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ACCELERATING THROUGH A POTENTIAL LANDSCAPE:

A FRACTIONAL DYNAMICS APPROACH TO ENHANCED

MOTION IN AN EXTERNAL FORCE FIELD?

RALF METZLER∗

Department of Physics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Room 12-109, Cambridge, Massachusettes 02139, USA

Received 21 May 2001

We address the question of describing enhanced transport in an external force field close
to thermal equilibrium, within the framework of fractional dynamics. We demonstrate
that in the overdamped regime inconsistencies arise, in the existence of negative regions
of the propagator. Despite of this observation, we claim that this approach might be
useful for the long time description of such systems.
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The temporal evolution of a Brownian particle under the influence of an external

force is usually described in terms of the deterministic Klein–Kramers equation in

phase space, and through its underdamped and overdamped limits, the Rayleigh

and Fokker–Planck equations which control the system equilibration towards

the Maxwell and Gibbs–Boltzmann equilibriums in velocity and position space,

respectively.1 In the force free diffusion limit, the mean squared displacement is

given by the central limit form 〈x2(t)〉 ∼ 2Kt.

Conversely, there exists a diversity of systems which exhibit the power-law

behavior2

〈x2(t)〉 ∼ 2K∗γt
γ , γ 6= 1 (1)

of the mean squared displacement in the force free diffusion limit where the

generalized diffusion constant K∗γ has dimension [K∗γ ] = cm2 sec−γ .

Anomalous transport processes characterized through Eq. (1) have been studied

extensively in the slow (0 < γ < 1), and in the enhanced (1 < γ) domains through a

number of models,3 among others. Here we concentrate on the fractional dynamics

approach to enhanced transport processes in the presence of an external force field.

This research was instigated by the success of the fractional dynamics description

of slow systems which has been highlighted as a made-to-measure approach that
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generalizes the set of the above deterministic equations to fractional order, featuring

a nonlocal approach with a slowly decaying self-similar memory.5–8 Moreover, it

has been shown that fractional equations can be solved with the methods known

from the analogous Brownian equations.4

For the description of enhanced, sub-ballistic processes, Barkai and Silbey

proposed the fractional Klein–Kramers equation9

∂W

∂t
+ v

∂W

∂x
+
F (x)

m

∂W

∂v
= 0D

1−α
t η∗L(v)W (x, v, t) (2)

for the probability density function (PDF) W (x, v, t), with the Klein–Kramers

operator L(v) ≡ ( ∂
∂v
v + kBT

m
∂2

∂v2 ). Equation (2) features the generalized friction

constant η∗ of dimension [η∗] = secα, and puts the drift into a temporally local re-

lation to the time derivative ∂
∂t
W . The latter contrasts the slow dynamics approach

pursued in Ref. 8. A unifying approach to fractional Klein–Kramers and the

related equations has been carried out on the basis of the generalized Chapman–

Kolmogoroff equation in Ref. 10. The fractional Riemann–Liouville operator

0D
1−α
t ≡ ∂

∂t0D
−α
t occurring in Eq. (2) is defined through the convolution11

0D
−α
t W (x, v, t) ≡ 1

Γ(α)

∫ t

0

dt′
W (x, v, t′)

(t− t′)1−α , (3)

according to which Eq. (2) possesses a slowly decaying memory, defined through

the scale-free power-law kernel ∝ tα−1. In the Brownian limit α→ 1, the fractional

Klein–Kramers equation (2) reduces to the standard Klein–Kramers equation.

