
@t

¼ r 	 D sð Þ
l

rp sð ÞC s; tð Þ þ r D sð ÞC s; tð Þð Þ
� �

: ð12Þ

[16] The form of (12) is a continuity equation–the time
derivative of the concentration is equal to the divergence of
the total concentration flux, the sum of the diffusive con-
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centration flux and the advective concentration flux–with
an effective permeability of

k sð Þ � D sð Þ
l

q ð13Þ

where q is the porosity. Equation (12) is a generalization to a
nonstationary medium of the well-known Smoluchowski
equation [Chandrasekhar, 1943] which is the basis for
describing diffusion in a force field. In our case the force
field is rp(s). In the case of electron transfer in a potential
field the l in (13) can be shown to be kT (where T is the
temperature and k is Boltzmann’s constant) and the relation
in (13) is the Einstein relation between mobility and
diffusion. We use a convention that a product between a
tensor T and a vector V is TV yielding a vector. In our case,
the vector q(s) = �k (s) rp(s) is the velocity field and for
an incompressible fluid r 	 q(s) = 0. The only term
remaining in (12) proportional to C(s, t) is r 	 rD(s)C(s, t).
The final form for the pde for an incompressible fluid is

@C s; tð Þ
@t

¼ �q sð Þ 	 r C s; tð Þ=qð Þ þ r 	 r D sð ÞC s; tð Þð Þ: ð14Þ

[17] Equation (14) is a generalization of the ADE. While
many simplifications of the ADE are based on (14) with
D(s) = D (i.e., a constant), the usual (‘‘general’’) form of the
ADE includes a s-dependent D in (14) but with the second
term replaced by r 	 (D(s)rC(s, t)). Thus (14) differs from
this usual form of the ADE by the addition of two terms:r 	
rD(s)C(s, t) and rD(s) 	 rC. The form of (14) is the same
as postulated by Kinzelbach [1986], based on the Ito
process.
[18] The difference in the general form of the ADE can be

traced to starting the derivation with the pressure field p(s)
and not with rp(s), i.e., the expansion (8) is treated on the
same basis as the other expansions (2) and (6). Hence,
starting with the Master equation (1) and using a general
expression for the transfer rates we obtain, for a specific
heterogeneous medium, in a continuum limit (slowly vary-
ing C(s, t) and w(s, s0)) the generalized equation for
diffusion in a force field (Smoluchowski) which for irrota-
tional flow is a generalized ADE. We assert that for a
nonstationary medium, i.e., s-dependent v and D, (14)
should be the starting point for numerical calculations.
The main numerical differences between this equation and
the usual ADE (with D(s)) should arise in ‘‘boundary’’
regions of more spatially varying D(s). The importance of
accounting for D(s) has been demonstrated by, e.g., Labolle
et al. [1996].
[19] We will show that the ‘‘standard’’ ADE emerges as

the continuum limit of the ensemble averaged Master
equation (the term proportional to C(s, t) vanishes for
stationary transition rates). In general, the continuum limit
presents difficulties in regions of increased heterogeneity,
such as tightly interspersed permeability layers. The con-
centration C(s, t) will not necessarily vary slowly on the
same length scale throughout the system. The point average
of v and D can be very sensitive to small changes in the
local volume used to determine the average. Conversely, if
one fixes the volume to a practical pixel size (e.g., 10 m3)
the use of a local average v and D in each volume can be

quite limited, i.e., the spreading effects of unresolved
residual heterogeneities are suppressed [e.g., Dagan,
1997]. We will return to this issue in a broader context in
section 4. It essentially involves the degrees of uncertainty
and its associated spatial scales. We start, at first, with an
ensemble average of the entire medium and discuss the role
of this approach in the broader context.

2.3. Ensemble Average Transport Equation

[20] We resume our examination of the Master Equation
approach, i.e., before assuming any continuum limit. The
ensemble average of (1) can be shown [Klafter and Silbey,
1980b] to be of the form

@P s; tð Þ
@t

¼ �
X
s0

Z t

0

f s0 � s; t � t0ð ÞP s; t0ð Þdt0

þ
X
s0

Z t

0

f s� s0; t � t0ð ÞP s0; t0ð Þdt0 ð15Þ

where P(s, t) is the normalized concentration, and f(s, t) is
defined below in (20). The form of (15) is a ‘‘Generalized
Master Equation’’ (GME) which, in contrast to (1), is
nonlocal in time and the transition rates are stationary (i.e.,
depend only on the difference s–s0) and time-dependent.
This equation describes a semi-Markovian process (Marko-
vian in space, but not in time), which accounts for the time
correlations (or ‘‘memory’’) in particle transitions.
[21] It is straightforward to show [Kenkre et al., 1973;

Shlesinger, 1974], using the Laplace transform, that the
GME is completely equivalent to a continuous time random
walk (CTRW)

R s; tð Þ ¼
X
s0

Z t

0

y s� s0; t � t0ð ÞR s0; t0ð Þdt0 ð16Þ

where R(s, t) is the probability per time for a walker to just
arrive at site s at time t, and y(s, t) is the probability rate for
a displacement s with a difference of arrival times of t. The
initial condition for R(s, t) is ds,0 d(t � 0+), which can be
appended to (16). The correspondence between (15) and
(16) is

