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Abstract. The Cattaneo equation, which describes a diffusion process with a finite velocity of
propagation, is generalized to describe anomalous transport. Three possible generalizations are
proposed, each one supported by a different scheme: continuous time random walks, non-local
transport theory, and delayed flux-force relation. The properties of these generalizations are
studied in both the long-time and the short-time regimes. In the long-time limit, we recover the
mean-square displacement which is characteristic for these anomalous processes. As expected,
the short-time behaviour is modified in comparison to generalized diffusion equations.

1. Introduction

Normally, Fick’s second law is used to describe standard diffusive processes. This law can
be derived by the combination of a continuity equation:

∂t%(x, t) = −x(x, t) (1)

and a constitutive equation (Fick’s first law):

 (x, t) = −D%x(x, t). (2)

Here, (x, t) denotes the flux,%(x, t) the distribution function of the diffusing quantity, and
D the diffusion constant. Henceforth,∂t is the time derivative operator and the subscriptx

stands for∂/∂x. Taking the gradient of equation (2) and inserting the result in equation (1),
one arrives at the (phenomenological) diffusion equation, or Fick’s second law [1]:

∂t%(x, t) = D%xx(x, t) (3)

assumingD constant. For an initial delta distribution%(x, 0) = δ(x), one finds a typical
Gaussian solution of equation (3), namely

%(x, t) = 1

(4πDt)1/2
exp

(
− x2

4Dt

)
. (4)

Thus, even for very small times, there exists a finite amount of the diffusing substance at
large distances from the origin. It is, therefore, an intrinsic property of equation (3) that it
issues an infinite velocity of propagation. This is, mathematically speaking, due to the fact
that equation (3) is a parabolic partial differential equation. From a physical point of view,
this property is unphysical.
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To overcome the infinitely fast propagation, Cattaneo in 1948 proposed a modified
approach [2, 3]. He replaced the constitutive equation (2) by

 (x, t)+ τ∂t  (x, t) = −D%x(x, t) (5)

where now the flux relaxes, with some given characteristic time constantτ . Combining (5)
with the equation of continuity (1), one is led to the so-called Cattaneo equation (or modified
diffusion equation)

∂t%(x, t)+ τ∂2
t %(x, t) = D%xx(x, t) (6)

for constantD andτ . This extension to the diffusion equation (3) turns the parabolic into a
hyperbolic equation. Consequently, the propagation velocity is finite, namelyv = (D/τ)1/2
[4]. Note that in the diffusion limit,τ → 0, one recovers Fick’s second law with an infinite
v. Equation (6) is of a damped wave or telegrapher’s equation type.

Applications of the Cattaneo equation in the physical sciences are, due to its hyperbolic
character, widely spread. They comprise both instances of heat and of particle transport,
since Cattaneo’s equation is a generalization both for a heat diffusion equation (Fourier’s
law) and for a particle diffusion equation (Fick’s law). The Cattaneo equation finds
applications in extended irreversible thermodynamics [3], in heat transfer in Bénard
convection [5, 6], in (inflationary) cosmological models [7], in shock waves in rigid heat
conductors [8], or in the theory of diffusion in crystalline solids [9]. On the other hand, it
can be explicitly derived from the Boltzmann equation [10] and is thus applied to generalize
hydrodynamic equations [11, 12]. The characteristic time constantτ of the Cattaneo equation
is discussed in [13].

However, from many experiments and theoretical considerations we know that, in many
situations of physical interest, diffusive transport processes are of anomalous nature [14, 15].
First above all, this anomaly is manifested in a mean-square displacement (MSD) of the
form

〈x2〉 = Ktγ (7)

which deviates from the standard linear behaviour. The exponentγ , often written as
2/dw, is called the anomalous diffusion exponent. In this paper we investigate possible
generalizations of the Cattaneo equation (6) which describe this required anomalous property
in a consistent way. A first version of a fractional Cattaneo-type constitutive equation was
formulated in [16]. We show here that some fractional Cattaneo equations reproduce the
features that can be derived from other extended schemes like the continuous time random
walk (CTRW) picture or a non-local flux concept.

