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Abstract. Recently fractional calculus (FC) has encountered muach success in the description
of complex dynamics. In particular EC has proved to be a valuable tool to handle viscoelastic
aspects. In this paper we construct fractional rheological constitutive cquations on the basis
of well known mechanical models, especially the Maxwell, the Kelvin-Voigt, the Zener and
the Poynting-Thomson model. To this end we introduce a fractional element, in addition to
the standard purely elastic and purely viscous elements. As we proceed to show, many of the
fractional differential equations which we ¢btain by this construction method admit closed form,
analytical soluticns in terms of Fox A -functions of the Mittag—Leffler type,

1. Introduction

Relaxation processes deviating from the classical exponential (Debye)} behaviour are often
encountered in the dynamics of complex materials. In many cases experimentally observed
relaxation functions exhibit a stretched exponential {(Kohlrausch-Williams—Watts) decay
(1,2] ]

P(1) o exp(— (/1)) )
with 0 < o < 1, or a scaling decay
O)  (t/1)F ' )

with 0 < B < 1. Here we consider the algebraic pattern (2) which is observed in the
stress relaxation of viscoelastic materials, such as polymers [3-5] or critical gels [6-8],
in the charge carrier transport in amorphous semiconductors [9, 10], in the behaviour of
electrical currents at rough blocking electrodes [11], in dielectric relaxation [12, 13] and in
the attenuation of seismic waves [14].

Even more complex behaviours are exhibited in crossover situations, typified by changes
from one form of power-law decay to another. Examples can be found in the dynamics
of polymers {15] and of networks [6-8] and in transient photoconductivity [9, 10]. Such
crossover forms may be due to the finite extensions of the underlying systems, i.e. here to
the restricted motion of polymer segments, to the fact that pre- and post-gel networks are
self-similar only in restricted ranges and to the fact that photoconductive carriers move in
a medium of finite thickness.
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An appropriate tool to describe phenomenologically this richness of dynarical features
is fractional calculus (FC) to which a lot of theoreticat work is devoted [38,16-24]. FC
was incorporated into standard constitutive equations in a variety of works, mainly in
the field of viscoelasticity [3-5,16-18]. Current models of viscoelasticity involving FC
are based on the formal replacement in ordinary rheological constitntive equations {(RCE)
of first-order derivatives (d/df) by fractional derivatives (d?/dt?) of non-integer order
(0 < B < 1). However, this formal procedure cannot assure a priori that the resulting
expressions are always physically reasonable; this aspect was pointed out for instance in
references [3, 16, 19, 20].

It is therefore indispensable to have at hand a consistent procedure that automatically
guarantees mechanical and thermodynamical stability. Beginning from commonly used
representations of viscoelastic behaviour through mechanical models, we present here an
approach which guarantees that the FC equations which follow are physically meaningful.
To this end we introduce mechanical models, which in addition to purely elastic and viscous
components also include fractional elements; the dynarnical properties of such elements are
intermediate between purely solid and purely liquid features.

We begin in the next section with a brief discussion of the way in which, as a result
of the superposition principle, EC comes into play in systems governed by scaling decays.
In section 3 we generalize well known prototypes of viscoelasticity (the Maxwell, the
Kelvin-Voigt, the Zener and the Poynting-Thomson model) and we show that they lead to
exactly solvable fractional expressions. For these we present the solutions in terms of Fox
H-functions.

2. Fractional calculus: a mimicry of memory

Non-Debye relaxation implies memory. In the formal context memory can be incorporated
through a causal convolution [25,26];

£, L de(th) _
c(r)—'/:wdz Gt —t) v (3)
The (Boltzmann) superposition integral, equation (3), holds for linear systems which are
homogeneous in time; here o (r) denotes the stress, ¢(t) the strain and G(z) the relaxation
modulus, i.e. the response of the stress to a shear jump. Consider now a system whose
stress decays after a shear jump in an algebraic manner, similar to equation (2). Its stress
relaxation modulus then obeys:

E t\?
50 =75 (3) ?

where £ and t are constants and I"(x) is the complete Gamma function. For convenience we
chose the prefactors in (4) in a way which matches our forthcoming definitions. Combining
equations (3) and (4) one arrives at

8 dE(t’)-
dr’

