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Molecular switching with nonexponential relaxation patterns: A random walk approach
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The transition from an initial, locally stable configuration to a globally stable state in molecular switches is
investigated in terms of a random walk model, effectively taking the reaction pathway through a potentially
rugged energy landscape into account. Exponential and nonexponential scenarios are discussed and the impli-
cations on measurable quantities are explored.
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Rotaxanes are but one example of designed moleculeself-similar waiting time PDF, and a logarithmic form of
which exhibit the particular property that they possess twon(t) corresponding to extremely rare events. In this simplis-
configurations which are considerably more stable than allic force-free diffusion process between the boundares
other configurations. One of these two configurations is glo=0 andx=a, the effective motion of a particle described by
bally stable. In rotaxanes, a ring molecule moves along théhe boundary value solution is biased through the existence
backbone strand of the “mother molecule,” as sketched inof the trap at one end which causesaverall drift towards
Fig. 1. From the globally stable sta@® the system can be the sink. Our approach is thus similar to that developed for
excited on the nanosecond scale via a photopulse, shiftingescribing charge carrier transport in amorphous semicon-
the ring into the locally stable state The relaxation time ductors[4].
from L back toG is remarkably long, ranging to up to 1 From the propagatdN(x,t), the PDF of being at position
week[1]. Molecular switches might be of interest for signal X at timet describing a random walk process with the initial
generation, processing, transfer, conversion, and detectionpnditionWo(x)EIimH(HW(x,t)=5(x) for natural bound-
e.g., for quantum computing, and they are part and parcel %f(ry conditions lim, W(x,t)=0, the solution to the
the growing field of semiochemistry. [X| e TR0 L _

We visualize the motion of the switching unit from the Poundary value problem of a box with absorbing wallscat
lesser stable stateto the globally stable state as a random = *a can be constructed through the s}
motion on an energy surface which is characteristic of the .
interaction between the strand molecules and the switching
unit. l.e., close to the position of a strand molecule, the ring Q(X’t):m;_m [W(x+4ma,t)—W(4ma-x+2a,1)].
has to overcome an energy barrier. On its way from dtadte )
stateG, the ring encounters a number of energy barriers of
different height so that the connected energy landscape iote that we distinguish between the natural boundary con-
rugged. The interaction between strand and ring is mutuallitions propagatoW(x,t) and the boundary value solution
the moving ring constantly changing the position of theQ(x,t) from Eq. (1) which fulfills the Dirichlet condition
strand molecules. We propose that the subsequent barrigy(+a,t)=0. Equation(1) can be rewritten in the forrf6]
crossing can be taken into account by assuming that a step

along the mother molecule strand is governed by a waiting * (2m+ 1) mix

time which is a random variable controlled by the waiting Q(x,t)= = Z exp( - 5 )W(k,t),

time probability density functiofPDF) w(t). This model A m=-o

conforms, in a certain sense, to a recently proposed generali-

zation of the Kramers’ escape probldg]. ke (2m+1)m )
With this assumption, the transition froimto G can con- at k= 2a ' @

sequently be described as a continuous time random \8alk
within a box of lengtha which is the chemical distandéis-  where W(k,t)=/"_ W(x,t)e**dx is the Fourier transform
tance along the strantbetweerL andG. The respective box  of w(x,t).
walls inL (x=0) andG (x=a) are reflecting and absorbing;

i.e., the switching unit cannot move beyohdand on arrival

in G the process is assumed to terminate. We investigate

three possible scenarios for this stochastic process corre-
sponding to Brownian motion, fractional dynamics with a

G L

FIG. 1. Schematic picture of a rotaxane swifdi. G and L

*Permanent address: Department of Physics, Massachusetts Insfienote the two major stable states of the switching (giitbally
tute of Technology, 77 Massachusetts Ave. Rm 12-109, Cambridgeand locally stablg a ringlike structure. The two balls at the oppo-
MA 02139. Electronic address: metz@mit.edu site ends of the main dumbbell-like molecule strand are stoppers.
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FIG. 3. Survival probabilityp(t) for the Brownian case and the
FIG. 2. PDFP(x,t) for the fractional cased= 1/2), for dimen-  fractional model witha=1/2, in a loglog;, plot. The Brownian
sionless times 0.01 and 0.4, and the Markovian caset#dr.05  curve shows the fast exponential decay contrasted by the slow
and 0.2(inse). The box length im=1, and the reflecting boundary power-law pattern in the fractional case. The dashed line indicates
is to the left. In the fractional case, the cusp close to the origin at thénhe t =2 proportionality.
earlier time and the almost linear behavior for the later time are
distinct. Fractional dynamics caseln the non-Markovian case
with a self-similar waiting time PDF of the asymptotic
The sought solutiof®(x,t) for the mixed boundary value power-law form w(t)~A_ 7t 17¢ 0<a<1 and A, a
problem of having a reflecting wall at=0 and an absorbing constant, it is assumed that the system explores the reaction
wall at x=a can be expressed through(x,t)=Q(x,t)  space anomalously, featuring a slowly decaying, scale-free