This connection with other schemes is especially interesting because it enables the
identification of concrete examples where a generalized Cattaneo equation might be of
interest. The CTRW scheme, for instance, is a stochastic model to describe diffusive
phenomena, where the random walkers perform jumps of lengthl between waiting periods
of duration τ , l and τ being newly drawn at each step from a probability distribution
ψ (l, τ ). This model has been successfully used to account for anomalous dispersion in
amorphous materials [17] or for turbulent diffusion in plasmas [18], among many other
applications [19]. On the other hand, a non-local theory of transport proves necessary in
materials with microscale inhomogeneities whenever the mean residence time of a tracer in
the material is comparable to the correlation time (i.e. to the time required for the tracer
to sample the microstructures) [20]. Examples of such systems can be found, for instance,
in environmental situations like the initial dispersion of a pollutant in the atmosphere, in
rivers or in ground-water flows [21].
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In section 2 we present a purely phenomenological approach to an anomalous theory. In
section 3, we take a stochastic approach from CTRW theory. Section 4 presents ideas dealing
with non-local transport theory, i.e. memory effects. Section 5 discusses the properties of
the generalized Cattaneo equation(s). Finally, we draw our conclusions in section 6.

We do not hesitate to remark here that we discuss domains of dispersive transport
or subdiffusion characterized by 0< γ < 1, which means transport slower than normal
diffusion, as well as super- or enhanced diffusion with 1< γ < 2. Other cases, in which
superdiffusion occurs, are discussed in connection with an extended CTRW scheme in
[22, 23], and also in [24, 25].

2. Phenomenological theory

Recently, some papers discussed the generalization of the diffusion equation by the
introduction of fractional derivatives, i.e. convolutions of the distribution function with
a power-law memory kernel [26–29], see also section 4. From this theory we know
that the order of the introduced fractional temporal derivative equals the anomalous
diffusion exponent in the MSD. Also in fractional theory, we encounter an infinite speed
of propagation. (In this paper, we do not discuss fractality in the underlying geometry,
however, as we want to introduce the CTRW picture later.) The connection of fractional
diffusion equations to CTRW theory was investigated in [25, 30].

By a fractional derivative or integral we mean, respectively,

∂αt %(x, t) ≡ 0D
α
t %(x, t)

def=


1

0(1− α)
∂

∂t

∫ t

0
dt ′

%(x, t ′)
(t − t ′)α for 0< α < 1

1

0(−α)
∫ t

0
dt ′

%(x, t ′)
(t − t ′)1+α for α < 0

(8)

which is referred to as the Riemann–Liouville fractional derivative [31]. In (8) we also
introduced the short-hand notation∂αt , which we will use in the further procedures.

In this section, we want to show how the phenomenological introduction of fractional
derivatives changes the original Cattaneo equation (6). This section being of a somewhat
speculative character, we will not consider complying with the subtleties of fractional
calculus for the sake of readability, and we will equate∂αt ∂

β
t to ∂

α+β
t even though,

generally, these two operators differ by initial value terms [31]. In the following sections
we will investigate whether thisad hocgeneralization can be interpreted by means of other
approaches and there we shall be more accurate with respect to fractional differintegrals.
The properties of the derived modified equations will be discussed in section 5.

In contrast to the diffusion equation, we encounter two different derivatives in time
for the case of the Cattaneo equation in the basic equations (1) and (5). Thus we find,
in principle, a large variety of possible generalizations. However, we concentrate on three
different equations which will be corroborated in the following. First, we choose to introduce
a fractional derivative (memory) in the constitutive equation (5) and obtain

 (x, t)+ τ γ ∂γt  (x, t) = −D%x(x, t) (9)

which, combined with the unchanged equation of continuity (1), results in the generalized
Cattaneo equation (GCE):

∂t%(x, t)+ τ γ ∂1+γ
t %(x, t) = D%xx(x, t). (10)

Here, τ γ was introduced to keep the dimensions in order. Equation (10) reduces to the
normal Cattaneo equation (6) forγ → 1, as it should be. However, we will discard
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equation (10) in our further discussion, as none of the other approaches leads to this
generalization.