-The right-hand side of equaticn (3) represents a fractional integral (F1). To see this we
start from Riemann’s expressions of a FI [27, 28]

J)

(t—H-r

Erf ! ' ’
O'(I):m/_.mdt (r—1" (5)

I N A
D F0) = o f ot ©



Generalized viscoelastic models 6569

where y > 0. Equation (6) includes two special FI forms. For ¢ = 0 one recovers
the Riemann—Liouville FI formulated as a Laplace convolution, whereas for ¢ — —o0
equation (6) corresponds to Weyl’s FL. For y a positive integer, equation (6) presents a
multiple (Cauchy) integral of order —y. Now the fractional differentiation of order y > 0
is obtained by first picking an integer n, n > y, then performing a Fi of order y — n,
followed by an ordinary differentiation of order n, i.e.

DLF®) = 2D F6). ' %)

) Worlung within Weyl's FI, ie. ¢ — —co, we use the shorthand notation défdrf =
—oD?.

Using these expressions we can rewrite equation (3) as

g &8t de(n) o zdfer)
e g —Fr de _ ®
We stop to note that Weyl’s formalism follows naturally from the causal convolution,
eqoation (5), in which the strain fields start in the distant past, so that ¢ —-—00. On
the other hand restricting the dynarics to positive times oaly. i.e. setting ¢ = ¢ = 0
for ¢t < 0 leads to the Riemann-Liouville formalism. This corresponds to an initial-value
problem, in which the initial values must be specified [3, 21].

In the following we apply Weyl’s FC and consider arbitrary histories of the system.
Weyl’s FC turns out to be very convenient: the composition rule for differentiations and
integrations obeys the simple form

o(t) =

de g8  goth
AP G @
for arbitrary « and 8 [28]. Furthermore, the Fourler mtegratlon
Fif@iol=f@ = [ afo exp(—iw) (10)
—_00 N .
transforms the operation d*/d:® into a simple multiplication [27, 28]:
d*f: , = :
L2 0] = oy flo). | an

3. Generalization of viscoelastic models

Usually phenomenologic viscoelastic models are based on springs and dashpots [25,26],
see figure 1. The springs obey Hooke's law

o (1) = Ee(z) ) (12)
whereas for dashpots Trouton’s ((_)r Newton’s) law holds:
' de(t)
1) = 13
o) & (13)

In equations (12} and {13) E and 5 denote the spring ‘constant and the viscosity. Through
combinations of springs and dashpots one arrives at standard viscoelastic models, such as
the Maxwell or the Zener model (see Jater); these models involve a fairly small number of
single elements [25,26]. The problem here is that the corresponding ordinary differential
equations have a relatively restricted class of solutions, which is, in general, too limited to
provide an adequate description for the complex systems discussed in the introduction.
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Figure 1. Single elements: {a) elastic, (b) viscous and (¢) fractional element,

To overcome this shortcoming one can relate stress and strain through fractional
equations {3~5, 8, 16-18], see equation (8). In this way one readily obtains scaling decays.
In general, FC allows the interpolation between the purely elastic behaviour of equation (12),
obtained for 8 = 0 in equation (8), and the purely viscous pattern of equation (13), obtained
for § = 1 in equation (8). The interpolating RCE, equation (8) with 0 < 8 < 1, describes
for instance the behaviour of cross-linking polymers at the gel point (gel equation) [6-8].

Schiessel and Blumen [8,20], Schiessel et al [29] and Heymans and Bauwens [30]
have demonstrated that the fractional relation, equation (8), can be realized physically
through hierarchical arrangements of springs and dashpots, such as ladders, trees or fractal
structures. In the limit of an infinite number of constituting elements these arrangements
obey equation (8). As an example, figure 2 presents such an arrangement; we have used it in
[20]. This hierarchical structure consists of springs (with spring constants Eg, £y, Ea,...)
along one of the struts and dashpots (with viscosities ng, 71, %z,...} on the rungs of the
ladder. By adjusting the constants of the structural parts in a suitable way one can achieve
for any preassigned 8 with 0 < § < 1 that the resulting arrangement obeys equation (8)
[20]. Micro- and mesoscopic interpretations of such sequential viscoelastic structures can
be found in 8,31, 32].