In the force-free limit, integration of Eq. (2) over the position coordinate leads

to the fractional Rayleigh equation ∂
∂tW = 0D

1−α
t η∗L(v)W (v, t) that governs the

equilibration of the velocity PDF W (v, t).8–10 In this equation, the equilibration of

single modes and velocity moments is governed through the Mittag–Leffler function

Eα(−(t/τ)α) ≡
∞∑
n=0

(−(t/τ)α)n

Γ(1 + αn)
(4)

that replaces the exponential pattern encountered in the traditional Brownian

limit, for which we find the reduction limα→1Eα(−(t/τ)α) = exp(−t/τ). For

0 < α < 1, Eα(−η∗tα) interpolates strictly monotonically between the initial

stretched exponential behavior Eα(−η∗tα) ∼ exp(−η∗tα/Γ(1 + α)) and the long

time power-law pattern Eα(−η∗tα) ∼ (η∗Γ(1−α)tα)−1. Accordingly, the fractional

result Wα(v, t) can be expressed in terms of its Brownian counterpart, W1(v, t)

through the scaling relation Wα(v, u) = η∗

η
uα−1W1(v, η

∗

η
uα) in Laplace space

W (v, u) ≡
∫∞

0
dtW (v, t)e−ut.7,8

In the overdamped, force free limit it was already proved by Schneider and Wyss

that the solution of the corresponding fractional wave equation is a proper PDF.

This solution was investigated in more detail in Ref. 13 where it was demonstrated

that the PDF exhibits counter-moving humps with a simultaneous antipersistent

depletion of the origin, compare also Ref. 14.
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Fig. 1. Fokker–Planck mode relaxation E3/2(−λnt3/2) which exhibits oscillations superimposed
to the relaxation (full line), in comparison to the corresponding Rayleigh mode relaxation E1/2

(−η∗t1/2) which is strictly monotonic.

Let us now turn towards the forced overdamped regime. The corresponding ki-

netic equation is obtained via integration of the fractional Klein–Kramers equation

(2) over velocity,
∫∞
−∞ dv·, and of v times Eq. (2) over velocity,

∫∞
−∞ vdv·.15 This

method produces two independent equations whose combination leads to the

fractional telegrapher’s type equation

1

η∗
0D

2+α
t W +

∂2W

∂t2
= 0D

α
t L(x)W (x, t) (5)

the high-friction limit of which is the superdiffusive fractional Fokker–Planck

equation

∂2W

∂t2
= 0D

α
t L(x)W (x, t) (6)

with the Fokker–Planck operator L(x) ≡ − ∂
∂x

F (x)
mη∗ +Kα

∂2

∂x2 . In the force-free limit,

this equation reduces to the above-mentioned fractional wave equation,5,13 and the

mean squared displacement for W0(x) = δ(x) is accordingly given by Eq. (1) with

γ = 2 − α and K∗α ≡ Kα/Γ(3 − α). By comparison with Eq. (2), one obtains

the generalized Einstein–Stokes relation Kα = kBT/(mη
∗) which has been derived

analogously in the subdiffusive case.7,8

For the determination of the mode relaxation of the fractional Fokker–Planck

equation (6), we introduce the separation ansatz W (x, t) = ϕ(x)T (t), to find

Tn(t) = E2−α(−λnt2−α) (7)

for the temporal eigenfunction belonging to the eigenvalue λn. The dependence on

the Mittag–Leffler function of index 2−α is a priori remarkable as it is different from

the mode relaxation of the corresponding fractional Rayleigh equation, proportional

to Eα(−λ̃ntα). As 1 < 2−α < 2, the Mittag–Leffler function in Eq. (7) is no longer

a monotonic function. Instead, Eq. (7) exhibits damped oscillations, as displayed

in Fig. 1, in comparison to the strictly monotonic Rayleigh mode relaxation. The
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physical reason for this oscillatory behavior is buried in the existence of the moving

humps.13

Equation (6) can be rewritten in the integral form

W (x, t)−W0(x) = 0D
α−2
t L(x)W (x, t) (8)

where we chose the vanishing initial field velocity Wt,0(x) ≡ limt→0+

( ∂∂tW (x, t))t=0 = 0 for norm conservation. Note firstly that for times t > 0, such

a field velocity Wt(x, t) 6= 0 exists which enters Eq. (8) in the form −tWt(x, t)

which gives rise to the moving humps. Secondly, note that the convolution kernel

of the fractional operator 0D
α−2
t has a finite characteristic time, indicating that

the initial condition does not exhibit the same persistence as in the slow case. In

contrast, the distribution is depleted around the initial value, this antipersistence

being balanced by two counter-moving humps which become asymmetric in the

presence of the external force field F (x), see below.

