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Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations
and their solutions
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We consider Le´vy flights subject to external force fields. This anomalous transport process is described by
two approaches, a Langevin equation with Le´vy noise and the corresponding generalized Fokker-Planck
equation containing a fractional derivative in space. The cases of free flights, constant force, and linear
Hookean force are analyzed in detail, and we corroborate our findings with results from numerical simulations.
We discuss the non-Gibbsian character of the stationary solution for the case of the Hookean force, i.e., the
deviation from Boltzmann equilibrium for long times. The possible connection to Tsallis’sq statistics is
studied.@S1063-651X~99!09903-1#
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I. INTRODUCTION

In recent years there has been growing interest in ano
lous diffusion in various fields of physics and related s
ences. In one dimension anomalous diffusion is charac
ized by a mean square displacement of the form

^~Dx!2&}2Dtg, ~1!

deviating from the linear dependence on time found
Brownian motion@1–3#. The generalized diffusion constan
has the dimension@D#5cm2 sec2g.

Subdiffusive transport (0,g,1) is encountered in a di
versity of systems, including the charge carrier transpor
amorphous semiconductors@4,5#, NMR diffusometry on per-
colation structures@6#, and the motion of a bead in a polyme
network @7#. On fractal structures in general, subdiffusio
prevails due to the occurrence of holes of all length sca
@2#. Examples of enhanced diffusion (g.1) include tracer
particles in vortex arrays in a rotating flow@8#, layered ve-
locity fields @9#, and Richardson diffusion@10#.

Lévy flights are used to model a variety of processes s
as bulk mediated surface diffusion@11# and applications in
porous glasses and eye lenses@12#, transport in micelle sys-
tems or heterogeneous rocks@13#, special problems in reac
tion dynamics@14#, single molecule spectroscopy@15#, and
even the flight of an albatross@16#.

Among the different frameworks for describing anom
lous diffusion are fractional Brownian motion@17#, the con-
tinuous time random walk scheme@4,18#, fractional diffusion
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equations@19,20#, generalized Langevin and Fokker-Plan
equations~FPEs! @21–25#, and generalized thermostatistic
@26,27#. Common to all these approaches is the violation
the central limit theorem of probability theory@28,29#, and
this is achieved either by correlations or by long-tailed s
tistics. Lévy statistics@28,29# is an example of the latter, an
has been used extensively to model both enhanced and
persive diffusion@3,18,30#. The two most fundamental prop
erties of the Le´vy distributions are the stability under add
tion, following from the generalized central limit theore
valid for Lévy distributions, and the asymptotic power-la
decay. These features are responsible for the anoma
character of the diffusion processes we have in mind.

A fractional Fokker-Planck equation~FFPE! describing
anomalous transport close to thermal equilibrium was p
sented recently@25#. Since it describes subdiffusion in th
force-free case, it involves a strong, i.e., slowly decayi
memory. In the present paper, we focus on FFPEs which
connected with Le´vy flights, and are based on the followin
Langevin equation for the coordinatex(t) @21,22#:

d

dt
x~ t !5

F~x!

gm
1h~ t !. ~2!

Here,m is the mass of the diffusing particle, andg denotes a
friction coefficient.F(x) is the external force field. For sim
plicity we shall work in one dimension, with obvious mod
fications in the general case. The noiseh(t) is the source of
the anomalous behavior. We assumeh(t) to be uncorrelated
at different times, and to obey Le´vy statistics@31#. In Fourier
space we thus define the characteristic functionp(k) of the
noise variable

p~k!5E dhe2 ikhp~h!5exp~2Dukum!, ~3!
2736 ©1999 The American Physical Society
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PRE 59 2737LÉVY FLIGHTS IN EXTERNAL FORCE FIELDS: . . .
where 0,m,2. The probability density function~PDF!
p(h) has an asymptotic power-law behavior according
p(h);uhu212m @28,29,32#. Here and in the following, we
denote the Fourier transform of a function by using the
plicit dependence on the wave numberk, and analogouslyu
for the Laplace transform of at-dependent function. For th
special casem52 in Eq. ~3!, i.e., for a Gaussian noise, w
are led back to the Brownian case. In this case 2D is the
variance of the PDF, but even in the general case the pa
eterD characterizes the width of the PDF in some sense

The Langevin equation, Eq.~2!, is a stochastic differentia
equation. Often it is more convenient to work with the d
terministic equation for the distribution function, the FP
@33,34#. For the power-law noiseh(t) defined through Eq.
~3!, we are led to the following FFPE@21,22#:

]

]t
W~x,t !52

]

]xS F~x!W~x,t !

gm D1D¹mW~x,t !. ~4!