Ad hoc, we could also imagine the generalization of the continuity equation to obtain

∂
γ
t %(x, t) = −x(x, t). (11)

This is not just a formal trick altering the intuitive meaning of the continuity equation, but
stands in direct connection to Hilfer’s discussion of ‘fractional stationarity’ and a fractional
Liouville equation causing a decreasing phase space in statistical systems [33]. Concerning
diffusion theory, this would imply a non-conservation of heat or particle number, i.e. the
transfer of heat or particles to a corresponding reservoir.

Thus, introducing the modified continuity equation (11) into the generalized constitutive
equation (9), we arrive at

∂
γ
t %(x, t)+ τ γ ∂2γ

t %(x, t) = D%xx(x, t) (GCE I). (12)

At this point it is important to note that this same derivation of the generalization GCE I
was obtained from a linearized fractional two-velocity Boltzmann equation [16]. From this
formalism, Nonnenmacher [10] obtained both a generalized constitutive equation of the form
(9) and a corresponding fractional equation of continuity, which matches equation (11). This
corroborates ourad hocgeneralization GCE I, especially as equation (12) also results from
our stochastic flux scheme in the next section.

Note that equation (12) can also be obtained through the combination of the standard
continuity equation (1) and the modified constitutive equation

 (x, t)+ τ γ ∂γt  (x, t) = −D∂1−γ
t %x(x, t). (13)

We will find this last extension again in section 3 where we give a definition of the flux in
terms of CTRW theory. Equation (12) can also be obtained by replacing the time derivatives
of order 1→ γ and 2→ 2γ in the original Cattaneo equation (6), which would be the direct
phenomenological generalization if one starts off from equation (6) instead of equations (1)
and (5).

In (13) it is clear that the constantD now no longer has the usual dimensions of a
standard diffusivity. Allowing then other possible generalizations ofD into our scheme,
we could write

 (x, t)+ τ γ ∂γt  (x, t) = −D∂γ−1
t %x(x, t) (14)

where we now take a fractional integral on the right-hand side rather than a fractional
derivative as in (13). The constitutive equation (14) combined with the continuity
equation (1) yields a new generalization of Cattaneo’s equation

∂
2−γ
t %(x, t)+ τ γ ∂2

t %(x, t) = D%xx(x, t) (GCE II) (15)

which has the virtue of being reversible for short times, similarly to the standard Cattaneo
equation.

On the other hand, combining equation (11) with the standard constitutive equation (5),
results in the GCE:

∂t%(x, t)+ τ∂2
t %(x, t) = D∂1−γ

t %xx(x, t) (GCE III) (16)

which is equivalent to the equation

∂
γ
t %(x, t)+ τ∂1+γ

t %(x, t) = D%xx(x, t). (17)
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This same generalization can also be obtained from the continuity equation (1) by using
the constitutive equation

 + τ∂t  = −D∂1−γ
t %x(x, t). (18)

Interesting from this last generalization is the fact that it can be interpreted as a delayed
equation relating the flux to a generalized force (as we shall see, the same force that appears
in the CTRW scheme) as

 (x, t + τ) = −D∂1−γ
t %x(x, t).

In section 3 we now give a stochastic foundation for the generalized equations GCE I
and GCE III and in section 4 we interpret equation GCE II within a non-local transport
theory.

3. Stochastic approach: Ĺevy asymptotics in the waiting time distribution

In this section we will derive constitutive equations out of the CTRW scheme by defining
the flux in terms of the probability density%(x, t) of being at pointx at time t , and the
distribution of step lengths and waiting times between stepsψ(x, t). As in the previous
sections we will restrict our approach for simplicity to the unidimensional case.