For the further discussion of Eq. (6), we investigate the enhanced version of

the Ornstein–Uhlenbeck process, i.e. enhanced motion in the external harmonic

potential V (x) = 1
2mω

2x2 which corresponds to the restoring linear force F (x) =

−mω2x. With the method of separation of variables, we obtain the series solution7

W (x, t) =

√
mω2

2πkBT

∞∑
0

1

2nn!
E2−α(−nt2−α)Hn

(
x0√

2

)
Hn

(
x√
2

)
e−x

2/2 (9)

for the initial condition W0(x) = δ(x−x0), in reduced coordinates. Hn denotes the

Hermite polynomials. The convergence of the series (9) is rather poor. We have eva-

luated it with Mathematica and obtained the graphs displayed in Fig. 2. Whereas

the wings of the curves are still somewhat short of convergence, the characteristic

feature of the two asymmetric humps is numerically assured. It becomes even more

distinct for an enhanced number of summation terms. Thus, the left hump sliding

down into the potential well is larger than the counterwise hump moving uphill.

Eventually, the whole curve equilibrates towards the Gaussian Gibbs–Boltzmann

distribution. The most striking feature of the plots is, however, the existence of

negative regions. Although their very shape is beyond the numerical convergence on

our computing facilities,20 their existence can be revealed analytically by calculating

the moments of this process. In the course of time, the negative area spanned by the

distribution becomes less, until a proper PDF emerges which eventually approaches

the Gibbs–Boltzmann distribution.

This behavior is mirrored in the moments. Accordingly, the first moment for

the enhanced Ornstein–Uhlenbeck process 〈x(t)〉 = x0E2−α(−ω2

η∗ t
2−α) becomes

negative for certain time intervals, but also the second moment

〈x2(t)〉 = x2
th + (x2

0 − x2
th)E2−α

(
−2

ω2

η∗
t2−α

)
, x2

th =
kBT

mω2
(10)

exhibits negative parts if only x0 is large enough, i.e. if either the initial condition is

asymmetric enough, or the temperature activation kBT is too low. The definition of
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Fig. 2. Temporal evolution of the propagator W (x, t) of the enhanced fractional Ornstein–
Uhlenbeck process. The counter-motion of the two asymmetric humps, and the simultaneous
depletion of the initial value region x0 = 1 are distinct. The number of summation terms is
80. The plots correspond to the dimensionless times 0.2, 0.4, and 1.2. Eventually, the stationary
symmetric Gaussian PDF is reached.
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the second moment, 〈x2(t)〉 ≡
∫∞
−∞ x

2W (x, t)dx, implies that the solution W (x, t)

of the fractional equation (6) indeed contains negative segments, i.e. W (x, t) is no

proper PDF! Conversely, for longer times, the second moment oscillates around the

stationary value x2
th without further crossing the zero mark. Similarly, higher order

moments 〈x2n〉 involve the function E2−α(−2n(ω2/η∗)t2−α), i.e. they incorporate

an increasingly larger relaxation rate and reach stationarity even earlier: for long

enough times the solution W (x, t) becomes a proper PDF.

However, as Risken elaborates on cases of the Kramers–Moyal expansion which

is truncated after the (n + 2)th term, n = 1, 2, . . . (Ref. 16, p. 71): “Though the

transition probability must then have negative values at least for sufficiently small

times, these negative values may be very small.” And (ibid. p. 78): “an approximate

distribution function need not be positive everywhere. As long as the negative values

and the region where they occur are small this approximate distribution function

may be very useful”. Indeed, this also applies to our situation, as the solution of

Eq. (6) for large enough times becomes a proper PDF approaching the Gibbs–

Boltzmann distribution, and the numerical evaluation of the enhanced fractional

Ornstein–Uhlenbeck process shows that the negative parts are rather small for

“reasonable” combinations of asymmetric initial condition x0 and activation kBT .

