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Abstract. – Superdiffusion in the sub-ballistic regime with a non-diverging mean-squared
displacement is studied on the basis of a linear, fractional kinetic equation with constant co-
efficients which is non-local in time and leads to an exponential tail of the corresponding
probability density function. It is shown that sub-ballistic superdiffusion can be regarded as
ballistic motion with a memory, much as slow diffusion can be thought of as a random walk
with a memory. This suggests that fractional kinetic equations are useful in describing both
sub- and superdiffusion processes.

Stochastic processes whose mean-squared displacement grows faster than linearly in time
have been under discussion since Richardson’s seminal study of the relative diffusion of two
particles in fully developed turbulence for which he established the famed t3 law [1]. The
description of Richardson diffusion, among others, has been based on modified diffusion equa-
tions with position- or time-dependent diffusion coefficients which are local in time and lead
to a (stretched) Gaussian shape of the probability density function (pdf) [1–3], or on Lévy
walk models [4–6], the latter being non-local in time.

In general, transport processes characterised by a mean-squared displacement 〈x2(t)〉 ∝
tκ which deviates from the linear time dependence (κ = 1) of Brownian motion are called
anomalous [7]. Slow diffusion corresponds to 0 < κ < 1, and has been studied extensively in
the absence and presence of external force fields [5–8], fractional diffusion and Fokker-Planck
equations having been recognised as an especially suited tool for its description [8–10].

In what follows, we concentrate on the one-dimensional description of diffusion processes in
the domain of sub-ballistic superdiffusion (SSD) corresponding to 1 < κ < 2. In that course,
we investigate the fractional kinetic equation

∂2P

∂t2
= K2−α 0D

α
t

∂2

∂x2
P (x, t), 0 < α < 1, (1)
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which has been derived from a long-range correlated dichotomous stochastic process [11],
from a fractional Kramers equation [12], and from the generalised Chapman-Kolmogoroff
equation [13]. Equation (1) was called fractional wave equation in the hallmark paper of
Schneider and Wyss [9]. In eq. (1), the generalised diffusion constant K2−α is of dimension
[K2−α] = cm2 s−(2−α) the dynamical origin of which is derived in ref. [13]. The fractional
Riemann-Liouville operator 0D

α
t ≡ ∂

∂t 0D
−α
t is defined in terms of the convolution [14]

0D
−α
t P (x, t) ≡ 1

Γ(α)

∫ t

0

dt′
P (x, t′)

(t − t′)1−α
, (2)

for which the generalisation L{
0D

−α
t P (x, t)

}
= u−αP (x, u) of the integration theorem of the

Laplace transformation holds. Note that, according to eq. (2), the fractional dynamics ap-
proach in eq. (1) is explicitly non-local in time. We will show that at the same time, the tail of
the pdf decays exponentially. Furthermore, the solution of eq. (1) features propagating humps,
underlining the proximity to the standard wave equation. Interestingly, our approach to de-
scribe SSD in a way resembles Monin and Yaglom’s third-order equation ∂3P

∂t3 = K3
∂2

∂x2 P (x, t)
to obtain the Richardson t3 law [15].

The integral form of eq. (1), P (x, t)−P0(x) = 0D
α−2
t K2−α

∂2

∂x2 P (x, t), is obtained through
the twofold application of the integral operator 0D

−1
t . This form explicitly features the initial

value P0(x) ≡ limt→0+ P (x, t). Note that norm conservation implies that the initial field
velocity vanishes, limt→0+

[
∂
∂tP (x, t)

] ≡ 0. The mean-squared displacement associated with
eq. (1) follows by integration, yielding

〈x2(t)〉 = 2K2−α

Γ(3− α)
t2−α. (3)

Equations (1) and (3) reduce to the wave equation in the ballistic limit α → 0, with 〈x2(t)〉 ∝
t2, and to the diffusion equation in the Brownian case α → 1, with 〈x2(t)〉 ∝ t [16].

The exact solution for the propagator of eq. (1) is given in closed form in terms of the Fox
function

P (x, t) =
1√

4K2−αt2−α
H1,0

1,1

[
|x|√

K2−αt2−α

∣∣∣∣
(

α
2 , 2−α

2

)
(0, 1)

]
, (4)

which can be represented in computable form through the series [17]

P (x, t) =
1√

4K2−αt2−α

∞∑
n=0

(−1)n

n!Γ(1− (2− α)[n + 1]/2)

(
x2

K2−αt2−α

)n/2

. (5)

The pdf (4) is equivalent to the result reported by Schneider and Wyss who proved that
P (x, t) is non-negative [9]. In the asymptotic region |x|/√K2−αt2−α 	 1, the tails of the pdf
(4) are given by the compressed Gaussian shape (0 < α ≤ 1)

P (x, t) ∼
(
2/(2− α)

)(α−1)/α√
4παK2−αt2−α

(
|x|√

K2−αt2−α

)(1−α)/(α)

×

× exp


−α

2

(
2− α

2

)(2−α)/α
[

|x|√
K2−αt2−α

]2/α

 . (6)