Figure 2. Sequential realization of the fractional element.

We now introduce the term fractional element (FE) to denote such a hierarchical structure
and we symbolize it by a triangle (cf figure 1(c)) which schematically resembles a ladder
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such as the one drawn in figure 2. Since we do not care for the specific inner details of such
a hierarchical structure we specify it by the triple (8, E, 7). In the models which follow
FEs are fundamental elements, besides the springs and the dashpots.

In the following we focus on mechanical models with FEs, for which we can provide
solutions to all the relevant response functions [25,26], Le. the complex modulus, the
complex compliance, the relaxation modulus and the creep compliance. In this way we
have closed form, analytic expressions for several observable quantities based on models
which contain a Hmited set of parameters.

3.1. The single fractional element

We start with this simple case which sets the pattern for the analysis of the more complex
models which follow. Fourier transforming equation (8) and using equation (11) results in
the algebraic relation

& (w) = E(iwt)PE(w) (14)
from which the complex modulus

G*(w) = & (w)/&(w) : (15)
can be directly recovered:

G*(w) = Eiwt)?. : (16)

Now the relaxation modulus G (t) may be obtained either from the storage modulus
G'(w) = Re G*{w) or from the loss modulus ¢”(w) = Im G*(w). The relations connecting
the moduli are [25]

o r F
G(t) = 3[ do T@ gnor = 75 {G (“’);r} an
T Jo w . w
and
2 0] G.’f Gﬂ
G(t)=—f dw @) coscur-:]-'gl[ (w);t}. ‘ (18}
T Jo w w
In equations (17) and (18), Fg ! and Fe ! denote the inverse Fourier sine and cosine
transformations; the direct transformations are Fs{f();w} = - f:" def(t)sinewt and
Felft); w} = f0°° dr f(¢)coswt. For a single FE one obtains readily from (17)
E t\7#
- ! E B z-r-é g1, == = .
Git)y=Fg { wheos|{ = | ot TA B \z 19)

Here equation (3.768(1.)) of [33] was used for establishing the second equality on the
right-hand side. This result reproduces equation (4).

On the other hand, the complex compliance obeys J*(w) = 1/G*(w), so that here
/@) = E~'({iwr)~#. Again, the storage and loss compliances are given by J'(@) =
Re J*(w) and by J'(w} = —Im J*{w), respectively. These compliances are related to the
creep compliance J (¢) (i.e. the response of the strain to a stress jump o () = @(z}) through
[25]:

dsn
dt
Hence we obtain for the FE
-1 _ﬁ -
d—fgl - 7! {E‘lr'ﬁ cos (”—2’3) Wb x} = EF(;) 181 @an

Fo T () 1) = —F5 (" w); 1), 20)
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where we used equation (3.768(2.)) from [33]. From equation (21) we obtain J{¢} by
integration (using J(0) = 1/G(0) = 0 [25]):

E-—] I B
0= iTp (3) .

3.2. The generalized Maxwell model

Figure 3(a) shows the standard Maxwell model in which a spring and a dashpot are arranged
in series [25, 26]. We generalize this model by replacing these elements by the FEs (a, £1, 1)
and (B, Bz, 72), see figure 3(b). Because of the sequential construction o () is the same for
both elements. Their respective stress—strain relations are

L) —ed7%0 ()
)= B —2 23)
and
_gd~Ba(t)

where both expressions follow from the composition rule (9). Due to the construction of
the generalized Maxwell model, we have €(z) = €;(z) + €2(¢), from which it follows

Etf d*Pa(t) L 4%e(t)
(t) + E ﬁ dta ﬁ_ = E]‘L'l e _d;fl .

In equation (23) we assumed a > B without loss of generality. For o = § we recover
basically the RCE of the single FE, as discussed in subsectmn 3.1. We now take o > §.
Equation (25) can be simplified by setting v = (E, 7/ Ez75 Fy/e—F) and E = E;(z1/7)".
This feads to

(25)

B () L 3%e(®)
G ET g
which is the RCE of the generalized Maxwe]l model [16,34].

o) + P (26)

E X(B:Ez;cz)

. M l(a’Ebn)
(a) HJ (&)

Figure 3. The Maxwell element {a) and its fractional generalization (&).