P s; tð Þ ¼
Z t

0

� t � t0ð ÞR s; t0ð Þdt0 ð17Þ

where

� tð Þ ¼ 1�
Z t

0

y t0ð Þdt0 ð18Þ

is the probability for a walker to remain on a site,

y tð Þ �
X
s

y s; tð Þ ð19Þ

and

~f s; uð Þ ¼ u~y s; uð Þ
1� ~y uð Þ

ð20Þ

where the Laplace transform Lð Þ of a function f (t) is
denoted by ef (u).
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[22] Equations (16)–(19) are in the form of a convolution
in space and time and can therefore be solved by use of
Fourier and Laplace transforms [Scher and Lax, 1973]. The
general solution is

P k; uð Þ ¼ 1� ~y uð Þ
u

1

1� � k; uð Þ ð21Þ

where P k; uð Þ, �(k, u) are the Fourier transforms Fð Þ ofeP(s, u), ~y s; uð Þ, respectively.
[23] The CTRW accounts naturally for the cumulative

effects of a sequence of transitions. The challenge is to map
the important aspects of the particle motion in the medium
onto a y(s, t). The identification of y(s, t) lies at the heart of
the CTRW formulation. The CTRW approach allows a
determination of the evolution of the particle distribution
(plume), P(s, t), for a general y(s, t); there is no a priori
need to consider only the moments of P(s, t). As we discuss
below, a y(s, t) with a power law (30) for large time leads to
the description of anomalous transport (e.g., non-Fickian
plumes). Once y(s, t) is defined one needs to calculate �(k,
u) and then determine the propagator P(s, t) by inverting the
Fourier and Laplace transform of (21). The latter can be
quite challenging.
[24] As shown previously the separation between advec-

tion and dispersion occurs in the continuum (diffusion)
limit. In an ensemble averaged system this limit leads to
an ADE [Berkowitz and Scher, 2001]. For clarity and
convenience, we reproduce the argument here. The first
step is to make a series expansion of P(s, t) similar to (2);
inserting this into (15) yields

@P s; tð Þ
@t

¼
X
s0

Z t

0

dt0
�
f s� s0; t � t0ð Þ s0 � sð Þ 	 rP s; t0ð Þ

þf s� s0; t � t0ð Þ 1
2

s0 � sð Þ s0 � sð Þ : rrP s; t0ð Þ
�
: ð22Þ

We write (22) in a more compact form

@P s; tð Þ
@t

¼
Z t

0

dt0
�
� vy t � t0ð Þ 	 rP s; t0ð Þ þ�y t � t0ð Þ

: rrP s; t0ð Þ
�

ð23Þ

vy tð Þ �
X
s

f s; tð Þs ð24Þ

�y tð Þ �
X
s

f s; tð Þ 1
2
ss: ð25Þ

Note the sum (over s0) in (22) is independent of s in a
stationary system; hence we shift the summation variable to
obtain (24)–(25). This particular formulation is convenient
because, in (23), we can define terms that are familiar in the
context of traditional modeling: the ‘‘effective velocity’’ vy
and the ‘‘dispersion tensor’’�y. Note, however, that both of
these terms are time-dependent, and most significantly,
depend fundamentally on y(s, t). This equation has the form
of an ADE generalized to nonlocal time responses as a
result of the ensemble average.
[25] The next step is a crucial one in distinguishing

between normal and anomalous transport. If y(s, t) has

both a finite first and second moment in t the transport is
normal and one can expand ~y s; uð Þas [Scher and Montroll,
1975]

~y s; uð Þ ffi p1 sð Þ � p2 sð Þuþ p3 sð Þu2 þ . . .

and ~y uð Þ ¼
P
s

~y s; uð Þ ffi 1�	tuþ du2 þ . . .
ð26Þ

with
P

sp1(s) = 1, the normalization of y(s, t), and
P

sp2(s)
� t and

P
s p3(s) � d, the first and second temporal

moments of y(t), respectively. Note that small u corre-
sponds to large time in Laplace space. The functions pi (s)
are asymmetric due to the bias in the velocity field; p1(s) is
the probability to make a step of displacement s. One now
inserts (26) into (20) and expands in a power series of u.
The leading term is independent of u, which we retain. The
correction to this leading term is proportional to u and is
small. Substituting this expression into the Laplace trans-
form of (23)–(25), which is (53)–(55) (see below), and
taking the inverse Laplace transform of the result, yields the
ADE

@P s; tð Þ
@t

¼ �v 	 rP s; tð Þ þ D : rrP s; tð Þ ð27Þ

where the effective velocity v is equal to the first spatial
moment of p1(s), s, the mean displacement for a single
transition, divided by the mean transition time t, and the
dispersion tensor D � Dij is the second spatial moment
divided by t, which can be written as

v ¼
X
s

p1 sð Þs=	t � 	s=	t ð28Þ

Dij ¼ v
1

2

X
s
p1 sð Þsisj=	s ð29Þ

where v = |v| and s = |s|. If we retain the term proportional to
u when inserting (26) into (20), we obtain terms with both
spatial and temporal derivatives of P(s, t).
[26] Thus our underlying physical picture of advective-

driven dispersion reduces to the familiar ADE when one can
assume smooth spatial variation of P(s, t) and finite first and
second temporal moments of y(s, t).