From the Fox function representation in eq. (4), one infers the Gaussian pdf Pd(x, t) =
(4πK1t)−1/2e−x2/(4K1t) in the Brownian limit α → 1, and the moving delta peaks Pw(x, t) =



494 EUROPHYSICS LETTERS

Fig. 1 – Left: pdf P (x, t) of the fractional wave equation (1) for α = 1/2 (full line), in comparison to
the Gaussian Pd(x, t) (dotted line). The humps of the SSD pdf strongly contrast the cusp shape of
the subdiffusive pdf which is represented by the dashed line for the case κ = 1/2 in eq. (3), see the

fractional diffusion equation ∂
∂t

P = K1/2 0D
1/2
t

∂2

∂x2 P (x, t) in ref. [8]. Both the humps in the SSD case
and the cusp shape for slow diffusion are related to the persisting initial condition which implies a
moving front in the SSD motion and a spatial sticking in the latter case. All curves are drawn for the
dimensionless time t = 1. Right: fractional wave pdf P (x, t) for α = 1/2, eq. (4), for four consecutive
dimensionless times, t = 1/4, 1/2, 1, 2 (decay and broadening of humps in the course of time).

1
2

(
δ(x − √

K2t) + δ(x +
√

K2t)
)
with velocity |√K2|, in the ballistic limit α → 0 [18]. Note

that the ballistic limit is equivalent to the results from refs. [4, 19].
From eq. (4), one infers the asymptotic scaling behaviour (0 < α < 1)

g(ξ) ∼
{

ecξ, ξ < 1 ,

(ξ)1/α−1 exp
[ − c(ξ)2/α

]
, ξ > 1 ,

(7)

where the scaling function g is related to the pdf (4) through P (x, t) = t(2−α)/2g(ξ), employing
the scaling variable ξ ≡ |x|/t(2−α)/2. This behaviour is remarkable as, close to the origin, the
function grows initially, before turning to the compressed Gaussian tail at around ξ ≈ 1. The
numerical evaluation in fig. 1 illustrates this turnover behaviour manifested in the distinct
humps, in comparison to the Brownian and subdiffusive cases. On the right of fig. 1, we
depict the evolution of the fractional wave solution P (x, t) in the course of time.

In fig. 2, the gradual transition from the Gaussian to the travelling-wave behaviour is
illustrated. The increasing depletion around the origin in favour of the humps, as well as the
more and more pronounced decay of the tails of the pdf indicate the parametric approach of
the pdf P (x, t), eq. (4), to the propagating δ-peaks of the wave equation. Accordingly, the
dispersive-diffusive character of the transport is continuously diminished, being replaced by
the non-dispersive ballistic nature of wave motion.

Let us further pursue the relation of eq. (1) to the wave equation. To this end, we note
that Fourier-Laplace transformation produces an algebraic equation in the wave number k
and the Laplace variable u whose solution is given by the (k, u)-form of the pdf,

P (k, u) =
1

u + K2−αuα−1k2
, (8)

which corresponds to the asymptotic form obtained in ref. [19]. From eq. (8) we derive
the connection of the fractional pdf P (x, t) with the solution of the wave equation ∂2

∂t2 Pw =
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Fig. 2 – Kaleidescope picture of the turnover from Gaussian to travelling-wave character: fractional
dynamics solutions, eq. (4) (full lines), at the dimensionless time t = 1. The larger (2− α) becomes,
the more distinct is the depletion at the origin, and the sharper the humps are pronounced. P (x, t)
for 2− α = 9/8, 5/4, 3/2, 7/4, 15/8. The dashed lines show the travelling δ-peaks, Pw(x, t), and the
Gaussian pdf, Pd(x, t).

K2
∂2

∂x2 Pw(x, t) whose (k, u)-transform is Pw(k, u) =
(
u + K2u

−1k2
)−1. This relation for the

Laplace transforms reads

P (x, u) =

√
K2

K2−α
u−α/2Pw

(
x,

√
K2

K2−α
u1−α/2

)
, (9)

which is analogous to the one found for subdiffusion [8, 10]. In time, relation (9) corresponds
to the generalised Laplace transformation [8, 12]

P (x, t) =
∫ ∞

0

dsE(s, t)Pw(x, s) , (10)

where the kernel E(s, t) is defined through

E(s, u) =
√

K/K2−αu−α/2 exp
[
−s∗u1−α/2

]
, (11)

with s∗ ≡ √
K/K2−αs. Rewriting eq. (11) as E(s, u) = − (

1− α
2

)−1 ∂
∂u exp

[−s∗u1−α/2
]
in

which the exponential is but the characteristic function of the one-sided Lévy distribution
L+

1−α/2

(
t/(s∗)1/(1−α/2)

)
[20], we find

E(s, t) =
t

(1− α/2)s
L+

1−α/2

(
t

(s∗)1/(1−α/2)

)
. (12)

By means of the Fox function H1,0
1,1 , the kernel E(s, t) can be expressed in analytic form

through

E(s, t) =
1
s
H1,0

1,1

[
s∗tα/2−1

∣∣∣∣
(
1, 1− α

2

)
(1, 1)