Fourier transforming equation (26) and using equations (11) and (15) leads to the
complex modulus

E(iwt)®
1+ (iwr)e=58"
In order to calculate the relaxation modulus G(¢) we use the loss modulns G"(w) =
Im &*(w). Hence, from (27):

G*(w) = @7

(wt)* sin(me/2) + (wr)**~P(sinmB/2)
1+ (w7)2@=8 + 2wr)*—F cos(m (o — B)/2)

G'"w)=E (28)
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Now following equation (18) and the results of the appendix we find for the Mellin transform
of G (w)/w after some tedious calculations

G'(w) } _ mE cos(mz/2)

T a—gsin(r(z o — /(e — BY)
where equation (2.54) of [35] was used. In equation (29) the Mellin transform M is deﬁned
by

i 29

M{w

F@) = M{FGY o) = fo dx fR)xe! (30)

which is also known as the double-sided Laplace transform [35-37]. The relation between
M{G"(w)/w} and M{G(#)} is given by

M[Gﬁ(“’) } r(z)cos( )M{G(t)l—z} (1)
[43]

(cf equatiohs (18) and {(A2)). From equations (29) and (31} we obtain G(#) via an inverse
Mellin transform {(cf (A3)):

=M { r{z=)r(25) N t]'

=% M-z
= 1
E Hl} T \a=p" e~
- . 32
RAAE )01 o

Here we used the connection between the inverse Mellin transform and the definition integral
of the Fox H-function [38], see the appendix, equations {A3) and (A4). By further use of the
properties of the H-function we can rewrite equation (32) in terms of Maitland’s generalized
hypergeometric function W (/) [38], or as the better known generalized Mittag—Leffler

function [36]
\F e\
e ean-@7) e

valid for arbitrary 0 € 8 <o < 1. The equ:valence between equations (32) and (33) can
be seen by comparing the power series expansion of the H-function, equation (A10), with
the definition of the generalized Mittag—Leffler function [36]:

e X
Eep(x) = ; ryP— . (34)

The main result, equations (32) and (33), was also derived by Glockle and Nonnenmacher
[3] via a similar approach involving the Laplace—Mellin technique and by Friedrich [16]
using a power series ansatz. In the parameter range 0 € 8 < & < 1, G{¢) obeys at short
times, 1 < 7 (cf (A13)),

- E NP
G = __1"(1 y (—_E) (35)

whereas at long times (¢ 3> ) one has asymptotically (cf (Al4))

. E N



6574 H Schiessel et al

Expressions (32) and (33) also embrace the special cases 8 =0anda=1. For 8 =0
and arbitrary 0 < ¢ € I, one has G{(t) = EE,(—(¢f/T)*), a result which was also found
in [16,18]. Here E, is the standard Mittag-Leffler function E,(x) = E4 (x) [36]. For
o« = 1, E, turns into a simple exponential (cf equation (34) with « = @ = 1) and hence
G(t) = E exp(—t/T), this being the exponential decaying response of the standard Maxwel}
model (i.e. § =0 and & = 1). Finally for ¢ = 1 and 8 in the range 10, 1[ the relaxation
modunlus, equation (32), shows the following behaviour at long times, 7 3> :

.~ —E (17
o0 =505 (2) 7

whereas the short-time behaviour is still given by equation (35). This can be seen from the
expansion of the H-function for small and large values, equations (A10) and (A12). Note
that for & = 1 the first term of the power series on the right-hand side of equation (A12)
vanishes due to the occurrence of a pole of the I'-function; thus the long-time decay is
governed by the second term. Compared to the long-time decay in the case o < 1,
equation (36), we have here a faster relaxation for # 3> 7. In our picture of mechanical
analogues the case o = 1 corresponds to a simple dashpot. This purely viscous element
causes a faster decay so that one has a fluid long-time behaviour [16]: when one deforms
the system continuously (e.g. €(z) = vt) the stress o (¢) remains finite for all times (cf the
superposition integral, equation(3)).

Using the power series (Al0) and (A12) the relaxation modulus G(#) of the fractional
Maxwell model can be also evalvated numerically. The result is displayed in figure 4 for
two different sets of parameters together with the exponential decaying response of the
ordinary Maxwell model. The asymptotic short- and long-time regimes of the fractional
models show clearly the algebraic patterns given in equations (35} and (36).

