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Molecular switching with nonexponential relaxation patterns: A random walk approach
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The transition from an initial, locally stable configuration to a globally stable state in molecular switches is
investigated in terms of a random walk model, effectively taking the reaction pathway through a potentially
rugged energy landscape into account. Exponential and nonexponential scenarios are discussed and the impli-
cations on measurable quantities are explored.

DOI: 10.1103/PhysRevE.63.012103 PACS number~s!: 05.40.2a, 02.50.Ey, 36.20.Ey, 82.20.Fd
ul
w
a
lo
th
i

fti

1
al
tio
l

e

th
in

in

o
e
ua
he
rr
st
tin
ng

ra

;

a
r
a

f
lis-
s
y
nce

for
on-

al

t

on-
n

In
dg o-

rs.
Rotaxanes are but one example of designed molec
which exhibit the particular property that they possess t
configurations which are considerably more stable than
other configurations. One of these two configurations is g
bally stable. In rotaxanes, a ring molecule moves along
backbone strand of the ‘‘mother molecule,’’ as sketched
Fig. 1. From the globally stable stateG, the system can be
excited on the nanosecond scale via a photopulse, shi
the ring into the locally stable stateL. The relaxation time
from L back to G is remarkably long, ranging to up to
week@1#. Molecular switches might be of interest for sign
generation, processing, transfer, conversion, and detec
e.g., for quantum computing, and they are part and parce
the growing field of semiochemistry.

We visualize the motion of the switching unit from th
lesser stable stateL to the globally stable stateG as a random
motion on an energy surface which is characteristic of
interaction between the strand molecules and the switch
unit. I.e., close to the position of a strand molecule, the r
has to overcome an energy barrier. On its way from stateL to
stateG, the ring encounters a number of energy barriers
different height so that the connected energy landscap
rugged. The interaction between strand and ring is mut
the moving ring constantly changing the position of t
strand molecules. We propose that the subsequent ba
crossing can be taken into account by assuming that a
along the mother molecule strand is governed by a wai
time which is a random variable controlled by the waiti
time probability density function~PDF! w(t). This model
conforms, in a certain sense, to a recently proposed gene
zation of the Kramers’ escape problem@2#.

With this assumption, the transition fromL to G can con-
sequently be described as a continuous time random walk@3#
within a box of lengtha which is the chemical distance~dis-
tance along the strand! betweenL andG. The respective box
walls in L (x50) andG (x5a) are reflecting and absorbing
i.e., the switching unit cannot move beyondL, and on arrival
in G the process is assumed to terminate. We investig
three possible scenarios for this stochastic process co
sponding to Brownian motion, fractional dynamics with

*Permanent address: Department of Physics, Massachusetts
tute of Technology, 77 Massachusetts Ave. Rm 12-109, Cambri
MA 02139. Electronic address: metz@mit.edu
1063-651X/2000/63~1!/012103~4!/$15.00 63 0121
es
o
ll
-
e

n

ng

n,
of

e
g

g

f
is
l,

ier
ep
g

li-

te
re-

self-similar waiting time PDF, and a logarithmic form o
w(t) corresponding to extremely rare events. In this simp
tic force-free diffusion process between the boundariex
50 andx5a, the effective motion of a particle described b
the boundary value solution is biased through the existe
of the trap at one end which causes anoverall drift towards
the sink. Our approach is thus similar to that developed
describing charge carrier transport in amorphous semic
ductors@4#.

From the propagatorW(x,t), the PDF of being at position
x at time t describing a random walk process with the initi
conditionW0(x)[ lim

t→01
W(x,t)5d(x) for natural bound-

ary conditions limuxu→`
W(x,t)50, the solution to the

boundary value problem of a box with absorbing walls ax
56a can be constructed through the sum@5#

Q~x,t !5 (
m52`

`

@W~x14ma,t !2W~4ma2x12a,t !#.

~1!

Note that we distinguish between the natural boundary c
ditions propagatorW(x,t) and the boundary value solutio
Q(x,t) from Eq. ~1! which fulfills the Dirichlet condition
Q(6a,t)50. Equation~1! can be rewritten in the form@6#

Q~x,t !5
1

2a (
m52`

`

expS 2
~2m11!p ix

2a DW~k,t !,

at k5
~2m11!p

2a
, ~2!

where W(k,t)[*2`
` W(x,t)eikxdx is the Fourier transform

of W(x,t).

sti-
e,

FIG. 1. Schematic picture of a rotaxane switch@1#. G and L
denote the two major stable states of the switching unit~globally
and locally stable!, a ringlike structure. The two balls at the opp
site ends of the main dumbbell-like molecule strand are stoppe
©2000 The American Physical Society03-1
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The sought solutionP(x,t) for the mixed boundary value
problem of having a reflecting wall atx50 and an absorbing
wall at x5a can be expressed throughP(x,t)5Q(x,t)
1Q(2x,t) such that

P~x,t !5
1

a (
m52`

`

cm~ t !cosS ~2m11!px

2a D , ~3!

with cm(t)[W(k,t) at k5(2m11)p/2a. It is straightfor-
ward to show thatP(a,t)50 ~Dirichlet! and]P/]xux5050
~von Neumann!.