We propose here two different situations. One possibility is to define the flux as the
balance between random walkerslanding on x at time t coming from the left and random
walkerslanding on x at time t coming from the right. We then have

 (x, t) = `
∫ t

0
dt ′

∫ x

−∞
dx ′ P(x ′, t − t ′)ψ(x − x ′, t ′)

−`
∫ t

0
dt ′

∫ ∞
x

dx ′ P(x ′, t − t ′)ψ(x − x ′, t ′) (19)

%(x, t) =
∫ t

0
dt ′ P(x, t − t ′)9(t ′) (20)

whereP(x, t) is the probability density of arriving atx exactly at timet , 9(t) is the
probability of waiting at least a timet at a site, and̀ is a microscopic length scale
necessary to obtain the correct dimensions for the flux. Equations (19) and (20) can now
be Fourier–Laplace transformed and the following relationship between (k, u) and%(k, u)
is obtained (in the following we will indicate that an expression has been Fourier—or
Laplace—transformed only by explicitly showing its dependence onk—or onu)

 (k, u) = −2i`
u

1− ϕ(u)%(k, u)
∫ ∞

0
dx ψ(x, u) sin(kx) (21)

ϕ(u) being the Laplace transform of the distribution of waiting timesϕ(t) =∫∞
−∞ ψ(x, t)dx = ψ(k = 0, t). To proceed we now need to introduce a particular form

for our ψ(x, t) and thus obtain the constitutive equation relating (k, u) and %(k, u) by
inverting the Fourier–Laplace transform in (21).

If we choose the distribution of step lengths to be a Gaussian

ψ(x, t) = 1√
4σ 2π

exp

(
− x2

4σ 2

)
ϕ(t) (22)

we then have from (21)

 (k, u) = −i
2`√
π
kσ

uϕ(u)

1− ϕ(u) 1F1(1; 3
2;−k2σ 2)%(k, u) (23)
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1F1(x; y; z) being a confluent hypergeometric function [32]. For distances much larger than
the mean-square step length 2σ 2 (kσ � 1) and setting̀ = σ√π/2 to avoid unnecessary
constants, we can approximate (23) as

 (k, u) = −iσ 2 uϕ(u)

1− ϕ(u)k
(

1− 2

3
k2σ 2+ · · ·

)
%(k, u). (24)

We now consider two different waiting time distributionsϕ(t): one corresponding to a
Brownian random walker and the other defining a fractal time random walker.

Brownian walker. For this case we choose a delta distribution of waiting times in the
form ϕ(t) = δ(t − τ), whereτ stands for the microscopic but finite waiting time between
successive steps. We, therefore, haveϕ(u) = exp(−uτ) in the Laplace domain and we
insert this into (24) to get

euτ − 1

uτ
 (k, u) = D

(
−ik + 2

3
ik3σ 2+ · · ·

)
%(k, u) (25)

where we define the diffusion constant as is customaryD = σ 2/τ . Reverting now to the
x–t picture, (25) yields the usual constitutive relation for Brownian diffusion (Cattaneo’s
constitutive equation) for distances much larger thanσ (limit kσ → 0) and to first order in
the microscopic timeτ :

 (x, t)+ τ
2
∂t (x, t) = −D%x(x, t). (26)

Fractal time random walker.We now try a distribution of waiting times with a divergent
first moment, thereby describing a fractal time random walk. Our choice might, for instance,
beϕ(u) = exp[−(uτ)γ ], with 0 < γ < 1. In this case we get from (24)

eu
γ τγ − 1

uγ τ γ
 (k, u) = Du1−γ

(
−ik + 2

3
ik3σ 2+ · · ·

)
%(k, u) (27)

defining now the diffusion constant asD = σ 2/τγ as seems to be natural for these random
walks [22, 23]. Neglecting the terms inkσ , taking just the lower order inτ and inverting the
Fourier and Laplace transforms in (27), we now obtain the constitutive relation for fractal
time random walks with our definition for the flux,

 (x, t)+ τ
γ

2
∂
γ
t  (x, t) = −D∂1−γ

t %x(x, t) (28)

where the operator∂αt stands for the Riemann–Liouville differintegration operator as defined
in (8). Equation (28) is to be compared with the phenomenological generalization (13).

It is also to be noted here that, in the limitτ → 0, equation (28) reduces to a linear
relation between the flux and a generalized thermodynamical force∂1−γ

t %x . As we
observed in section 2, a delayed equation relating linearly the flux and this same generalized
thermodynamical force results in the proposed generalization GCE III.