At this stage it is worth mentioning that physical constraints are antomatically fulfilled
by our generalized Maxwell model; this is, of course a direct consequence of our derivation
of the RCE (26) from mechanical analogues. In equation (26) this is manifested in the fact
that the order of the fractional derivative on the stress, @ — 8, is always less or equal than
that operating on the strain, ¢¢. This is an important requirement for thermodynamic stability
[3, 16]. It is obvious that such conditions are not automatically fulfilled by simply replacing
integer-order by fractional-order operators. Furthermore, if one now also requires that G(t)
stays finite for ¢ — 0 (as befits a well-defined initial-value problem) we must require that
B =0, see equation (35) and [34]. Physically 8 = O corresponds to a simple spring, which
is able to deform instantaneously (i.e. to perform a stress jump), so that G(0) = E, see
equation (35).

The complex compliance J*{w) = 1/G*(w) follows from equation (27)

Jw) = E7 (o)™ + B~ Gwr)7P. (38)
This mirrors the fact that for serially-arranged elements the compliances simply add. Using
the same steps which led from equation (20) to equation {22} we have
(t/7)* o (/)P
4 4+ E 39
(I +a) r{l+8) @
for all 0 < 8 € ¢ < 1, a result also reported in [16] (see also the discussion in [3]).

J@y=£g"!

3.3. The generalized Kelvin—Voige model

When one arranges the spring and the dashpot in parallel one arrives at the standard Kelvin—
Voigt model, shown in figure 5(a). Its generalization with two FEs is depicted in figure 5(b).
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logt/~

Figure 4. The relaxation modulus of the generalized Maxwell model with the parameters {c, B}
chosen as (0.85, 0.1}, {0.75,0.25) (dashed curve) and the standard case (1, () {dotted curve).
In all cases we set E =1, .

Because of the construction the individual stresses add. Following the procedure used in
the previous subsection we have as corresponding RCE
d*e(t) s Pe(®)

g(t) = Et*——— 4 Et1

dre def (40)

where we have introduced the parameters v = (Ejty /Egrf YW @=F) and E = E (m/7)~.
By Fourier transforming equation (40} we obtain from equations (11) and (15) the complex
modulus

G*(w) = E(iwr)® + E(iwt)? €39

a result that mirrors the additivity of the moduli in parallel arrangements. Repeating the
steps from equation (16) to equation (19) we get
/1)~ /t)"*
ty=E E .
| CO=Eri—s T ra-p
On the other hand, here in the Kelvin—Voigt model, the parallel arrangement canses the
complex compliance

(42)

(wr)~?

* N ~T |
JHw) = E, TT Ger

(43)
to be more involved than in the Maxwell model., For the calculation of the function J(t)
one can follow a way analogous to the evaluation of G(f) in the preceding subsection. One
can start from the real part of J*(w), the storage compliance

{wr)~F cos(mB/2) + (wr)* % cos(mar/2)
1 + {wt)2e~F 4 Hwr)*—P cos(ml{e — B)/2)
which has to be transformed according to equation (20). Note the structural symmetry to

G’ (@) of the Maxwell model, equation (28). This simplifies the procedure, and using the
Fourier—Meilin technique as before, we obtain

Jw) = E~1

(44)

a=1 1

dJ(f)=(E'E)_1Hu t| lapr =
dr a—pg | (2=l 1 0, 1)

a=p’ a~p

(45)
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By integration, using equation (A11) together with J(0) = 1/G(0) = 0, we obtain

E-! ==
10 = ——H} | = | 70
ap =5 OG0

a—p

o a=j
=g (_’r_) Ey_p 14 (- (%) ) . (46)

Here we give on the right-hand side of (46) also the corresponding generalized Mittag—
Leffler function. The result is valid for all 0 € 8 < e £ 1. To our best knowledge,
equation (46) for J(z) has not been presented before in the literature on relaxation in
complex media. From equation (A13) we obtain the short time behaviour, ¢ « 7, of J(¢):

E™! A\
B = 47
I I'il+a) (r) “7)
whereas for ¢ >» T we obtain asymptotically (cf (Al4))
E™V /Y .
0255 () “

We stop to note that these expressions also hold for & = 1. One should notice the similarity
of equations (47) and (48) to the corresponding expressions {33) and (36) of the Maxwell
model.