2.4. Non-Fickian Dispersion

[27] When the y(s, t) has a power law (algebraic tail)
dependence on time at large t, i.e.,

y s; tð Þ � t�1�b ð30Þ

the first and second temporal moments do not exist for 0 < b
< 1, while the second temporal moment does not exist for
1 < b < 2. The dependence of y(s, t) in (30) is a
manifestation of a wide distribution of event times as
encountered in highly heterogeneous media. The relation
between the power law behavior (30) and non-Fickian
(anomalous) transport has been well documented [e.g.,
Scher and Montroll, 1975; Berkowitz and Scher, 2001]. We
sketch the key points of that relationship: The form of y(s, t)
at large time determines the time dependence of the mean
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position 	‘(t) and standard deviation 	s tð Þ of P(s, t). In the
presence of a pressure gradient (or ‘‘bias’’), and for (30), it
can be shown [Scher and Montroll, 1975; Shlesinger, 1974]
for 0 < b < 1 that

	‘ tð Þ � t b ð31Þ

	s tð Þ � t b ð32Þ

while for 1 < b < 2

	‘ tð Þ � t ð33Þ

	s tð Þ � t 3�bð Þ=2: ð34Þ

Moreover, it can be shown that Fickian-like transport arises
when b > 2 [e.g., Margolin and Berkowitz, 2000].
[28] The unusual time dependence of 	‘(t) and 	s tð Þ in

(31)–(34), resulting from the infinite temporal moments of
y(s, t) (i.e., the conditions of the central limit theorem are not
fulfilled), is the hallmark of the non-Fickian propagation of
P(s, t). This behavior is in sharp contrast to Fickian models
where, 	‘(t) � t and 	s tð Þ � t1=2 (as an outcome of the central
limit theorem) and the position of the peak of the distri-
bution coincides with 	‘(t). Note that in Fickian transport,
	‘ tð Þ=	s tð Þ � t1=2; an important distinguishing feature of
anomalous transport is that 	‘ tð Þ=	s tð Þ � constant for
0 < b < 1, and 	‘ tð Þ=	s tð Þ � t b�1ð Þ=2 for 1 < b < 2. The relative
shapes of the anomalous transport curves, and the rate of
advance of the peak, vary strongly as a function of b. Thus
the parameter b effectively quantifies the contaminant dis-
persion; this parameter is discussed in detail by, e.g.,
Margolin and Berkowitz [2000, 2002] and Berkowitz and
Scher [2001]. Hence, the crucial considerations for the
appearance of non-Fickian dispersion in a specified scale
of a heterogeneous medium are the physical criteria for the
power law (30) and its (time) range of applicability. Non-
Fickian transport that displays these characteristics has been
documented in several analyses of numerical simulations,
and laboratory and field data [Berkowitz and Scher, 1998;
Hatano and Hatano, 1998; Berkowitz et al., 2000; Kosa-
kowski et al., 2001].
[29] The large time regime of y(s, t) corresponds to the

small u regime for its Laplace transform and the expansion
in u (for (30)) is quite different from (26) [Shlesinger,
1974], i.e.,

~y s; uð Þ ffi p01 sð Þ � p02 sð Þub þ . . . ð35Þ

for u ! 0 for 0 < b < 1. Inserting (35) into (20), parallel to
the development following (26), yields a transport equation
from (22) which remains nonlocal in time and is not the
ADE. Our development [Berkowitz and Scher, 1995] of
non-Fickian transport has been based directly on (15). In
other words, solutions for the full evolution of a tracer
plume, as well as for breakthrough curves (i.e., spatial and
temporal distributions of tracer) can be derived directly
from (15) [e.g., Scher and Montroll, 1975; Berkowitz and
Scher, 1997, 1998]. A (fractional) pde form of the transport
equation, derived from (22) and holding only for the power
law dependence (30), i.e., a special case of CTRW, is

exhibited in section 3.2. We observe also that the u ! 0
expansion of ~y s; uð Þfor 1 < b < 2 is similar to (26), but with
the u2 term replaced by one proportional to ub. In this case
the correction to the u-independent term p1(s)/t used in (28),
(29) is proportional to ub�1 and can be significant
(especially for b � 1).
[30] Finally, we note that the general CTRW formalism

(i.e., not restricted to (30)) can be used to model a large
number of physical processes. For example, y(s, t) has been
defined for multiple trapping [e.g., Scher et al., 1991;
Hatano and Hatano, 1998] and as such can be used for
multiple-rate models [Haggerty and Gorelick, 1995] and to
quantify dispersion in stratified formations [Matheron and
de Marsily, 1980]. Zumofen et al. [1991] have used the
CTRW explicitly to model the latter.