Combining equation (28) with the continuity equation (1), one is led to the following
generalization of the Cattaneo equation

∂t%(x, t)+ τ
γ

2
∂

1+γ
t %(x, t) = D∂1−γ

t %xx(x, t)

which coincides with the generalization GCE I except for a rescaling of the timeτ and
some initial value terms. As we observed in section 2, the generalization GCE I can also
be obtained from a fractional continuity equation (11) and a different fractional constitutive
equation (9). As should be expected, the path connecting a stochastic model such as
the CTRW scheme to generalization GCE I involves the standard continuity equation (1),
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since such a microscopic picture assumes conservation of the particles. However, in a
phenomenologically generalized model such as the fractional Boltzmann equation in [16],
this restriction is no longer applicable and a counter-intuitive (though possibly well founded,
as argued in [33]) generalization of the continuity equation might ensue, as it indeed does
in the form (11).

We now propose an alternative second definition for the flux: let it be equal to the
difference of the particlesgoing throughpoint x at time t coming from the left and those
going throughpoint x at time t coming from the right:

 (x, t) =
∫ t

0
dt ′

∫ ∞
x

dx ′
∫ x

−∞
dx ′′ P(x ′′, t − t ′)ψ(x ′ − x ′′, t ′)−

∫ t

0
dt ′

∫ x

−∞
dx ′

×
∫ ∞
x

dx ′′ P(x ′′, t − t ′)ψ(x ′ − x ′′, t ′). (29)

We again combine this definition with (20) and transform to the Fourier–Laplace domain
to obtain

 (k, u) = i
u

k

ψ(k, u)− ϕ(u)
1− ϕ(u) %(k, u). (30)

Proceeding now similarly to the previous case, we introduce a Gaussian step-length
distribution as (22) and then approximate for very long distances (kσ � 1) to obtain

 (k, u) = −iσ 2 uϕ(u)

1− ϕ(u)k
(

1− 1

2
k2σ 2+ · · ·

)
%(k, u). (31)

We observe that (31) is exactly the same as (24) to lowest order inkσ , the limit we are
interested in, whence we conclude that the constitutive equations are also the same as in
the previous case, namely equation (26) for standard Brownian diffusion and equation (28)
for fractal time random walks. Our definitions of the flux thus lead us to GCE I for a Lévy
model, whereas the usual Cattaneo equation results for the Brownian case.

4. Non-local transport theory: memory effects

We see here that the generalization GCE II that we proposed phenomenologically in section 2
can be obtained and interpreted within a non-local transport theory with memory effects
[20, 21, 34]. Following this theory, in media with memory the flux is related to the
previous history of the density% through a relaxation functionK(t) as

 (x, t) = −
∫ t

0
K(t − t ′)%x(x, t ′) dt ′. (32)

We will first see that, with a suitable choice forK(t), the standard Cattaneo equation is
obtained. Indeed, let us compute the left-hand side of the Cattaneo equation (5) for our
generalization (32):

 (x, t)+ τ∂t  (x, t) = −(τ∂t + 1)
∫ t

0
K(t − t ′)%x(x, t ′) dt ′.

By using the Leibniz’s formula for the differentiation of an integral we obtain

 (x, t)+ τ∂t  (x, t) = −τK(0)%(x, t)−
∫ t

0
[τ∂tK(t − t ′)+K(t − t ′)]%x(x, t ′) dt ′.

Hence by comparing with the Cattaneo equation (5) it appears clear that we must have
τK(0) = D and τ∂tK(t) + K(t) = 0. Solving this differential equation, we obtain the
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relaxation function that makes the non-local theory of transport compatible with the Cattaneo
equation

K(t) = D

τ
exp

(
− t
τ

)
.