Here, D denotes the generalized diffusion coefficient w
the dimension@D#5cmm sec21. The Riesz fractional de
rivative in Eq. ~4! is defined through its Fourier transform
@35,36#

¹m52E ddk

~2p!d
eik•xukum ~5!

in d dimensions. Note that in the FFPE Eq.~4! the first order
differential operator acting upon the force term is not
fected by the introduction of the Le´vy distribution Eq.~3!,
see Ref.@37# where a unifying derivation of FFPEs from
generalized master equation is discussed.

In the following we will consider the FFPE Eq.~4! for the
three cases of the free flightF50, the constant forceF(x)
5F0 , and the Hookean forceF(x)52lx, comparing to the
Brownian case as we go along. We will discuss the diff
ences from the subdiffusive FFPE of Ref.@25#, where a frac-
tional operator in time is encountered and the spatial par
the standard FPE remains unchanged, as well as the pos
connection to Tsallis’sq statistics. Numerical simulation
corroborate our theoretical findings. We then exemplify
method of solution for the Langevin equation, Eq.~2!, for a
linear force with an additional drift term. Before drawing th
conclusions, we give some remarks on the simulations. S
additional calculations on the nature of the correlation fu
tions are presented in the Appendix.

II. FREE LÉ VY FLIGHT

In this case we have to solve the anomalous diffus
equation

]

]t
W~x,t !5D¹mW~x,t !. ~6!

Fourier transforming Eq.~6! and utilizing the definition of
the fractional Riesz operator, Eq.~5!, we have

]

]t
W~k,t !52DukumW~k,t !, ~7!

with the solution
o

-

m-

-

-

-

of
ible

e

e
-

n

W~k,t !5e2Dtukum, ~8!

demanding the sharp initial conditionx(0)50, correspond-
ing to W(x,0)5d(x) or W(k,0)51. Comparing to Eq.~3!
we recognize the characteristic function of the Le´vy distri-
bution, and we thus find in real space the stable lawLm :

W~x,t !5~Dt !21/mLmS uxu

@Dt#1/mD
5

p

muxu
H2,2

1,1F uxu

~Dt !1/m U~1,1/m!,~1,1/2!

~1,1!,~1,1/2! G . ~9!

In Eq. ~9!, we have expressed the Le´vy distribution exactly
in terms of Fox’sH functions@38,39#. This result, Eq.~9!, is
expected, due to the stable law nature of the underlying L´vy
distribution. The asymptotic behavior of the propaga
W(x,t) can be derived from Eq.~9! and reads

W~x,t !;
Dt

uxu11m
~10!

for uxum/@Dt#@1, and thus we encounter a divergence of t
mean square displacement at all times:^x2(t)&5`. This is
intuitively clear due to the occurrence of arbitrarily lon
jumps in the Le´vy flight, see Fig. 1.

Mathematically, the divergence is evident from Eq.~8! by
using the properties of the characteristic function:^xn(t)&
5 i ndnW(k,t)/dknuk50 .

In order to extract the scaling form implied by Eq.~9!
operationally, one could enclose the ‘‘walker’’ in an imag
nary growing box~see Sec. VI!:

^x2~ t !&L;E
L1t1/m

L2t1/m

dxx2W~x,t !;t2/m. ~11!

This has been implemented numerically, and, as can be
from Fig. 2, where we have a straight line on a log-log p
of ^x2(t)&L as a function oft, for a fixed m, the expected
power-law index 2/m according to Eq.~11! is found.

This scaling result̂ x2(t)&L;t2/m is not to be confused
with the mean square displacement^x2(t)&5*dxx2W(x,t)

FIG. 1. Typical Lévy flight for the Lévy index m51.4. The
clustering is obvious. Each cluster is statistically self-similar to
unmagnified picture. The fractal dimension of the flight isdf5m
@3,21#.
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2738 PRE 59SUNE JESPERSEN, RALF METZLER, AND HANS C. FOGEDBY
5` for the Lévy flight, resulting from Eq.~10!. However,
for m.1, the squared absolute mean

^ux~ t !u&25S E dxuxuW~x,t ! D 2

~12!

converges, and is proportional to^x2(t)&L from Eq.~11!, see
the discussion in Ref.@40#. Figure 3 shows this proportion
ality for m51.5 @41#.

In Fig. 4, we graph the curve 2/m as a function ofm for a
variety of values for the Le´vy indexm, and we obtain excel-
lent agreement with Eq.~11!.

In the casem52 we see from Eq.~8! and the results of
the simulations in Fig. 4 that the usual Brownian behavio
recovered. Especially, we obtain the mean square displ
ment

^x2~ t !&52Dt. ~13!