Averaging over the coordinatex, one obtains the inte
grated survival probability

p~ t !5
2

p (
m52`

`

~21!m
cm~ t !

2m11
, ~4!

from which the initial normalization lim
t→01

p(t)51 is de-

duced as by the initial conditionW0(x)5d(x), one has
lim

t→01
cm(t)51, recovering (2/p)(m52`

` (21)m/(2m

11)51. Moreover, we recognize that the summands in
~4! decrease with increasing summation indexumu such that
the sum necessarily converges~by a majorant criterion!.

Markovian case.Let us start out with the consideration o
the Markovian limit. The propagator of the one-dimension
diffusion equation ]W/]t5K(]2/]x2)W(x,t) is given
through the Gaussian (4pKt)21/2e2x2/(4Kt) so that we find
the expressioncm(t)[exp(2Kk2t) for the coefficients in Eq.
~3!. Accordingly, the modescm(t) relax exponentially in
time, mirroring the Markovian nature of the process. A p
of the PDFP(x,t) is shown in the inset of Fig. 2. The ass
ciated integrated survival probabilityp(t) is dominated by
the individual exponential contributions, higher orders
which decay relatively fast. In Fig. 3, the survival is plotte
on a log10-log10 scale.

FIG. 2. PDFP(x,t) for the fractional case (a51/2), for dimen-
sionless times 0.01 and 0.4, and the Markovian case, fort50.05
and 0.2~inset!. The box length isa51, and the reflecting boundar
is to the left. In the fractional case, the cusp close to the origin at
earlier time and the almost linear behavior for the later time
distinct.
01210
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Fractional dynamics case.In the non-Markovian case
with a self-similar waiting time PDF of the asymptot
power-law form w(t);Aatat212a, 0,a,1 and Aa a
constant, it is assumed that the system explores the rea
space anomalously, featuring a slowly decaying, scale-
memory. For such fractional dynamics systems@7,8# it has
been shown that exponential relaxation patterns are repla
by the Mittag-Leffler function; i.e., the mode coefficients b
come cm(t)5Ea(2Kak2ta) where Ka is the generalized
diffusion constant@8,9#. The Mittag-Leffler function is de-
fined throughEa(za)[(n50

` (2za)n/G(11an), and has the
asymptotic behaviorsEa(za);exp@2za/G(11a)#, z!1, and
Ea(za);1/@zaG(12a)#, z@1 @10#.

There exists a map of the Brownian solutionP1 onto the
fractional solutionPa in terms of the generalized Laplac
transformation@11#

Pa~x,t !5E
0

`

E~s,t !P1~x,s!ds, ~5!

where the kernelE is defined in terms of the one-sided Le´vy
stable lawLa

1 through

E~s,t !5
t

as
La

1S t

~s* !1/aD , s* [has/h, ~6!

which is equivalent to the Fox function representation@8#

E~s,t !5
1

as
H1,1

1,0F ~s* !1/a

t U~1,1!

~1,1/a!
G

5
1

s (
n50

`
~21!n

G~12a2an!G~11n! S s*

ta D 11n

, ~7!

through which it is possible to find special representatio
for a givena, e.g.,

E~s,t !5
1

Apt
expS 2

~s* !2

4t D ,

e
e

FIG. 3. Survival probabilityp(t) for the Brownian case and th
fractional model witha51/2, in a log10-log10 plot. The Brownian
curve shows the fast exponential decay contrasted by the s
power-law pattern in the fractional case. The dashed line indic
the t21/2 proportionality.
3-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 012103
for a51/2. The transformation~5! was used to plot the PDF
P(x,t) on the basis of the Markovian solution.h and ha
appearing in Eqs.~6! and~7! denote the Brownian and frac
tional friction constants defined in Ref.@9#, ha being related
to the standard friction constanth through a dimensiona
prefactor.

The fractional dynamics PDFP(x,t) is shown in Fig. 2,
and it exhibits a triangular shape with a slight cusp close
the origin. For longer times, an almost linear decay towa
the absorbing boundary is observed. The cusp closex
50 is due to the persistence of the initial condition in t
fractional case@8#. Both variants, Markovian and fractiona
are compared in Fig. 3 where we plotted the integrated
vival probability p(t) for the two models, in a double
logarithmic scale. Here, the fast decay of the exponen
function contrasts the much slower relaxation of the Mitta
Leffler sum. The dashed line indicates the expected slop
the long-time power-law behavior. The latter is reach
rather slowly, owing to the fact that the Mittag-Leffler coe
ficientscm(t) of increasing orderm do not decay as fast a
the exponential terms in the Markovian case.

In fractional dynamics, the anomalous diffusion indexa,
renders some information about the ‘‘transparency’’ of t
support on which the random motion takes place, a no
which is analogous to the random walk dimensiondw on
fractals where it is connected to the anomalous diffusion
ponenta througha52/dw @14#.