3. Fractional Differential Equations

[31] There is growing interest in the development and
application of fractional differential formulations of transport
equations. In particular, fractional differential equations of
the diffusion, diffusion-advection, and Fokker–Planck type
have been considered in stochastic modeling in physics [e.g.,
Hilfer, 2000; Metzler and Klafter, 2000]. Here we consider
fractional derivative equations (FDE) for transport and show
how they are special cases of the CTRWequations developed
in the previous section. We emphasize that FDE are not
different models from the CTRW; rather, they are seen to
emerge as asymptotic limit cases of the CTRW theory.
[32] A word of caution: referring to a transport equation

as ‘‘fractional’’ can be with respect to the occurrence of
fractional order differentiation in time or space, or both.
Moreover, a number of definitions for fractional operators
exist. Here, we concentrate on two possibilities: the Rie-
mann–Liouville fractional time derivative 0Dt

b (for which
we will employ the more suggestive notation @b/@tb), and
the Riesz spatial derivative rm [Oldham and Spanier, 1974;
Samko et al., 1993].
[33] The development of FDE in both the time and space

variables necessitates a more general starting equation than
(22), which depends on the validity of the expansion of
P(s, t) similar to (2). We return to the general solution (21).
In order to obtain FDE’s, one expands the denominator in
(21) to low orders in k and u. For our demonstration
purpose, we simplify with a product form p(s)y(t) for the
y(s, t) probability density function, which assumes that the
transition length and time are statistically independent
quantities. Furthermore we need the asymptotic form (30)
of y(t) and/or p(s) (see below). The indicated power law
decay for 0 < b < 1 causes the divergence of t, the mean
transition time (see section 2.4). Corresponding to (30) the
Laplace transform of y(t) is

~y uð Þ � 1� uctð Þb ð36Þ

which is (35) summed over s, where ct is a dimensional
constant determined by the physical model. Along the same
line we consider the power-law form p(s) � cs

m/jsj1+m, 0 < m
< 2 for the transition length, where cs is, analogous to ct, a
dimensional constant. Similar to y(t), the first and second or
second (spatial) moment(s) of p(s) are infinite for,
respectively, 0 < m < 1 and 1 < m < 2. The border case for
m = 2 is the Gaussian law p(s) � (4pcs

2)�1 exp(�s2/(4cs)).
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For any symmetric Lévy stable law p(s), the asymptotic
form of the Fourier transform of p(s) is given by

	p kð Þ � 1� cs
m kj jm 0 < m � 2: ð37Þ

3.1. Time-FDE

[34] We concentrate on the case 0 < b < 1 and m = 2, for
which the spatial moments are finite, but the temporal
moments are infinite. We consider first the case with no
spatial bias, 	‘(t) = 0 (i.e., no advective transport). Insertion
of (36) and the low wave number expression 	p(k) � 1 �
cs
2k2 into (21) leads to

P k; uð Þ ¼ 1

uþ Kbu1�bk2
ð38Þ

(dropping the cross term (uct)
bcs

2k2) where the anomalous
diffusion constant is defined as Kb � cs

2/ct
b. The FDE is

determined by multiplying (38) by the denominator of the
right side and rearranging to yield

uP k; uð Þ � 1 ¼ �Kbk
2u u�bP k; uð Þ
	 


; ð39Þ

where the dimension of the generalized diffusion constant
is [Kb] = m2sec�b. While the two terms on the left
correspond to @P(s, t)/@t in (s, t) space, with the initial
condition P(s, 0) = d(s) (on both sides of (39) the property
L dF tð Þ=dtf g ¼ u~F uð Þ � F 0ð Þ is utilized), the factor u�b on
the right poses the problem of finding the corresponding
Laplace inversion. One of the definitive responses goes
back to Riemann and Liouville who extended the Cauchy
multiple integral, in order to define the fractional integral,

@�b

@t�b P s; tð Þ � 1


 bð Þ

Z t

0

dt0
P s; t0ð Þ
t � t0ð Þ1�b ð40Þ

which possesses the important property

L @�b

@t�b P s; tð Þ
� �

¼ u�b ~P s; uð Þ: ð41Þ

The definition (40) explicitly includes the initial value at
time t = 0. Note that for a negative index, @�b/@t�b, the
Riemann–Liouville operator denotes fractional integration,
whereas for a positive index, @b/@tb, we have fractional
differentiation. In our case fractional differentiation is
established as the succession of fractional integration and
standard differentiation:

@1�b

@t1�b P s; tð Þ ¼ @

@t

@�b

@t�b P s; tð Þ: ð42Þ

[35] With these definitions, we can now invert (39), and
obtain the fractional diffusion equation

@P

@t
¼ Kb

@1�b

@t1�b r
2P s; tð Þ: ð43Þ

In the limit b ! 1 (43) reduces to the standard Brownian
version.
[36] The generalization to a fractional ADE for anom-

alous transport (0 < b < 1), which includes a spatial bias

(advective transport), follows the same procedure as above
[Compte, 1997; Compte et al., 1997; Compte and Càceres,
1998; Metzler et al., 1998; Metzler and Compte, 2000],