Our objective now is to embed by a similar computation a generalized Cattaneo equation
within a theory of transport with memory kernels. To this aim we will take the left-hand
side of the generalized constitutive equations we proposed in section 2, equations (9) and
(13), and introduce our flux (32). Thus, we first consider the following fractional derivative

τ γ ∂
γ
t  (x, t) = −

τ γ

0(1− γ )∂t
∫ t

0
dt ′ (t − t ′)−γ

∫ t ′

0
dt ′′K(t ′ − t ′′)%x(x, t ′′)

where we take as before 0< γ < 1. The right-hand side may now be manipulated by
inverting the order of the integrals and changing variables witht ′ = t ′′ + z to obtain

τ γ ∂
γ
t  (x, t) = −

τ γ

0(1− γ )∂t
∫ t

0
dt ′′ %x(x, t ′′)

∫ t−t ′′

0
dz (t − t ′′ − z)−γK(z).

We integrate the innermost integral once by parts

τ γ ∂
γ
t  (x, t) = −

τ γK(0)

0(1− γ )
∫ t

0
dt ′ (t − t ′)−γ %x(x, t ′)− τ γ

0(2− γ )∂t
∫ t

0
dy %x(x, t − y)

×
∫ y

0
dz (y − z)1−γ ∂zK(z) (33)

where, on the right-hand side, we have already taken the temporal derivative on the integral
of the first summand (Leibniz’s formula) and we have changed the variablet ′′ to t − y in
the integrals of the second summand. We can now recognize in the first summand of the
right-hand side of equation (33) a fractional integral of order 1−γ (8), symbolized by∂γ−1

t .
To proceed, it is now convenient to apply Leibniz’s formula to differentiate the integral in
the second summand. Then we integrate the resulting expression once by parts, in order to
obtain the following generalized constitutive Cattaneo equation, where we use the definition
of fractional differintegrals where applicable:

 (x, t)+ τ γ ∂γt  (x, t) = −τ γK(0)∂γ−1
t %x(x, t)−

∫ t

0
[τ γ ∂γ−1

y ∂yK(y)+K(y)]y=t−t ′
×%x(x, t ′) dt ′.

We now choose the relaxation functionK(t) to fulfil τ γK(0) = D and

τ γ ∂
γ−1
t ∂tK(t)+K(t) = 0. (34)

We therefore end up with the following generalized constitutive Cattaneo equation:

 (x, t)+ τ γ ∂γt  (x, t) = −D∂γ−1
t %x(x, t). (35)

We can now compute the relaxation functionK(t) by solving equation (34) in the Laplace
domain:

K(u) = D

τγ

u−1

1+ τ−γ u−γ . (36)

The expression in (36) can be inverted in terms of a generalized Mittag–Leffler function
(see [23]) to yield

K(t) = D

τγ
Eγ,1

[
−
(
t

τ

)γ ]
. (37)
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We have, therefore, seen that generalization (35) is associated with a flux relaxation
function of the form (37), which for long times has a power-law behaviourK(t) ∼ t−γ

with 0 < γ < 1. In media where relaxation follows such a power law for long times,
diffusion can be quite accurately described by a generalized Cattaneo equation of the form

∂t%(x, t)+ τ γ ∂γ−1
t ∂2

t %(x, t) = D∂γ−1
t %xx(x, t)

which is equivalent to generalization GCE II, except possibly for some initial value terms.

5. Properties of the GCEs

In the preceding sections, we introduced different generalized Cattaneo equations and argued
that there are three different, physically reasonable possibilities, i.e. GCE I, GCE II and
GCE III. Here we want to discuss their properties by means of the MSD and the velocity
of propagation. We could not find exact solutions of these equations, however. This is
no surprise, as the solution of even the standard Cattaneo equation becomes quite intricate
[35]. Nevertheless, in this section we will extract as much information as possible.

Using the standard Fourier–Laplace transform technique, we can recover GCE I from
equation (12),

%I(k, u) = τ γ u−1+ u−(γ+1)

τ γ + u−γ +Du−2γ k2
(38)

where we have used the subscript I to denote the solution of GCE I and we take an initial
delta distribution at the origin. The same can be done for our second example (15), GCE II,
to obtain

%II (k, u) = τ γ u−1+ u−(γ+1)

τ γ + u−γ +Du−2k2
. (39)

Analogously, for GCE III, equation (16), one finds

%III (k, u) = τu−1+ u−2

τ + u−1+Du−γ−1k2
. (40)

In (x, t)-space, equations (38)–(40) lead to a modified Gaussian behaviour (stretched
Gaussian), a situation which is well known from relaxation theory under the keyword
Kohlrausch–Williams–Watts relaxation, see, for example, [36] where the occurrence of
compressed exponentials is also discussed.