Non-Markovian case with extremely rare events.In mo-
lecular switches, the relaxation from the initial stateL to the
globally stable stateG might alternatively be dominated b
very rare events. This is possible if~i! the activation of the
switching unit on its pathway along the mother molecu
strand is not close to thermal equilibrium and hardly e
motion events are activated or~ii ! if cooperative effects be
tween switch and molecular backbone come into play. S
rare events have recently been investigated in a dynam
map and studied in terms of a continuous time random w
model with the logarithmic waiting time PDFw(t)
;@ t log11b(t/t)#21, b.0 @12#. Accordingly,w(t) is normal-
izable but does not possess even fractional moments.
propagator for such a system is given through the expon
tial W(x,t)5@1/2s(t)#exp@2uxu/s(t)# where s(t)
[ logb/2(t/t). The mode coefficients in Eq.~3! follow the
logarithmic pattern cm(t)5@11k2 logb(t/t)#21, t.1 @12#.
Due to their asymptotic behavior cm(t);@(2m
11)2p2logb(t/t)/(4a2)#21, they decay extremely slowly. In
Fig. 4, we display the approximate PDFP(x,t) for succes-
sive times spanning a large range to underline the extrem
slow evolution of such a system. The associated integra
survival time, Eq.~4!, is shown in the inset.

So far, dynamical patterns of molecular switches have
been measured to detail. An analytical model for the rel
ation dynamics of semiochemical switches is theref
timely and might be a basis for the interpretation of futu
measurements. Moreover, the problem is interesting
from a physical point of view. We have presented a stoch
tic pathway model for molecular switching or similar rela
ation processes in spatially extended systems. This simpl
dynamical model considers the effects of successive ba
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crossing in a diffusion approximation. According to an i
creasing degree of disorder, three different models have b
investigated, these being defined by a Markovian process
a power-law form of the waiting time PDF and by a log
rithmic pattern. In the two latter cases, the exponential m
relaxation is replaced by either a Mittag-Leffler behavior
by a logarithmic decay. The resulting behaviors differ co
siderably, and experimentally a distinction is possible.
should be stressed that in finite systems the fractiona
logarithmic behavior does not pertain infinitely, but it
eventually replaced by a cutoff. Depending on the resolut
of the experimental window, transitions from the nonexp
nential to an exponential decay of the survival functi
might be observed.

First passage time experiments.A typical study of mo-
lecular switching systems would focus on the measurem
of the first passage time, i.e., the elapsed time that the
locks on stateG. If the outflow is defined throughj (t)[1
2p(t), the first passage time distribution consequently
comesf (t)[(2d/dt)p(t); see also@13#.

~i! In the Markovian case,f (t) is composed of exponen
tial summands corresponding to Eq.~4!, featuring the mean
survival time

Ts[E
0

`

tS d

dt
j ~ t ! Ddt5

a2

2K
.

In a series of experiments, variations in measured first p
sage times are expected to be relatively narrow.

~ii ! This is no longer true for the fractional case. He
the derivative of single coefficients involves th
generalized Mittag-Leffler function (2d/dt)cm(t)
5Kak2ta21Ea,a(2Kak2ta) @10#, and thus due to the long
time asymptotic behavior;t212a, the mean survival time
Ts in the fractional case diverges. Accordingly, in a series
individual measurements, the switching time is expected
vary in a long range, reflecting the scale-free nature of

FIG. 4. PDF P(x,t) in the rare event case with logarithmi
waiting time distribution, drawn for the dimensionless timest52,
20, 2000, andb51/2. The extremely slow decay of the PDF
distinct, even in comparison to the power-law waiting time PD
underlying Fig. 2. The inset shows the survival probability in
log10-log10 plot over more than four decades in time; note the sl
drop in p(t) over this interval.
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BRIEF REPORTS PHYSICAL REVIEW E 63 012103
process. A first passage time experiment consequently m
mislead one to the conclusion that the system is highly in
mogeneous. It might, however, be that the power-law w
ing time behavior at some point turns over to a fast dec
Then, the system possesses a finite characteristic sur
time Ts encountered for long times measured in a first p
sage time experiment. Qualitatively the same is true for
extremely rare event case.

It should be noted that in the presence of an external b
e.g., an electric field pushing the ring towards theG position,
the mean survival time in the fractional case becomes fi
@13#. This might open the scene for an elegant testing of
underlying process, also connected to the question
whether such systems are consistent with linear respo
theory, i.e., in which way the switching unit responds to
low external, constant force like an electric field.

Temperature variations might give further indicatio
about a specific process whereby an Arrhenius activatio
expected in the Markovian and fractional cases@2,8#. The
present model may thus be the basis for more quantita
-
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experimental studies of the exact switching patterns enco
tered in molecular switches. Although single molecule stu
ies might be desirable, even the investigation of ensem
behavior will contribute to the elimination of certain pa
terns.

The presented random walk model assumes that the re
ation of the system is fully characterized by the waiting tim
PDF. Alternative interpretations may, however, be possib
Moreover, the presented stochastic analysis leaves the q
tion open what microscopic mechanisms give rise to the p
ticular waiting time PDF. Such points should be addres
when experimental data become available.
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