@

@t
P s; tð Þ ¼ @1�b

@t1�b �vb 	 r þ Kbr2
	 


P s; tð Þ ð44Þ

where vb is the ‘‘generalized drift velocity’’. Note that (43)
and (44) involve fractional differentiation in time on the
spatial derivative terms of the equations. These equations
can be rewritten so they do not involve mixed derivatives, if
desired [Metzler and Klafter, 2000]. We stress that the form
of (43) and (44) relies on using (36), and that (44) is valid
only for 0 < b < 1; it is modified significantly for 1 < b < 2.
We have thus shown that the probability density P(s, t)
described by the time-fractional ADE (44), is equivalent to
the large time limit of the CTRW with a bias, with the
asymptotic form of y(t) given by (30) (or ~y uð Þ given by
(36)). For a specific class of y(t) (which also fulfills the
asymptotic form (36)), the equivalence between CTRW and
FDE can be shown over the entire range of t [Hilfer and
Anton, 1995].

3.2. Space-FDE: Lévy Flights

[37] We now consider the opposite case of a transition
time distribution with an existing first moment, b > 1,
~y uð Þ � 1� uct, and a transition length distribution p(s)
with a diverging second moment, 0 < m < 2 (F p sð Þf g in
(37)). This case can be shown to be a Markovian process (in
contrast to the semi-Markovian process discussed in section
2.3) called a Lévy flight.
[38] To avoid confusion, we stress that a Lévy flight

refers to a random movement in space, where the length of
the transitions is considered at discrete steps, but time is not
involved. Lévy walks, on the other hand, attach a time
‘‘penalty’’, by assigning a velocity to each transition in
space. In the simplest case, this velocity is constant;
relaxation of this condition leads back to the more general
CTRW formulation of section 2.3 [Klafter et al., 1987;
Shlesinger et al., 1993]. In any case, Lévy walks cannot be
described in terms of simple fractional transport equations
[Metzler, 2000].
[39] A Lévy flight is characterized through the Fourier–

Laplace transform [Bouchaud and Georges, 1990; Compte,
1996; Metzler and Klafter, 2000]

P k; uð Þ ¼ 1

uþ Km kj jm ð45Þ

from which, upon Fourier and Laplace inversion, the FDE
[Compte, 1996]

@

@t
P s; tð Þ ¼ KmrmP s; tð Þ ð46Þ

is inferred. The Riesz operator rm is defined through
[Samko et al., 1993]

F rmP s; tð Þf g ¼ � kj jmP k; tð Þ: ð47Þ
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Note that we use the definition Km � cs
m/ct for the diffusion

constant. From (45), one recovers the characteristic function

P k; tð Þ ¼ exp �Kmt kj jmð Þ; ð48Þ

which is the characteristic function of a centered and
symmetric Lévy distribution with the asymptotic power-law
behavior [Lévy, 1925, 1954; Gnedenko and Kolmogorov,
1954]

P s; tð Þ � sj j�1�m: ð49Þ

Lévy distributions are used to generate Lévy flights
[Bouchaud and Georges, 1990]. Accordingly, the second
moment of a Lévy flight diverges:

s tð Þ2
D E

¼ 1: ð50Þ

Observe that Lévy flights are characterized by a transition
time distribution y(t) with a finite first moment; they are
thus fundamentally different from those processes under-
lying the time-fractional dispersion equation (44). As can be
seen both descriptions are included in the CTRW frame-
work.
[40] Including a bias into the transition distribution, one

obtains for an asymptotic form of p(s) the Lévy flight
fractional ADE [Metzler et al., 1998]

@

@t
P s; tð Þ þ v 	 rP s; tð Þ ¼ KmrmP s; tð Þ ð51Þ

which exhibits Galilei symmetry, i.e., (51) is solved by the
Lévy stable solution (49), to be taken at the point s � vt.
This means that the symmetric Lévy stable plume is entirely
shifted along the velocity vector v, a situation which
strongly contrasts the growing skewness in the CTRW case
for long-tailed transition times. Of course, this solution
features the same divergence (50) of the second moment of
the plume distribution. The first moment of (51) exists for
all 0 < m < 2 and follows the usual Galilei symmetry
expression

s tð Þh i ¼ vt: ð52Þ

3.3. Applications

[41] As discussed above, although both time and space
FDE forms are special cases of the CTRW, and both
represent generalizations of the Fickian-based ADE, there
are clear and critical distinctions between the transport
equations that result from these two formulations. Here,
we assess the Lévy flight description and argue that its
characteristics strongly limit its applicability to describing
transport in geological formations.
[42] We consider the underlying physical picture of the