FIG. 2. Function^x2(t)&L from Eq. ~11! versus time withm
51 in a log-log plot. The slope of the straight line is 1.99
60.028, which is to be compared to the expected value 2/m52.

FIG. 3. Log-log plot of ^x2(t)&L versus time from Eq.~11!
~lower curve!, compared to the squared absolute mean^ux(t)u&2

from Eq. ~12! ~upper curve! for m51.5. The fitted slopes are
1.36360.013 and 1.36460.035, respectively, which is in goo
agreement with the theoretical value 4/3.
s
e-

The properties of free Le´vy flights could also be obtained
directly from Eq.~2! employing the method of characterist
functions. This view also allows us to extract the distributi
of speeds, which turns out to be Le´vy distributed. From this
likewise follows the mean kinetic energy, and we have fo
finite massm of the walker in the casem,2

^ 1
2 mv2&5`. ~14!

III. CONSTANT FORCE: DRIFT AND ACCELERATION

For a constant forceF(x)5F0 , the FFPE Eq.~4! reads

]

]t
W~x,t !52

]

]xS F0W~x,t !

gm D1D¹mW~x,t !. ~15!

Returning to the Fourier domain, we recover the equatio

]

]t
W~k,t !5S 2 ik

F0

gm
2DukumDW~k,t !, ~16!

which for the propagator, i.e.,W(k,t) with the initial condi-
tion W(k,0)51, yields

W~k,t !5expS 2tF ik
F0

gm
1DukumG D . ~17!

This is the same Le´vy distribution as calculated for the fre
Lévy flight in Eq. ~8!, but at the translated coordinate

W~x,t !5W0S x2
F0t

gm
,t D . ~18!

HereW0 refers to the distribution of the free Le´vy flight. The
displacement of the coordinate is due to the balancing of
friction against the imposed constant force, i.e.,gmv5F0 ,
in the Galilei transformed systemx→x2F0t/@gm#. Clearly,
the analytical form for the solution inx space is still given by
Eq. ~9!, but now for the translated coordinate. Thus Le´vy
flights in a constant force field described by Eq.~15! are
similar to ~anomalous! diffusion in a constant velocity field

FIG. 4. Graph of the slope 2/m according to Eq.~11! as a func-
tion of the Lévy index m. Note the bend atm52 marking the
transition to normal diffusion.
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@42,43#. The reason we go directly to the steady state
scribed bygmv5F0 is due to the omission of the inertia
term in the Langevin equation, Eq.~2!. By including this
term it can be shown that we obtain a transient contributi
Thus the diffusion in a force field is only equivalent to d
fusion in a constant velocity field for large times, accordi
to the discussion in Ref.@42#, see below. In fact the sam
situation is encountered even for the standard diffusi
advection picture@42–44#. For long waiting periods in the
random walk picture for the subdiffusive model, the exter
force can only act upon the walker, when it is released fr
a trap, which leads to the sublinear dependence^x(t)&}tg

found in Ref.@42#, whereg denotes the power-law index o
the broad waiting time distribution. The Poissonian waiti
time distribution, on the other hand, which is typical for t
Lévy flyer, leads to the same behavior, Eq.~21! below ~for
1,m<2), as known from the Brownian case, due to t
very short waiting periods in between jumps. The long-tai
nature of the Le´vy flight, however, makes all higher mo
ments infinite. Both effects lead to an accelerated time
pendence of the motion. Including the inertial term in t
Langevin equation, Eq.~2!, changes the solution for sho
times according to

x~ t !5
F0

mgS t2
12e2gt

g D1E
0

t

dsh~s!~12e2g~ t2s!!.

~19!

At times much greater than the characteristic timeg21, we
have

x~ t !.
F0

mg
t1E

0

t

dsh~s!, ~20!

which follows from the behavior of the Laplace transform
the convolution integral in the second summand of Eq.~19!:
@h(u)/u#@12u/(u1g)#;h(u)/u in the limit u!g. Thus
the effect of the inertial term is negligible for timest much
greater thang21.

If the first moment exists, that is, for 1,m<2, we find
from Eq. ~17!

^x~ t !&5
F0t

gm
. ~21!