I
E n (B.Et2) X k(a,El,tl)

@ @

Figure 5. The (a) ordinary and (&)} fractional Kelvin—Voigt element.

For = 0 and arbitrary 0 < « < 1, J(t) given by (46) may be expressed in terms of
the standard Mittag-Leffler function (cf equation (18.1.23) of [36])

J@)=E-' —E-E, (— (%)d) (49)

a result which was already given by Gross [39] (see also {18]). For o« = I one has
J@) = E71 — E7lexp(—1/1), i.e. the well known exponential behaviour of the standard
Kelvin—Voigt model. Fin;dly, fora=1and 0 < 8 < i the result

8 8 1-g
o= (fa()7) @

is obtained from equation (46). Note that for t = co, J stays finite only when 8 =0, i.e.
when in the Kelvin—Voigt arrangement there is a spring in parallel.

Here we note the symmetry of the dynamical response functions, G{t) and J(#), in
the two possible arrangements of two FEs, namely in the generalized Maxwell model and
in the generalized Kelvin-Voigt model. Depending on the sequential (Maxwell) or parallel
(Kelvin—Voigt) construction one of these response functions is simply 2 sum of two algebraic
terms (i.e. J(¢) in the Maxwell model, equation (39), and G(¢) in the Kelvin—Voigt model,
equation (42)). Then the other response function is a Mittag-Leffler function (i.e. G(z) for
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the Maxwell model, equation (33), and J{¢) for the Kelvin—Voigt model, equation (46)).
Moreover, in every case one witnesses a crossover between two algebraic regimes: for
a sum of two algebraic terms this is obvious; in the case of the Mittag—Leffler function
this follows from its expression through power series (see above and equations (Al13) and
(Al14)).

3.4. The generalized Zener model

The so-called Zener or standard solid model [25,26] involves three elements as shown in
figure 6{a). It consists of a Maxwell model in parallel with a spring. The most general
fractional version of the Zener model is displayed in figure 6(F) and consists of three FEs.
Without loss of generality, we again require 0 < f < o < 1 and, of course, 0 < ¥ £ 1,
Then the stresses in the left, o1 (¢), and right, or(2), branches of the model are given by

epd@Por(t) %D
O‘L(I} + T W = Lo 3 are (51)
and
d¥e(t)
or(t) = E3T§’ P (52)

In equation (51) we set 7p = (E;yz%/Eaty )/ “~P and Ey = E1(11/w)®. Both stresses add
up to the RCE

_gd*Po(r) d%e(r) d¥e(r) _gdvte-be(r)
a—§ _ a ¥ ype- B =V
o)+ 1, T Eyg P + Esty P + Eszy 1 " (53)
Setting now v = 1y and E = E3(w3/7)Y, equation (53) reads
d*Pa(s) d%e(s) d’e(n) grre=Be(y)
a—p — o ¥ +a—=F
gty +1t g = Lot o TET EzY P (54}

This RCE was given by Tschoegl [26] for the special case 8 = y = 0. It was extended to
arbitrary 0 < £ < ¢ (with ¥ = 0) by Friedrich and Braun [5], where also a comparison of
this model with experimental results for different polymer systems (polymeric glasses and
gelling systems) can be found,

|
E (Q,E,;L’; ) X

§E (B:Ez:'cz)
| Lﬁr X
@ T @

Figure 6. The Zener model (a) and its fractional generalization (&).

S(Y:Esﬁs)

Using equations (11) and (15) the calculation- of the complex modulus G*(w) is
straightforward and results in
Eyp(iwt)® + E(iwt) + E(iwr)rte—? (iwT)®
1+ (wr)e—F = ST Gwref
In equation (55) the moduli of the Maxwell model and of a single FE add; this is the direct
consequence of the parallel arrangement of figure 6(b).

G*w) = + E(iwt). (55)
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We obtain the resulting relaxation modulus from equation (55) by simply adding the
moduli of the Maxwell model, equation (32), and of the single Fg, equation (19), i.e.