Lévy flight, as applied to tracer migration in geological
formations: a necessary condition for the Lévy flight
description is that the domain clearly contain ‘‘streaks’’ of
high and low permeability, arranged so as to lead to particle
transitions of high and low velocity. In other words, the
physical picture of a Lévy flight requires an encounter with
a wide range of lengths of permeability streaks to obtain a

non-Fickian distribution of particle transitions. And yet,
such non-Fickian distributions arise even without the pres-
ence of such a permeability distribution, as clearly demon-
strated by, e.g., Silliman and Simpson [1987].
[43] In addition, we observe that in mathematical terms,

the first and second moments are often used to characterize
plume migration. These quantities describe the spatiotem-
poral distribution of the tracer particles; the particles carry a
finite mass, and therefore have a finite velocity. As noted
above, the Lévy flight description leads to a diverging
second moment of the migrating plume. Given that the
macrodispersion parameter is typically defined in terms of
the second moment, this divergence property cannot be
ignored. Moreover, we observe that through scaling argu-
ments [Jespersen et al., 1999], transport only undergoes a
‘‘superdiffusive’’ (faster than linear) process; in the Lévy
flight description, subdiffusive transport can never occur.
[44] With respect to the issue of a diverging second

moment, one might attempt to work with a finite number
of sampled tracer particles in a finite range, during a finite
time window; this leads to a truncated Lévy distribution with
finite moments. For truncated Lévy distributions it is known
that their scaling behaviors in time pertain up to relatively
large times [Mantegna and Stanley, 1994, 1995]. The
difficulty is that to account for the temporal evolution of
the particle cloud, the cutoffs would have to be adjusted to
the actual space volume explored by the tracer particles, i.e.,
the cutoffs would themselves become time-dependent [Jes-
persen et al., 1999]. Put somewhat differently, the spatial-
fractional formulation is based on an assumed fractal, scale-
free nature of the transport process. Truncating the distribu-
tions leads, by definition, to a scale-dependent process which
invalidates the use of simple fractional operators.
[45] In contrast to the above arguments, the formulation

given by, e.g., (44), or, more generally, by (16)–(19), does
not suffer from these limitations or assumptions. In realistic
field situations, the distribution of particle velocities is
expected to vary widely on the order of magnitude of
typical spacing between sampling points. Of course, the
velocity distribution is bounded by some maximum veloc-
ity. In the long time limit, corresponding to the small u limit
that is of interest in our modeling, the mean effect of this
finite variation of velocities can be approximated by a
typical velocity. From this point of view, therefore, anoma-
lies in the plume and the related moments should arise from
temporal ‘‘sticking’’ processes (i.e., low velocity particle
transitions) which are taken into consideration in the CTRW
picture. Depending on the range of b (recall –(34)), both
subdiffusive and superdiffusive behaviors for plume spread-
ing can be characterized. Moreover, explicit spatial structure
(well-defined conductivity features) can be incorporated
within the CTRW framework.

4. Use of CTRW-Based Ensemble Averages in
Nonstationary Media: The Relation of Field
Scales and Uncertainty

[46] We return now to consider the issue, raised in the
Introduction, that the interplay between ensemble averaging
and spatial scales of nonstationary geological features
strongly affects efforts to model transport. Broadly speak-
ing, there exist two approaches to modeling transport in
large, field-scale formations. In the first approach, the
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formation is treated as a single domain, with heterogeneities
characterized and distributed according to a random field,
with or without correlation and/or anisotropy. Generally
speaking, these characterizations treat the domain as a
stationary system, although stochastic models that incorpo-
rate a deterministic drift component (in the random field
generator) have been considered [e.g., Li and McLaughlin,
1995]. In the second approach, a physical picture of the
domain is constructed which includes explicitly specified
(prescribed or known) heterogeneities, so that the resulting
domains are nonstationary [e.g., LaBolle and Fogg, 2001;
Koltermann and Gorelick, 1996; Eggleston and Rojstaczer,
1998; Feehley et al., 2000].
[47] While the study of ensemble-averaged (stationary)

domains has given rise to a sub-literature on stochastic
methodologies and limiting behavior (e.g., perturbation
techniques, macrodispersion) it has not yielded a practical
numerical scheme to deal with the large majority of field
sites. Anderson [1997] describes in detail heterogeneity and
trending structures evident in natural geological formations,
and argues convincingly for the need to use facies modeling
(coupled with geostatistical techniques) and/or depositional
simulation models. These models can provide the under-
lying hydraulic conductivity structure and flow field of
nonstationary domains, conditioned on field measurements,
and be integrated with predictive models of transport.
[48] Within the framework of nonstationary domains,

explicitly characterized by structural trends, the question
then arises as to how best to model transport (or, more
precisely, how to deal with the unresolved heterogeneities
(residues)). Clearly, there is a critical interplay between
length scales associated with the trends and the residues.
This gives rise to the associated uncertainty in both the
measured/estimated hydraulic parameters and the measured/
predicted concentrations. The generally accepted explana-
tion for non-Fickian transport is that heterogeneities which
cannot be ignored are present at all scales. Therefore
accounting for these residues is a central consideration for
the quantification of non-Fickian transport.
[49] In efforts to combine nonstationarity with local-scale