Only for m52 do we have a finite second moment, and
mean square displacement becomesŠ@x(t)2^x(t)&#2

‹

52Dt, in agreement with Eqs.~13! and ~18!.
For the standard FPE as well as for the subdiffusive FF

introduced in@25#, one finds the generalized Einstein relati
@25,45,44# ^x(t)&F0

5F0^x
2(t)&0 /(2kBT), relating the first

moment in the presence of the forceF0 to the second mo-
ment in the absence of the force. For the Le´vy flight model
defined in Eq.~15!, only in the Brownian limitm52 is this
relation satisfied, provided we choose the proper amplit
of the noise, i.e., take it to be thermal noise:D
5kBT/@gm#. Generally since we have a diverging me
square displacement, the generalized Einstein relation d
not hold, and we have a violation of the classical fluctuatio
dissipation theorem.
-

.

-

l

d

e-

f

e

E

e

es
-

IV. LINEAR FORCE AND NON-GIBBSIAN
STATIONARY SOLUTION

In the case of ordinary Brownian motion the diffusin
particles can be trapped in a harmonic potential and t
attain an equilibrium distribution with a finite varianc
@44,33#. More precisely this equilibrium distribution is th
Gibbs or Boltzmann distribution, also obtainable from ma
mizing the Gibbs entropy under the constraints of norm a
energy conservation. This property is also fulfilled for su
diffusive transport in a harmonic potential@25#. For Lévy
flights we shall see that a stationary solution does exist, h
ever, it possessesno finite variance. This deviation from the
Gibbs-Boltzmann equilibrium implies that Le´vy flights do
not describe systems close to thermal equilibrium.

For the Hookean forceF(x)52lx, corresponding to the
harmonic potentialV(x)5 1

2 lx2, the FFPE Eq.~4! becomes

]

]t
W~x,t !5

]

]xS l

gm
xW~x,t ! D1D¹mW~x,t !. ~22!

In Fourier space, the conjugate equation reads

]

]t
W~k,t !52

l

gm
k

]

]k
W~k,t !2DukumW~k,t !, ~23!

which can be easily solved by making a transformation
variables~applying the method of characteristics!

W~k,t !5expS 2
gmDukum

ml
@12e2mlt/gm# D . ~24!

This is still a Lévy distribution, only with a different
‘‘width’’ D→(gmD/ml)(12e2mlt/gm), and the exact so-
lution in real space can again be obtained from Eq.~9! by
inserting the time-dependent width. Form52 we recover the
Brownian results, but in the general casem,2 a different
situation arises. We always reach a stationary distributio

Wst~k!5expS 2
gmDukum

ml D , ~25!

but with a diverging mean square. The exact stationary s
tion in x space can be given in terms of Fox’sH functions:

Wst~x!5
p

uxu
H2,2

1,1F uxumml

Dgm U~1,1!,~1,m/2!

~1,m!,~1,m/2!
G , ~26!

leading to the asymptotic power-law behaviorWst(x)
;Dgm/(mluxu11m).

A numerical result for a simulation of a Le´vy flight in a
harmonic potential is shown in Fig. 5. The slope is in go
agreement with the theoretical prediction.

We pause to mention that we could have derived the
lution, Eq. ~24!, also by means of a separation ansatz, i
assuming a particular solution of the formWn(x,t)
5Tn(t)wn(x), as was discussed in Refs.@25,42#. Thus we
arrive at the ordinary differential equations

d

dt
T~ t !52lnT~ t !, ~27a!
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lnwn~x!1
d

dxF l

gm
xwn~x!G1D¹mwn~x!50, ~27b!

with the eigenvalueln . The complete solution is then give
by the sumW(x,t)5(n50

` Wn(x,t). For the time behavior
we find the usual exponentially decaying modes,Tn(t)
5e2lnt, and for the spatial eigenfunction we have

wn~k!5cnukulngm/le2ukum/m. ~28!

The eigenvalues are given byln5(l/gm)mn, and the com-
plete solution in wave number space is given by

W~k,t !5e2Dgmukum/[ml] (
n50

`
1

n! S Dgm

ml D n

ukumne2mnlt/[gm] .

~29!

The sum converges to Eq.~24!, and can be transformed bac
to real space by use of the Fox functions:

W~x,t !5 (
n50

`
1

n! S Dgm

ml D n p

uxu
mln/[gm]e2mnlt/[gm]

3H2,2
1,1F ml

Dgm
uxumU~12ln/gm,1!,~1,m/2!

~1,m!,~1,m/2!
G .

~30!