S E -
_ B |t i ¢/
S0="5M 7| e o |PETa—s ©9

Depending on the parameters up to four time regimes with algebraic behaviours may occur.
This can be seen by comparing on the right-hand side of equation (56) the generalized
Maxwell term (and its power-law behaviours, equations (35) and (36)) with the second
term. For instance, for the case ¥ € 8 and for ((Eo/E)(T(1 — )/ T'(1 —a)))V@1) 3 1,
we find three time regimes

tF fort Kt
Gy~ fort €t «n (37)
Y for iy <t

where 71 = ((Eo/EYT'(1 — »)/T'(1 — e)))V@~¥)z, In addition to the three regimes of
equation (57), one has in the case & > y > f also a fourth regime G(¢) ~ t™7 at very short
times, ¢ <€ 72 where 7z = ((E/EQ)(T{1 — B)/ T(1 — )@ Ry,

Note that for special values of the parameters, G(2) follows from the results of the single
FE and of the Maxwell models, as discussed in subsections 3.1 and 3.2. Note especially
that the case ¢ = 1, 8 = ¥ = 0 reduces to the exponentially decreasing relaxation function
of the standard Zener model {26].

Using the power series (A10) and {A12) we have evaluated numerically G(¢) for the
fractional Zener model. The result is shown in figure 7 for three different sets of parameters.
The three power-law regimes of equation (57) can be seen clearly.

log G(t)

logt
Uog/f

Figure 7, The relaxation modulus of the fractional Zener model with the parameters (w, 8, ¥)
chosen as (0.8, 0.1, 0.08), (0.6, 0.05, 0.03) (dashed curve} and (0.4, 0.08, 0.05) (dotted curve).
In all cases we set Ep = 1 and E = 0.0001.

The complex compliance J*{(w) = 1/G*(w), i.e.

(@1)™® 4 (iwe)™*

J* = -
@) = B EGwry= + EGory—?

(58)

shows a more involved pattern. Within the framework of the Fourier-Mellin technique we
are able to express J(¢) analytically for y = & or for y = . We star{ by presenting the
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results for the generalized Zener model with y = o::

- e 1 _ &
J@) = Mﬂyu A~ V@B L —B’ a—ﬂ (Eo + E) (1)
;(0,1)

— 2 *412
ﬁ E T _‘3! Ut-—ﬂ ; F(l +f¥) T
(59
and with y = 8:
- o [ ~
J(E) =M&Hu Alf(a—ﬁ)i a_-ﬁ-‘_—,é' 4 (EO+E) 1 (i)ﬁ-
a8 212 4 :S’a—,s (0 D '+ 8 T
(60)

In both cases we set A = E/(E + Ep). Bquation (60) was given in [5, 18] for the special
case ¥ = B = 0. Note that in equations (59) and (60) J(z) is simply the sum of the
compliances of the Kelvin—Voigt model (cf (46)} and of the single FE, equation (22}. A
different version of a fractional Zener model was given in [3]. .

Where the derivation’ of equations (59) and (60} is concerned, the RCE of the Zener
model has the same form as the RCE of the generalized Poynting-Thomson model which
we discuss later. This duality is remarkable. Due to the serial structure of the Poynting—
Thomson arrangement, its creep compliance J(¢) is readily obtained as the sum of the J(z)
of its subunits. The derivation of J(t} being simpler for the Poynting~Thomson model,
we restrain ourselves from presenting here the details of the more involved Fourier—Mellin
technique and use in the next section the duality for a Slmpler derivation of equations (59)
and (60).

E (Y 1E3:T3)

E M (a:Ei,'Cz)X X(ﬂ,Ezﬁz)k
(@) ) T

_ Figure 8. The (¢} ordinary and (b) fractional Poynting-Thomson model.