heterogeneity and uncertainty, several recent studies have
attempted to use ADE-based modeling approaches in con-
junction with facies modeling [e.g., Eggleston and Roj-
staczer, 1998; Feehley et al., 2000]. However, these
studies, which incorporated even highly discretized systems
(e.g., with block sizes of the order of 10 m3 in large aquifers),
demonstrated an inability to adequately capture the migra-
tion patterns; these results suggest that unresolved hetero-
geneities also exist at relatively small scales. We note that
non-Fickian transport has been observed even in small-scale,
relatively homogeneous, laboratory-scale models [Berkowitz
et al., 2000]. Other related issues that have been considered
recently focus on the relative importance of diffusion and
local-scale dispersion and on how to separate diffusive mass
transfer processes from slow particle velocities [e.g., Harvey
and Gorelick, 2000; LaBolle and Fogg, 2001]. These ques-
tions may be considered to be somewhat moot, especially
given that ‘‘dispersion’’ is an artifact of averaging in math-
ematical formulations, while a definitive separation between
diffusion and very low velocity may be unnecessary.
[50] At all of these smaller scales, i.e., within individual

facies or depositional structures, the CTRW-based transport

equations are highly effective. We therefore suggest that the
CTRW-based approach should be used together with these
facies and depositional models. As is usually done, a
numerical model can be constructed which accounts explic-
itly for the heterogeneity structure of a formation, and the
usual methods to solve for the flow field can be imple-
mented. A CTRW-based transport equation can then be
applied, rather than the ADE, over the entire domain. We
observe that while the ADE (and the usual definition of
‘‘dispersion’’) is simpler to apply than the CTRW-based
equation, the preceding discussion (both in this section and
the previous ones) demonstrate that it cannot and should not
generally be applied in realistic field situations.
[51] In this context, we shall consider the use of a hybrid

model: known conductivity structures are accounted for
explicitly, and within each block (pixel or voxel) of a
numerical model we use the CTRW to account for the
residues. Precluding the use of y(s, t) with (spatial) Lévy
forms, because the trends are included explicitly in the
numerical model, we can start with (23) as a basis for our
numerical treatment. The methods developed with the use of
the ADE, can be carried out with the Laplace transforms of
(23)–(25),

u~P s; uð Þ � P0 sð Þ ¼ �~vy uð Þ 	 r~P s; uð Þ þ ~�y uð Þ : rr~P s; uð Þ
ð53Þ

~vy uð Þ ¼ u�s
~y s; uð Þs

1� ~y uð Þ
ð54Þ

~�y uð Þ ¼
u�s

~y s; uð Þ 1
2
ss

1� ~y uð Þ
ð55Þ

where P0(s) is the initial condition.
[52] The transport equation (53) is very similar to the

Laplace transform of the ADE, but with the important
exception that evy and ~�y are u-dependent. A spatial grid
can be employed to numerically solve (53), exactly as can
be done with the ADE applied to a nonstationary system. At
each grid point, the velocity value determined from the
solution to the steady flow problem is used in (53)–(55),
along with the corresponding estimate of b, to change the
parameters of ~y s; uð Þ and ~y uð Þ.
[53] If we insert (recall (35))

~y uð Þ ffi 1� cbu
b; for 0 < b < 1 ð56Þ

into (53)–(55), we generate non-Fickian transport across
each block element (with cb proportional to the velocity
value at the grid point, divided by a characteristic length, all
raised to the b power). The non-Fickian behavior is due to
the unresolved heterogeneities below the scale of the spatial
grid. Estimates of b and cb can be obtained for each facies
from a standard tracer breakthrough test and subsequent
comparison and fitting with analytical solutions (as done,
e.g., by Berkowitz et al. [2000] and Kosakowski et al.
[2001]); this procedure is exactly analogous to the usual
determination of the dispersivity parameter a in the ADE.
[54] Using a more complete expression for ~y s; uð Þ we can

also evolve the dynamics of the plume at very long time into
a Gaussian (i.e., in a time regime in which y(s, t) possesses
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a finite first and second temporal moment). The change in
~y s; uð Þ across the boundaries can be handled by using
suitable averages similar to the ADE-based numerical treat-
ments. Hence one can numerically solve for eP(s, u) at each
grid point and obtain the normalized concentration P(s, t) by
calculating L�1 ~P s; uð Þ

� �
. The numerical inversion of Lap-

lace transforms can now be readily accomplished.
[55] Finally, if we include pumping wells at some of the

grid points sp (where ~y sp; u
	 


¼ 0, because the particles
enter the well but do not emerge), then we can obtain the
accumulated concentration directly from eP(sp, u ! 0). In
other words, eP(sp, 0) = R

0
1dt P(sp, t), and because mass is

conserved, each pumping well acts as a sink extracting a
fraction of the migrating particles.