In comparison to Risken’s result for the Fokker-Planck eq
tion in a harmonic potential in the Brownian case@33#, also
referred to as the Ornstein-Uhlenbeck process, the eigen
ues in the solution, Eq.~30!, for m52 take on only even
numbers. This is due to our consideration of the start in
origin, so that all the uneven Hermite polynomials occurri
in the solution given in Ref.@33# vanish:H2n11(0)50. We
note that the Fox functions in Eq.~30! can be considered a
generalized Hermite polynomials. Clearly, the stationary
lution corresponding tol050 obtained from Eq.~30! is the

FIG. 5. Histogram for the stationary solutionWst of a Lévy
flight in a harmonic potential versusuxu, as a plot of lnWst(y) ver-
susy, wherey5 ln(x) denotes the natural logarithm of the positio
of the flyer, see Sec. VI. The data were produced for a Le´vy index
m51.4. The fit indicated by the dashed line reveals a slope
21.40860.108, which thus shows a good agreement with the t
oretical prediction2m.
-

al-

e

-

same stable law as in Eq.~26!. Also it can be seen that only
in the Brownian casem52 do we recover the Boltzman
distribution W(x)}e2lx2/[2kBT] . Thus Boltzmann equilib-
rium with a finite variance is not reached, in spite of the fa
that the system is isolated and time independent in respe
the ensemble. This can bephysicallyunderstood as a conse
quence of the diverging mean kinetic energy of the free Le´vy
flight. In this case we have

d

dt
v~ t !52gv~ t !1gh~ t !. ~31!

If we take the noise to be white according to Eq.~3! with
m52, we get from Eq.~31! that in the stationary state

^v2&5Dg⇔^Ekin&5
mgD

2
. ~32!

When the external harmonic potential is turned on, alength
scale is introduced by the comparison̂Ekin&'^Epot&
5 1

2 l^x2&. This means that̂x2&'mDg/l. In fact, solving
Eq. ~2! in the Brownian case with the harmonic potential, w
obtain exactly^x2&5mDg/l, in accordance with the equi
partition theorem. Similar considerations remain valid for t
subdiffusive FFPE from Ref.@42#, which thus describes
anomalous systems close to thermal equilibrium. Howev
in the Lévy case we have

^Ekin&5`, ~33!

and therefore the length scale which appears when the
tential is introduced is also diverging. Consequently t
question arises whether other statistics could predict
equilibrium distribution in the present context. Here we co
sider the recently proposed Tsallisq entropy@26#, according
to which the generalized entropy

Sq@p~x,v !#5

12E pq~x,v !dxdv

q21
~34!

is introduced along with the generalized constraints~see
@46#!

E p~x,v !dxdv51 , ~35a!

E pq~x,v !E~x,v !dxdv5U. ~35b!

For q→1, Sq recovers the usual Boltzmann entropy. He
v is the velocity of the particle andE(x,v) is its energy.
Thus Eq.~35b! is a generalized constraint of conservation
energy along with the usual norm conservation, Eq.~35a!.
Varying Eq.~34! subject to these constraints by introducin
Lagrange multipliers, one obtains the stationary distributi

pq~x,v !;S 12~12q!
b

2
@lx21mv2# D 1/~12q!

. ~36!

Integrating over all velocities to obtain the distribution
positions alone yields

f
-
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pq~x!;S 12~12q!
b

2
lx2D ~32q!/~222q!

, ~37!

compare to Ref.@27#. Matching this expression to th
asymptotic behavior of the stationary solution of the FFP
Eq. ~25!, we obtain

m5
422q

q21
. ~38!

The relationship Eq.~38! implies that q can range in the
interval (1,2). Equation~38! is at variance with the relation
m5(32qfree)/(qfree21) found in the case of the free Le´vy
flight @27,30#, where the allowed range isqfreeP(5/3,3).
Note that theq-m relation does not involve the potentia
strengthl. Thus, the Tsallis indexq makes a jump for a
given Lévy index m, when the potential is switched off, ir
respectively of how slowly, e.g., quasistatically, the limitl
→0 is performed. Moreover, away from the asymptotic
gime, the solution predicted by the entropy Eq.~34! does not
agree with the solution found in Eq.~25! in the stationary
state. Thus we conclude that the Tsallis entropy is not
appropriate framework for Le´vy flights in a harmonic poten
tial described by the generalized Fokker-Planck equat
Eq. ~4!. This form of a generalized entropy does not give r
to the solution in Eq.~25!. Recently it has also been show
that Tsallisq entropy is one out of an entire family of gen
eralized entropies with similar properties@47#, so that it
would have been rather surprising if this special case of
tropy had led to the complete description according to
Lévy flight model. Finally, the FFPE Eq.~4! being linear is
not compatible with the nonextensive nature of Tsallis
tropy @26#; compare with the nonlinear diffusion equatio
derived from Tsallis entropy in Ref.@48#.

By comparing the distribution of the particle in the ha
monic potentialW(x,t) with that of the free flightW0(x,t),
we obtain the correspondence

W~x,t !5W0~x,teff!, ~39!

where we define

teff[
mg

ml
~12e2mlt/[gm] !. ~40!