Therefore we claim that for long enough times, the fractional dynamics framework

for enhanced transport in an external force field renders reliable information and is

thus meaningful, see also the forthcoming discussion in Ref. 19.

Let us examine the properties of Eq. (6) and its solution somewhat further.

There exist two ways of connecting the enhanced solution W2−α(x, t) from Eqs. (6)

and (8) to Markovian equations. Firstly, we find the scaling relation

W2−α(u) =

√
η∗

η2
u−α/2W2

(√
η∗

η2
u1−α/2

)
(11)

between W2−α and the solution of the forced wave equation ∂2

∂t2
W = L(x)

W (x, t) which can be alternatively expressed through the generalized Laplace

transformation

W2−α(x, t) =

∫ ∞
0

dsE(s, t)W2(x, s) (12)

which is similar to the transformation introduced by Barkai and Silbey.9

From Eq. (11) it follows that E(s, u) = −[∂/(1− α/2)s∂u] exp(−s∗u1−α/2),

i.e. E(s, u) is the characteristic function of the modified one-sided Lévy distribution

[(1 − α/2)s]−1tL+
1−α/2(t/(s∗)1/(1−α/2)).17 By help of the Fox function, we can ex-

press the kernel E in the closed form (s∗ ≡ s
√
K/K2−α)

E(s, t) =
1

s
H1,0

1,1

[
s∗tα/2−1

∣∣∣∣∣
(

1, 1− α

2

)
(1, 1)

]
(13)

=
1

s

∞∑
n=0

(−1)n(s∗tα/2−1)1+n

n!Γ(1− 2− α/2(1 + n))
. (14)
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Conversely, we obtain the down-grade transformation

W (1)
n (x, t) =

∫ ∞
0

dsE∗(s, t)W2−α(x, s) (15)

from the enhanced solution W2−α to its Brownian Fokker–Planck counterpart W1

where the kernel, defined through E∗(s, u) = − β∂
s∂u

exp(−s∗u1/β), s∗ ≡ (η/η∗)1/βs,

is given in terms of the Fox function18

E∗(s, t) =
β

s
H1,0

1,1

[
(s∗)β

t

∣∣∣∣∣ (1, 1)

(1− β, β)

]
(16)

=
1

s

∞∑
n=0

(−1)n

n!Γ(1− β−1 − β−1n)

(
s∗

t1/β

)1+n

(17)

and β ≡ 2− α. Note that a map from the Brownian W1 to the enhanced solution

W2−α is not connected with a one-sided Lévy stable law as 2−α > 1, nor does the

corresponding Fox function exist.17,18

Concluding, we have investigated the possible extension of fractional dynamics

to enhanced, sub-ballistic transport in the presence of an external force field.

Although certain inconsistencies exist in respect of the distribution for shorter

times, we believe that fractional dynamics can give valuable information for

the description of sub-ballistic processes that eventually converge to the Gibbs–

Boltzmann equilibrium form.

RM thanks Yossi Klafter, Eli Barkai and Igor Sokolov for discussions. Financial

support from the Minerva foundation (Amos de Shalit programme) and the DFG

within the Emmy Noether programme is gratefully acknowledged.

References

1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland,
Amsterdam, 1981).

2. J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
3. B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422 (1968); H. Scher and

M. Lax, Phys. Rev. B7, 4491 (1973); E. W. Montroll and H. Scher, J. Stat. Phys. 9,
101 (1973); D. Bedeaux, K. Lakatos and K. Shuler, J. Math. Phys. 12, 2116 (1971);
K. G. Wang and M. Tokuyama, Physica 265A, 341 (1999); C. Tsallis, S. V. F. Levy,
A. M. C. Souza and R. Maynard, Phys. Rev. Lett. 75, 3589 (1995).

4. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
5. W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).
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