5. Summary and Conclusions

[56] The application of stochastic approaches to quantifi-
cation of transport in heterogeneous geological media rests
inevitably on the underlying conceptual picture of disper-
sive mechanisms. The fundamental significance of this
picture was pointed out long ago. As noted by Bear
[1972], in his discussion of the work of Scheidegger
[1954, 1958], ‘‘. . .the application of the statistical approach
requires. . .a choice of the type of statistics to be employed,
i.e., the probability of occurrence of events during small
time intervals within the chosen ensemble. This may take
the form of correlation functions between velocities at
different points or different times, or joint-probability den-
sities of the local velocity components of the particle as
functions of time and space or a probability of an elemen-
tary particle displacment. The chosen correlation function
determines the type of dispersion equation derived.’’
[57] We have developed this early insight into a full,

quantitative theory where the joint probability density is the
y(s, t). This joint spatial-temporal distribution allows us to
account for the behavior of migrating particles which can
encounter a wide range of velocity regions in heterogeneity
lenses of different spatial dimensions. This approach is in
contrast to most others which have, historically, emphasized
spatial formulations of transport equations, motivated by the
clear spatial heterogeneity of geological formations.
[58] The overarching framework for our physical picture

of transport, and the assumptions (as detailed above) on
particle transitions, is the Master Equation. This equation
represents a general, yet highly applicable, quantification of
transport which recognizes the broad spectrum of particle
motions in space and time. We show, under a general
assumption of the form of w(s, s0), that the Master Equation
can be specialized in any single realization of the geological
domain to a generalized form of the ADE.
[59] The ensemble average of the unrestricted Master

Equation leads to a Generalized Master Equation, which
is exactly equivalent to the CTRW. As a limiting form,
under highly restrictive conditions regarding the character
of the transport (and therefore of the degree of structural
heterogeneity), the conventional ADE can be recovered
from this formulation.
[60] Aquifers are inherently heterogeneous over a wide

range of scales, and Fickian transport (embodied in the
ADE) does not generally occur on practical scales of
interest. We therefore suggest that the overwhelming focus
on defining ‘‘effective’’ dispersion, or ‘‘macrodispersion’’

coefficients, in Fickian or pseudo-Fickian formulations of
the transport problem, is misplaced for field-scale problems.
The CTRW theory, which is the basis for our transport
equation, quantifies naturally the non-Fickian behavior
observed at laboratory and field scales, as well as in
numerical simulations. The essential character of the trans-
port can be embodied in an asymptotic form of the y(s, t),
specifically by an exponent b. This exponent, which can be
determined from the velocity distribution (based on solution
of flow for a given conductivity field) or from a tracer test,
parameterizes an entire class of non-Fickian plume evolu-
tions, on scales larger than the size of the heterogeneities.
Detailed discussions on the practical identification of y(s, t)
and parameter values is given by Berkowitz and Scher
[2001], Kosakowski et al. [2000], and Berkowitz et al.
[2000, 2001].
[61] We have also shown how fractional derivative for-

mulations of transport equations are special, asymptotic
(limit) cases, (30) for y(s, t), of the CTRW theory. Inserting
this limiting form (35) into the Laplace transform of (15),
one arrives at the same step necessarily encountered at the
outset of the solution of the FDE. Retention of the more
general equation (15) has important advantages for a more
complete modeling of the transport process. The limiting
forms characterized by the exponent b (which is the frac-
tional order of the derivative in the FDE) apply for a certain
time range only. Beyond this range, the y(s, t) changes in a
manner that allows the plume to eventually assume a
Gaussian shape (defined by ‘‘macrodispersion’’) as is rea-
sonable for most physical systems.
[62] Finally, we consider how best to quantify contami-

nant transport in nonstationary geological formations. We
delineate a hybrid approach in which known structural
properties are included explicitly, and unresolved (unknown)
heterogeneities at smaller scales are accounted for within the
CTRW theory. Practical application of this approach is
achieved by replacing the usual ADE equation that is
integrated into numerical simulation codes by a CTRW-
based transport equation. This transport model can be
integrated with existing numerical modeling techniques to
determine the underlying flow field.
[63] We are currently focusing efforts on implementation

of the solution technique suggested here, as well as on
deriving analytical solutions for CTRW-based transport
equations for forms of y(s, t) generalized in both space
and time.

Appendix A

[64] We showed how the use of (4)–(8) leads to the
expression (10) for the first term of the right side of (3). We
outline the derivation here for the second and third terms of
the right side of (3), using these same equations. We have
for the second termX
s0

w s; s0ð Þ s0 � sð Þ 	 rC s; tð Þ �
X
s0

F s0 � s; sð Þ þ s0 � sð Þ 	 rFð Þ

	½lþ 1

2
s0 � sð Þrp

�
s0 � sð Þ 	 rC s; tð Þ �

X
s0

lF s0 � s; sð Þ

	 1
2

s0 � sð Þrp
l

s0 � sð Þ 	 rC s; tð Þ þ
X

s0
s0 � sð Þ 	 rFl s0 � sð Þ

	rC s; tð Þ ¼ D sð Þrp
l

rC s; tð Þ þ 2rD sð ÞrC s; tð Þ ðA1Þ
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and for the third term,

X
s0

w s; s0ð Þ 1
2

s0 � sð Þ s0 � sð Þ : rrC s; tð Þ

�
X
s0

F s0 � s; sð Þl 1
2

s0 � sð Þ s0 � sð Þ ðA2Þ

: rrC s; tð Þ ¼ D sð Þ : rrC s; tð Þ

[65] We add the results of (A1), (A2) and (10) to obtain
(12).
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