Thus the distribution of the particle position in a harmon
potential can be obtained from the distribution in the fr
Lévy flight case at an earlier, ‘‘effective’’ timeteff . This
comparison illustrates the slowing down of the particle in
harmonic potential, where the restoring force is centered
wards the origin. It characterizes in a precise way the
proach to stationarity, which is graphed in Fig. 6. Furth
more, this approach is seen to take longer the smallerm is;
the quickest relaxation occurs in the Brownian casem52.

We conclude this section by some remarks about the
ertial term encountered for the Hookean force. There are
time scales~decay times! involved in this case:

ts
21[

g

2S 12A12
4l

mg2D , ~41!
,

-

e

n,
e

n-
e

-

e
o-
-

-

-
o

t f
21[

g

2S 11A12
4l

mg2D . ~42!

Considering only the case of large overdamping, i.e.,g2

@4l/m, the two time scales separate into a fast and a s
decaying mode,t f→g21 and ts→gm/l, with t f!ts . It
can be easily shown that neglecting the fast mode for tim
long compared tot f corresponds to neglecting the inerti
term in the original Langevin equation. Thus we have
effective separation into three different regimes, and bein
the second witht f!t,ts , the approach to the stationar
state is not influenced by the omission of the inertial term

V. SOLUTION OF THE LANGEVIN EQUATION

All of the above results could have been reached equ
well directly from the Langevin equation, Eq.~2!. To illus-
trate this, we solve this equation for a Le´vy flight in a con-
stant force field in addition to a linear force,F(x)52lx
1F0 corresponding, for instance, to a harmonic poten
and a superimposed gravity field. However, it could a
correspond to many harmonic oscillators placed at differ
positions, i.e.,

F~x!5(
i 51

N

2l i~x2xi !52S (
i 51

N

l i D x1(
i 51

N

l ixi

[2lx1F0 . ~43!

The solution of Eq.~2! is given by

x~ t !5e2lt/[gm]E
0

t

dt8elt8/[gm] S h~ t8!1
F0

gmD . ~44!

The distribution can then be found using the identity

FIG. 6. The linear time affecting the free walker~dashed line!,
compared to the effective time sensed by the random walker in
harmonic potential, as a function of the laboratory time. For
Lévy flight in the potential, the restoring Hookean force slow
down the spreading of the diffusion, and eventually brings it to
halt.
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p~x,t !5^d„x2x~ t !…&

5E dk

~2p!
^exp$ ik@x2x~ t !#%&

5E dk

~2p!
eikxp~k,t !. ~45!

Using the solution Eq.~44! to obtain, for the characteristi
function p(k,t),

p~k,t !5K expS 2 ie2lt/[gm]kE
0

t

dt8elt8/[gm]

3Fh~ t8!1
F0

gmG D L , ~46a!

we have after discretizing the integral

p~k,t !.e2 ikF0 /l~12e2lt/[gm] !

3K )
t850

t

exp@2 ie2l~ t2t8!/[gm]Dkh~ t8!#L ~46b!

or

p~k,t !.e2 ikF0 /l~12e2lt/[gm] !

3 )
t850

t

^exp@2 ie2l~ t2t8!/[gm]Dkh~ t8!#&. ~46c!

Using the definition of Le´vy noise from Eq.~3!, we obtain

p~k,t !.e2 ikF0 /l~12e2lt/[gm] !

3 )
t850

t

exp~2De2ml~ t2t8!/[gm]Dmukum!.

~46d!

Reintroducing the integrals and using the same renorma
tion DDm21→D as in passing from Eq.~2! to Eq. ~4!, we
finally have

p~k,t !5e2 ikF0 /l~12e2lt/[gm] !

3expS 2Dgm@12e2mlt/[gm] #
ukum

ml D . ~47!

For l50, we recover the constant force result, Eq.~17!. For
F050 we get Eq.~24!. The free Le´vy flight resultW0(x,t)
according to Eq.~8! is likewise reproduced whenl5F0
50. In fact, by comparing to Eq.~8! we have the correspon
dence

Wl,F0
~x,t !5W0S x2

F0

l
@12e2lt/[gm] #,

3
gm

ml
@12e2lt/[gm] # D . ~48!
a-

In the presence of the harmonic potential we can no lon
simply make a Galilean transformation in order to elimina
the constant force, since the presence of the linear fo
singles out a special reference frame.

VI. SOME REMARKS ON THE NUMERICAL
SIMULATIONS

Using a computer code written inC, we have simulated
Lévy flights in two dimensions in order to compare with th
theoretical predictions. The amplitude of the noise has b
defined by the asymptotics of the Le´vy distribution to

p~h!5mh0
mh212m. ~49!