+Q(—x,t) such that memory. For such fractional dynamics syste#is3] it has
been shown that exponential relaxation patterns are replaced
1 = (2m+ 1) 7x by the Mittag-Leffler function; i.e., the mode coefficients be-
P(x,t)= a mE ) cm(t)cos{ T) , (3)  come cy(t)=E,(—Kk?t*) where K, is the generalized

diffusion constan{8,9]. The Mittag-Leffler function is de-
_ _ _ fined throughE ,(z*) ==, _(—z*)"/T'(1+ an), and has the
with cn(t)=W(k,t) at k=(2m+1)x/2a. It is straightfor-  asymptotic behaviork ,(z%) ~exd —z/T'(1+a)], z<1, and
ward to show thaP(a,t)=0 (Dirichlet) and dP/9x|,—o=0 E,(z%)~1[z°T (1— )], z>1 [10].

(von Neumanp _ _ _ There exists a map of the Brownian solutiBp onto the
Averaging over the coordinate, one obtains the inte- fractional solutionP,, in terms of the generalized Laplace
2 < C(t) P (x.t)= f .
= — — m___ ° a th) E(Sat) Pl(xvs)dsv (5)
PO=— 2 (~D"5 (@ 0

. o S _ where the kernek is defined in terms of the one-sideduye
from which the initial normalization lim . p(t)=1is de-  stable lawL | through

duced as by the initial conditioWy(x)= 6(x), one has
lim cm(t)=1, recovering (2F)=,__..(—1)™(2m

t—0+
+1)=1. Moreover, we recognize that the summands in Eq.
(4) decrease with increasing summation indie such that
the sum necessarily converg@sy a majorant criterion

t t
E(SJ):EL;(W), S*EnaS/T], (6)

which is equivalent to the Fox function representatfiBh

Markovian caselLet us start out with the consideration of 1 (s*)Ye|(1,2)
the Markovian limit. The propagator of the one-dimensional E(st)= —H}‘{[ ’
diffusion equation dW/at=K(a%/9x?)W(x,t) is given as ~1 U [(L,le)
through the Gaussian ¢Kt) Y% x40 5o that we find 1272 (—1)" g+ 1Fn
the expressior,,(t)=exp(—Kk?) for the coefficients in Eq. =— 2 _> . (D
(3). Accordingly, the modes,(t) relax exponentially in sizo '(l-a—anl(1+n)| ¢~

time, mirroring the Markovian nature of the process. A plot
of the PDFP(x,t) is shown in the inset of Fig. 2. The asso-
ciated integrated survival probability(t) is dominated by
the individual exponential contributions, higher orders of 1
which decay relatively fast. In Fig. 3, the survival is plotted E(s,t)= —exy{ -
on a logglog;, scale. Jmt