Due to the occurrence ofk2 in the denominator of (38)–(40), all the even spatial
moments of%I/II/III (x, t) exist, whereas all uneven moments vanish. We recover for the
MSD 〈x2(t)〉 = −%kk(k, t)|k=0, and hence from (38)

〈x2〉I/III ∼ 2Dtγ

0(1+ γ ) t � τ (41)

which is exactly equivalent to the long-time behaviour for〈x2〉III . Thus, both definitions for
%I and%III are asymptotically equivalent fort � τ and correspond to anomalous diffusion
(subdiffusion), as one would expect. For GCE II, however, we obtain a different result,
namely

〈x2〉II ∼ 2Dt2−γ

0(3− γ ) t � τ (42)
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which corresponds to superdiffusion since 0< γ < 1. In the short-time limit, we find the
most diverse behaviour:

〈x2〉I ∼ 2Dt2γ

τ0(1+ 2γ )
t � τ (43)

〈x2〉II ∼ D

τγ
t2 t � τ (44)

and

〈x2〉III ∼ 2Dt1+γ

τ0(2+ γ ) t � τ (45)

respectively. Note that only in the short-time limit doesτ occur. Thus, as in standard theory,
only the short-time behaviour is affected by Cattaneo’s modified theory, whereas the long-
time behaviour is purely diffusive in nature. Indeed, forτ → 0, we find from equations
(38)–(40) that we recover the diffusion-dominated regime (41) and (42), respectively, for
all t . It is worth noting here that the short-time behaviour for GCE II (44) has the intuitive
property of being ballistic in nature, just as for the standard Cattaneo equation. This can be
interpreted as the most sensible behaviour for times much shorter than the mean collision
time, since we then have a cloud of particles advancing ballistically independently of each
other before the diffusion mechanism sets in. In contrast, this interpretation is inapplicable
to results (43) and (45), which only recover this behaviour forγ → 1.

We see that the fractional Cattaneo equations (12) and (16) both lead to slower transport,
whereas for GCE II we obtain superdiffusion. To gain further insight into the meaning of this
observation, we calculate the propagation velocity. As defined in [3], we find, after assuming

a plane-wave solution and some tedious calculations, the phase velocityvPh
def= ω/Rek:

vPh,I = (2D)1/2ω1−γ /2

((1+ 2τ γ ωγ cos(πγ /2)+ τ 2γ ω2γ )1/2− τ γ ωγ cosπγ − cos(πγ /2))1/2
(46)

vPh,II = (2D)1/2ωγ/2

((1− 2τ γ ωγ cos(πγ /2)+ τ 2γ ω2γ )1/2+ τ γ ωγ − cos(πγ /2))1/2
(47)

and

vPh,III = (2D)1/2ω1−γ /2

sin(π(γ+1)/4)((1+τ 2ω2)1/2+τω)1/2−cos(π(γ+1)/4)((1+τ 2ω2)1/2−τω)1/2
(48)

for each case. Let us consider the limiting cases. In the small-ω limit corresponding to the
long-time limit, we find, again, that versions (46) and (48) lead to the same result,

vPh,I/III ∼ (2D)1/2ω1−γ /2

(1− cos(πγ /2))1/2
τω � 1 (49)

whereas GCE II, (47), differs

vPh,II ∼ (2D)1/2ωγ/2

(1− cos(πγ /2))1/2
τω � 1. (50)

All of them, however, reduce forγ → 1 to the standard resultvPh ∼ (2Dω)1/2. Also,
we find that this result is not dependent onτ , as one would expect. The expressions
(49) and (50) vanish in the limitω → 0, which indicates that the velocity of dispersion
asymptotically vanishes, as one would expect for long-time sub-ballistic behaviour as in
(41) and (42). The trace of subdiffusion and superdiffusion can also be seen here, since the
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phase velocity vanishes more rapidly in (49) than for standard diffusionvPh∼ ω1/2, whence
subdiffusion, and conversely in the case GCE II (50), whence superdiffusion.