We have basically investigated three properties:~1! histo-
grams of the distribution of position for the free walker,~2!
histograms of the walker in a harmonic potential, and~3! the
dynamic exponent as defined via the imaginary box in E
~11!.

The imaginary box according to Eq.~11! grows in time
like the characteristic width of the stable distributio
^x2(t)&L;t2/m, which isnot the variance. It gives a measur
that a finite portion of the probability is gathered within
given interval, which we call the imaginary box. The valu
of L1 andL2 have been chosen so as to~1! ensure that we are
in the asymptotic regime, whereW(x,t);tuxu212m, and~2!
to produce good statistics for all values ofm. When fitting
the results to a straight line on a log-log plot, we have
lected a subset of equidistant points from the entire se
data, in order not to favor the hight region over the lowt
region.

Concerning the histogram, several precautions have to
taken when working with power-law statistics. First of a
due to the occurrence of arbitrarily long steps, we have
define the interval of sampling beforehand, since this is
only way to improve the statistics when increasing the nu
ber of samples. We have chosen a minimum limit for t
evaluated data points to ensure the asymptotic range.
maximum limit has been chosen as the maximum of the fi
say, 100~out of a total of 10 000! simulations. In this way we
obtain many data points throughout the entire region, wh
the asymptotic power-law expression is valid.

We close with a remark on the axes of the plots of t
histograms. To obtain equidistant points on the log-log plo
we chose to graph the histograms of the distributionsp(y) of
y, where y5 ln x. If now p(x);uxu212m, we havep(y)
;e2my. Plotting the logarithm ofp(y) as a function ofy, we
find a straight line with slope2m, which is not to be con-
fused with the slope212m for the log-log plot ofp(x).

VII. CONCLUSIONS

We have investigated Le´vy flights under the influence o
external force fields. Especially for the cases of free flights
constant and a linear force, explicit solutions are derived
the consequences shown. The solutions can be reduced
transformation of variables in the free flight result. We ha
employed the approaches of FFPEs and a Langevin equa
with a power-law noise term. We have shown that the cl
sical fluctuation-dissipation theorem is violated in the case
constant force, and exhibited the non-Gibbsian nature of
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‘‘equilibrium’’ distribution in the harmonic potential. The
approach to stationarity has been characterized by an e
tive time, and the connection to Tsallis’sq statistics has been
explored in some detail. For the constant force, due to
divergence of the mean square displacement, the genera
Einstein relation breaks down, so that the FFPE Eq.~4! also
violates linear response. Numerical simulations have b
found to agree well with the theoretical analysis.

The direct solution of the Langevin equation, Eq.~2!, was
given, in agreement with the solutions for the FFPE a
proach. The Langevin approach containsa priori more infor-
mation than the corresponding FFPE, and might be m
suitable for a physical interpretation of the underlying s
tem. For a given problem, however, it will be more conv
nient to employ the FFPE approach and use the method
characteristics or the separation of variables. Especially,
extraction of momentŝ xn& is straightforward using the
FFPE, by noting that (d/dt)^xn&5*dxẆ(x,t)xn.

Lévy flights are typical for systems off thermal equilib
rium, where thermal equilibrium is to be understood in t
classical Boltzmann-Gibbs sense. For the systems anal
in Refs. @13–16#, or similar situations, the remoteness fro
thermal equilibrium is evident. For the bulk mediated surfa
diffusion process in Refs.@11,12#, one should keep in mind
that the Lévy process emanates only as aneffectivemotion,
resulting from a Brownian walker which is eventually a
sorbed on the surface, before it gets activated again.

The connections to Tsallis’sq entropy still remain un-
clear. The discrepancy of the relations ofq to the Lévy index
m in the free and harmonic cases shows that the conceptq
entropy cannot provide a full explanation of Le´vy flights.
Especially, the stationary solution found for the harmo
potential is not an equilibrium solution in the sense of Ts
lis’s q entropy. To our understanding, only a nonlinear ge
eralized FPE can lead to results compatible with this theo

We believe that our analysis provides further understa
ing of anomalous diffusion processes, and will give rise
further experimental investigations of for example, Le´vy
type reaction dynamics subject to an electric field, or
tracer diffusion in rock structures under gravitation, or sim
lar problems.
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APPENDIX: CORRELATION FUNCTIONS

Here we examine two-point correlations like^x(t)x(t8)&
in the harmonic case, according to the tools developed
Sec. V. They are often sufficient for the description of t
system in applications of the underlying~F!FPE. Assuming
the initial conditionx(0)50, we introduce the Green func
tion

x~ t !5E dt8G~ t,t8!h~ t8!, ~A1!

and by comparison with Eq.~44! it is seen that

G~ t,t8!5e2l~ t2t8!/gmQ~ t2t8!Q~ t8!. ~A2!