]
(13)

=
1
s

∞∑
n=0

(−1)n
(
s∗tα/2−1

)1+n

n!Γ
(
1− 2−α

2 (1 + n)
) . (14)
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The solution of the wave equation, for a non-negative initial condition P0(x) always remains
positive due to the travelling wave similarity. Thus following eq. (10), from E(s, t) ≥ 0 we
conclude that P (x, t) ≥ 0, i.e., the pdf (4) is non-negative for all (x, t), in agreement with the
findings in ref. [9]. It should be noted that there exists no such transformation mapping the
Brownian pdf Pd(x, t) onto P (x, t) [21]. Within fractional dynamics, in order to go beyond
Brownian motion, one has to borrow from the ballistic process and superimpose a memory
instead of modifying a Markovian random walk.

The nature of the propagating humps can now be understood as the fractional dynamics
analogue of the moving δ-peaks Pw(x, t) of the wave equation for the initial condition P0(x) =
δ(x): instead of the sharp peaks moving at speed

√
K2, the fractional, SSD pdf P (x, t) exhibits

the moving humps whose width becomes increasingly broader. As can be seen from eq. (1),
even if initially the field velocity is zero, at a further instant t1 > 0, there exists a non-vanishing
field velocity which feeds back to the evolution equation (1), thus creating the hump motion.
The persistent motion of the initial condition in turn creates the depletion in the origin.

A further remarkable property of the SSD process (1) concerns the mode relaxation for a
fixed wave number k0, given in terms of the Mittag-Leffler function E2−α [22] through

P (k0, t) = E2−α

(−K2−αk2
0t

2−α
) ≡

∞∑
n=0

(−K2−αk2
0t

2−α
)n

Γ(1 + (2− α)n)
, (15)

which leads to a damped, oscillatory behaviour. The oscillations mirror the moving humps,
similar to the purely oscillatory mode behaviour Pw(k0, t) = cos(−

√
K2k2

0t) of the travelling
wave solution Pw(x, t).

Let us finally address the Pólya returning probability to the origin. According to eq. (7),
the probability to find the particle at the origin decays in the course of time like

P (0, t) =
(
2Γ(α/2)

√
K2−αt1−α/2

)−1

, (16)

where 1− α/2 ∈ (1/2, 1). The Pólya returning probability, accordingly, decays faster in time
than for the Brownian case, reflecting the joint effect of the depletion close to the origin and
the hump motion carrying away a major portion of the probability. This effect is connected
to the faster spreading expressed in eq. (3), through P (0, t) ∝ 〈x2(t)〉−1/2.

The most prominent features of the fractional dynamics model eq. (1) of SSD processes
are the non-locality in time being manifest in the presence of the fractional operator (2), as
well as the propagating humps exhibited by the pdf, eq. (4). The latter mark the turnover
between an initial increase of the pdf towards the final exponential (compressed Gaussian)
behaviour. The SSD fractional dynamics model thus combines elements of the time-local
diffusion equations with position- or time-dependent diffusion coefficients, and the Lévy walk
model.

The basic criterion in distinguishing the different models describing SSD is, as is known
from the Richardson case, the pdf. In that concern, the SSD fractional propagator with
its distinct propagating humps is contrasting the (stretched) Gaussian shape found for the
modified, local diffusion equations [1, 2, 15], and the Lévy walk process whose pdf gradually
approaches a Lévy distribution the edges of which spread like |x| = vt [6]. It is worth remarking
that even if the humps cannot be monitored in a given experimental window, the very shape of
the compressed Gaussian in the present model is distinguishable from the (stretched) Gaussian
character prevailing in the models with position- and time-dependent diffusion coefficient, as
well as from the stable pdf observed for the Lévy walk models.
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Fractional dynamics has been studied extensively in the subdiffusive domain, in the ab-
sence and presence of external fields, and in both position and phase space [9, 10]. In the
present study we have promoted a complementary fractional model for SSD in the force-free
case. Whereas for slow diffusion (0 < κ < 1), the fractional diffusion model is equivalent to
continuous time random walk models with a self-similar waiting time distribution, the pdf in
the fractional wave equation (1) differs from the evolving Lévy stable form of the pdf in the
Lévy walk model. The former combines a modified Gaussian decay of the pdf obtained from
generalised diffusion equations with the temporal power law memory prevalent in continuous
time random walk models. In the SSD domain, fractional dynamics for fast single-particle
diffusion thus mirrors certain features which are believed to prevail in the Richardson pair
diffusion.

For slow diffusion in external force fields, a position space and phase space framework in
terms of fractional Fokker-Planck-Smoluchowski and fractional Klein-Kramers equations has
been established [8, 10, 13]. A fractional equation for SSD transport in the presence of an
external potential has been suggested in ref. [12]. However, it has not been proved whether
the corresponding solution is a proper pdf. This problem will be addressed in a forthcoming
work.

Possible applications of our fractional SSD model include front or wave propagation in
complex systems where the presence of disorder gives rise to the increasingly blurred humps,
as well as their sub-ballistic spreading.
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