through which it is possible to find special representations
for a givena, e.g.,

(S*)Z)
at )
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for «=1/2. The transformatiofb) was used to plot the PDF P(z,t) logp(t)
P(x,t) on the basis of the Markovian solutiom. and 7, o8
appearing in Eq96) and(7) denote the Brownian and frac- 08| S\Q
tional friction constants defined in RéB], », being related -09
to the standard friction constani through a dimensional —0% logt
prefactor. 05 118 N T TR
The fractional dynamics PDP(x,t) is shown in Fig. 2, i
and it exhibits a triangular shape with a slight cusp close toos
the origin. For longer times, an almost linear decay towards
the absorbing boundary is observed. The cusp closg to
=0 is due to the persistence of the initial condition in the ®?|
fractional casg8]. Both variants, Markovian and fractional,
are compared in Fig. 3 where we plotted the integrated sur-
vival probability p(t) for the two models, in a double-
logarithmic scale. Here, the fast decay of the exponential g, 4. PDFP(x,t) in the rare event case with logarithmic
function contrasts the much slower relaxation of the Mittag-waiting time distribution, drawn for the dimensionless tines2,
Leffler sum. The dashed line indicates the expected slope @fo, 2000, ands=1/2. The extremely slow decay of the PDF is
the long-time power-law behavior. The latter is reacheddistinct, even in comparison to the power-law waiting time PDF
rather slowly, owing to the fact that the Mittag-Leffler coef- underlying Fig. 2. The inset shows the survival probability in a
ficientsc,(t) of increasing ordem do not decay as fast as log,ylog;, plot over more than four decades in time; note the slow
the exponential terms in the Markovian case. drop in p(t) over this interval.
In fractional dynamics, the anomalous diffusion index
renders some information about the “transparency” of thecrossing in a diffusion approximation. According to an in-
support on which the random motion takes place, a notiorgreasing degree of disorder, three different models have been
which is analogous to the random walk dimensityp on  investigated, these being defined by a Markovian process, by
fractals where it is connected to the anomalous diffusion exa power-law form of the waiting time PDF and by a loga-
ponenta througha=2/d,, [14]. rithmic pattern. In the two latter cases, the exponential mode
Non-Markovian case with extremely rare eventsmo-  relaxation is replaced by either a Mittag-Leffler behavior or
lecular switches, the relaxation from the initial sthtéo the by a logarithmic decay. The resulting behaviors differ con-
globally stable stat&s might alternatively be dominated by siderably, and experimentally a distinction is possible. It
very rare events. This is possible(if the activation of the should be stressed that in finite systems the fractional or
switching unit on its pathway along the mother moleculelogarithmic behavior does not pertain infinitely, but it is
strand is not close to thermal equilibrium and hardly evereventually replaced by a cutoff. Depending on the resolution
motion events are activated i) if cooperative effects be- of the experimental window, transitions from the nonexpo-
tween switch and molecular backbone come into play. Suchential to an exponential decay of the survival function
rare events have recently been investigated in a dynamicanight be observed.
map and studied in terms of a continuous time random walk First passage time experiment. typical study of mo-
model with the logarithmic waiting time PDFw(t) lecular switching systems would focus on the measurement
~[tlog*tAW/a)T7L, >0 [12]. Accordingly,w(t) is normal-  of the first passage time, i.e., the elapsed time that the ring
izable but does not possess even fractional moments. THecks on stateG. If the outflow is defined through(t)=1
propagator for such a system is given through the exponen=p(t), the first passage time distribution consequently be-
tial  W(x,t)=[1/20(t)]exd —|[x/o(t)] where o(t) comesf(t)=(—d/dt)p(t); see alsd13].
=log??(t/7). The mode coefficients in Eq3) follow the (i) In the Markovian casef(t) is composed of exponen-
logarithmic patternc,,(t)=[1+k?log?(t/n]" %, t>1 [12]. tial summands corresponding to E¢), featuring the mean
Due to their asymptotic behavior c,(t)~[(2m  survival time
+1)272log?(t/nl(4a%)] %, they decay extremely slowly. In 5
Fig. 4, we display the approximate PON{x,t) for succes- T EJ%t ij(t))dt= e
sive times spanning a large range to underline the extremely S Jo \dt 2K
slow evolution of such a system. The associated integrated
survival time, Eq.(4), is shown in the inset. In a series of experiments, variations in measured first pas-
So far, dynamical patterns of molecular switches have nosage times are expected to be relatively narrow.
been measured to detail. An analytical model for the relax- (ii) This is no longer true for the fractional case. Here,
ation dynamics of semiochemical switches is thereforghe derivative of single coefficients involves the
timely and might be a basis for the interpretation of futuregeneralized  Mittag-Leffler ~ function d/dt)c(t)
measurements. Moreover, the problem is interesting alse-K k*t* 'E, .(—Kk?t%) [10], and thus due to the long-
from a physical point of view. We have presented a stochastime asymptotic behaviort~1~ ¢, the mean survival time
tic pathway model for molecular switching or similar relax- T in the fractional case diverges. Accordingly, in a series of
ation processes in spatially extended systems. This simplistiodividual measurements, the switching time is expected to
dynamical model considers the effects of successive barriarary in a long range, reflecting the scale-free nature of the
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process. A first passage time experiment consequently migletxperimental studies of the exact switching patterns encoun-
mislead one to the conclusion that the system is highly inhotered in molecular switches. Although single molecule stud-
mogeneous. It might, however, be that the power-law waities might be desirable, even the investigation of ensemble
ing time behavior at some point turns over to a fast decaybehavior will contribute to the elimination of certain pat-
Then, the system possesses a finite characteristic survividrns.
time T encountered for long times measured in a first pas-  The presented random walk model assumes that the relax-
sage time experiment. Qualitatively the same is true for theyjon of the system is fully characterized by the waiting time
extremely rare event case. . PDF. Alternative interpretations may, however, be possible.
It should be noted that in the presence of an external biagygreover, the presented stochastic analysis leaves the ques-
e.g., an electric field pushing the ring towards position, - yjon gpen what microscopic mechanisms give rise to the par-
Sicular waiting time PDF. Such points should be addressed

[13]. This might open the scene for an elegant testing of th hen experimental data become available.

underlying process, also connected to the question o
whether such SyStemS are consistent with linear response R .M. thanks Peter Wo|ynes for discussions and the hos-
theory, i.e., in which way the switching unit responds to apjtality at the University of lllinois where this study was
low external, constant force like an electric field. carried out, and Joseph Klafter and Moshe Kol from Tel
Temperature variations might give further indication oy, University for discussions. Financial support from the

about a specific process whereby an Arrhenius activation iﬁeutsche Forschungsgemeinsch&EG) within the Emmy
expected in the Markovian and fractional ca$2s]. The Noether program is acknowledged as well
present model may thus be the basis for more quantitative ’
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