It is, like before, in the large-ω limit that we encounter the most diverse behaviour,
namely

vPh,I ∼ (2D)1/2ω1−γ

(τ γ (1− cosπγ ))1/2
τω � 1 (51)

vPh,II ∼
√
D

τγ
τω � 1 (52)

and

vPh,III ∼ (Dω1−γ )1/2

τ 1/2 sin((π/4)(γ + 1))
τω � 1. (53)

They all reduce to the samevPh ∼ (D/τ)1/2 for γ → 1, i.e. to a finite and constant
velocity. However, in (51) and (53) the velocity increases unboundedly with increasingω

when 0< γ < 1. Forω→∞, both results lead to an infinite propagation velocity, as also
becomes clear from (43) and (45) by differentiating(〈x2〉)1/2. For GCE II, however, the
situation is completely different since (52) is a finite constant, which is interpreted as the
finite initial velocity of propagation of the perturbation.

Similar expressions, as cumbersome as (46)–(48), can be calculated for the attenuation
coefficientα = −1/Imk. The most interesting result is that for short times (τω � 1)
the attenuation coefficient associated with GCE II,αII (ω), is not a constant but vanishes
as ω−(1−γ ) when ω → ∞. This is in contrast to the short-time behaviour ofα for the
standard Cattaneo equation, where it goes asymptotically to a constant 2(Dτ)1/2. This is
the only point where the generalized Cattaneo equation GCE II differs qualitatively from the
standard Cattaneo equation at short times and, interestingly enough, it mimics the behaviour
of Fick’s equationα = (2D/ω)1/2.

6. Conclusions

Starting off from the interest in extending the Cattaneo equation to anomalous transport
processes, we proposed three different, possible and physically meaningful generalized
Cattaneo equations (GCEs) and deduced them from well established alternative schemes,
all of which are related to anomalous properties in complex materials. Anomalous diffusion
being a very widely open concept with many different kinds of implementations, it must
not come as a surprise that so many different generalizations of one single equation appear.
The same phenomenon occurred for the generalizations of Fick’s equation [26–30].

The proposed equations describe an anomalous MSD, both in the long-time and in the
short-time limits. In the short-time limit we encounter the peculiarity of GCE II which
describes pure ballistic transport with a well defined finite velocity, whereas the other
generalizations, GCE I and GCE III, show an infinite signal propagation velocity, much as
in standard Fickian diffusion. In the long-time limit diffusion is anomalous, in the form
derived previously for analogous generalizations of Fick’s equation [26–29]. At this point
it is only to be noted that generalizations GCE I and GCE III show subdiffusion, while
GCE II displays a superdiffusive behaviour.

As we have seen, GCE I is obtained from the generalized flux scheme proposed in
section 3 and therefore seems to be quite an accurate diffusion equation for fractal time
random walks, at least to the lowest order inτ . Further support for GCE I comes from
a previous phenomenological generalization of the Boltzmann equation [16], which also
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requires the concept of ‘fractional stationarity’ [33] to interpret the fractional continuity
equation that ensues. On the other hand, generalization GCE II has a beautiful derivation
in the frame of non-local transport theory with memory effects, where we have proved that
it is associated with diffusion with long-tail correlations or, more specifically, where the
flux relates to the gradient of the concentration by means of a memory kernel vanishing
as a power law. Furthermore, this GCE has the interesting properties of yielding a finite
perturbation propagation and of being time reversible for sufficiently small times, both
properties shared by the standard Cattaneo equation. As for generalization GCE III, the
main support comes again from CTRW theory since this theory yields a generalization
of the linear flux-force thermodynamical relation which is then combined with a delayed
equation to yield GCE III. This generalization has proven quite similar to GCE I, differing
mainly in the short-time regime. One further difference between these two generalizations
comes from the fact that in each case a differentτ appears with very different interpretations:
for GCE I τ is a temporal constant associated with the waiting time distribution of fractal
time random walks, whereas for GCE IIIτ is the delay time introduced in our constitutive
equation and need not be related to the internal mechanism of the random walks.
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