Due to the divergence of the moments of the Le´vy distribu-
tion in general, we have to work with characteristic functio
discussing correlations:

^e2 i *dsA~s!x~s!&5 K expS 2 i E dsE ds8A~s!G~s,s8!h~s8! D L
.)

s8

Ke2 iDh~s8!E dsA~s!G~s,s8!L
5)

s8
e2DuD*dsA~s!G~s,s8!um, ~A3!

where A(t) denotes ana priori arbitrary function, and we
used the definition Eq.~3!. With the usual renormalization o
the noiseDDm21→D @21# we have
^e2 i *dsA~s!x~s!&5expS 2DE ds8U E dsA~s!G~s,s8!Um D5expS 2DE ds8U E dsE ds9G~s,s8!G~s9,s8!A~s!A~s9!Um/2D
5expS 2DE

0

`

emls8/[gm]ds8U E
s8

`

dsE
s8

`

ds9e2l~s1s9!/[gm]A~s!A~s9!Um/2D . ~A4!

In the last step we used the identity

G~s,s8!G~s9,s8!5e2l~s1s922s8!/[gm]Q~s2s8!Q~s92s8!Q~s8!. ~A5!

SettingA(s)5Ad(t2s), we find
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^e2 iAx~ t !&5expS 2DE
0

`

ds8emls8/[gm]U E
s8

dsE
s8

ds9e2l~s1s9!/[gm]A2d~s2t !d~s92t !Um/2D
5expS 2DE

0

`

ds8emls8/[gm]Ue22lt/[gm]A2u~ t2s8!Um/2D 5expS 2DE
0

t

dse2ml~ t2s!/[gm]AmD
5expS 2DAmFgm~12e2mlt/[gm] !

ml G D , ~A6!
e
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which is equivalent to Eq.~24!, as it should be, and therefor
includes also the results for the Brownian case. One-p
correlation functions~moments of the distribution!, if they
exist, can thus be obtained from Eq.~A6!, so we will proceed
to the more interesting case of the two-point correlations.
this end, we takeA(t)5A„d(t2t1)2d(t2t2)… and insert it
into Eq. ~A4!, and we find

^exp$2 iA@x~ t1!2x~ t2!#%&

5expS 2DAmFgm~12e2mlt2 /[gm] !

ml

3~12e2ml~ t12t2!/[gm] !m1
gm~12e2ml~ t12t2!gm!

ml G D
~A7!

for t1.t2 , andt1 andt2 interchanged in the other case wh
t2.t1 . This is essentially the characteristic function of t
stochastic variablex(t1)2x(t2), so all two-point correlation
functions and the distribution itself can in principle be fou
from Eq. ~A7!. However, it is seen that it is a Le´vy distribu-
tion, so all higher moments diverge. Nevertheless, Eq.~A7!
still gives some information about the correlation betwe
the position of the walker at two different times. Whent1
@t2 the characteristic function splits up into the product
the characteristic function of the two variables Eq.~A6!,
which means thatx(t1) and x(t2) are independent in this
limit. At intermediate times, i.e., when botht1 and t2 are
small, the correlation depends on both. This is a memory
the initial conditions, since both walkers start out at the o
ev

S.
nt

o

n

f

f
-

gin. At long times, initial conditions are not important, an
hence only a dependence on the time differencet12t2 ~kept
fixed and finite! is retained,

^e2 iA[x~ t1!2x~ t2!]&'expS 2DAmgm

ml
@~12e2mlut12t2u/[gm] !m

112e2mlut12t2u/[gm] # D . ~A8!

Writing x12[x(t1)2x(t2), we have by the usual argumen
a Lévy distribution ofx12:

^e2 ikx12&5e2D̃m~ t1 ,t2!ukum, ~A9!

with

D̃m~ t1 ,t2![D
gm

ml
@12e2mlt2 /[gm]~12e2ml~ t12t2!/[gm] !m

112e2ml~ t12t2!/[gm] #. ~A10!

As with the other Le´vy distributions, this stochastic variabl
is characterized by a power-law tail (t1[t, t2[0):

p~x12,t !;D
gm

ml
@~12e2mlt/[gm] !m112emlt/[gm] #

3ux12u212m. ~A11!

In the case ofm52 all the preceding results reproduce t
well-known Brownian relations for ordinary diffusion. On
could proceed like this finding three-point correlations in
analogous manner.
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