3.5. The generalized Poynting=Thomson model

The Poynting-Thomson model and its generalization using FEs are shown in figures 8(z)
and (b), respectively. The stress—straif relation of the generalized model obeys

Bo_ay&70W | Bo 5 Vo) _ o Fe@) o pde)
a7 T E orf-7 0T g T BT 5

@O+ 5 (61)

with T = (Ey1%/Estl )P, Ey = El,('q/r)“ and E = Es(t:3/7)?. Due to the serial
arrangement of the Poyating~Thomson model we obtain immediately its creep compliance
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&) M (F) )
F3t . eq. (31)
¥
Oy O

Figure 9. The inverse cosine transform for G(¢) and its description via a three~step procedure
involving the Mellin transform and its inverse.

as the sum of the compliances of its subunits, a Kelvin~Voigt element (cf (43)) and a FE

(cf (22)):
E' ol e ET (Y
B [r 2 25): 0,0 }"I‘(Hy) (r) - €

We are able to calculate the relaxation modulus when we restrict ourselves to y =« or to
y = 8. Interestingly, the Poynting—Thomson and the Zener model lead then to the same
RCEs. Thus for ¥ = o the RCE of the Poynting—Thomson model, equation {(61), takes the
form

EF +EY o s Pa(D) d® e(t) 2= ¢(1)
_._.___ a—p= N/ PT e PTye PT .. PT 2«—5
o)+ T @ = E @ H EN )Y g (63)
whereas the RCE of the Zener model, equation (34), for v = o reads
d*Ea(z) e( d*e(r) d—Be(t)
Zya-gS O] pZ | g2y Taa 2 Zr20—p
o(f)+ () oy (Ey + ES{r°)' ——+ E“(z") e (64)

In order to distinguish between the material constants of the two models we have introduced
in equations (63) and (64) the superscripts PT for Poynting-Thomson and Z for Zener,
respectively. By comparing the corresponding terms of equations (63) and (64) we find as
transformation rules

PT _ (EZ/(E% + Ez))ll(a-ﬂ) Z ‘ {634a)
= (EZ/(EL + E%))f-2)/e=A g2 (655)

and
EFT = (EZJ(EL + EZ)) -2 =B (ELy2(EZ. (65¢)

Equations (65) connect the two models and are valid for ¥ = o; for y = § one has simply
to exchange « and g in (65). Using equations (62) and (65) one recovers equations (59)
and (60) of the fractional Zener model.

Duality can now be invoked again to establish the relaxation modulus G() in
the Poynting~Thomson model; one has only to replace the material constants in the
corresponding function of the fractional Zener model, equation (56). The discussion of
G(z) runs along the same lines as in the generalized Zener model, so that we do not repeat
it here.
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3.6. Other models

Similarly to the models discussed above, one can derive the RCE of any arrangement of
elementary mechanical parts, such as springs, dashpots and FEs. From the RCE using
the behaviour of the Weyl derivative under Fourjer transforms, equation (11), one obtains
analytically the harmonic response functions G*(w) and J*({w). Their inversion, to obtain
G{t) and J(¢) is, however, a hard task, which is not always feasible in the framework
of the Fourier-Mellin technique. Nevertheless, whenever a system is built as a parallel
(serial} arrangement of subunits with known relaxation moduli (creep compliznces), its
corresponding response function is the sum of the responses of the subunits. Using such
sub-blocks a great variety of complicated systems with analytical response functions can be
constructed.

4. Conclusion

In this work we have put forward a method which allows a physically correct generalization
of viscoelastic models. We arrive at arrangements which obey fractional RCEs by replacing
in the nsual mechanical models some of the elastic and viscous elements by fractional ones.
‘We also surveyed exactly solvable models and calculated explicitly their response functions,

The representation of generalized viscoelastic models by fractional analogues also allows
a deeper insight into the physics behind fractional stress—strain relations; on the other hand
RCEs aid in discovering hidden symmeitries between the models, such as the duality between
the fractional Zener and Poynting—Thomson models. Using fractional elements one can
tailor viscoelastic models with given properties, while keeping the number of the parameters
involved relatively low. )
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Appendix. The Mellin transform technique and Fox H -function

In many cases the transformations from the harmonic response functions G*(w) and J*(w)
to the step responses G{(¢) and J{¢) (cf equations (17), (18) and (20)) are not tabulated.
Here the knowledge of the Mellin transform (cf equation (30)} is of much help. The Mellin
transform obeys the functional relation [35]

M{z* faxPy; 2} = p=laerie f (Z“;%) (A1)

with @, p > 0. Equation {Al) allows one to transform certain classes of functions involving
arbitrary powers of the argument and additional prefactors with power v. Moreover, the
Fourier cosine and the Mellin transform of a given function f(x) are related [35]:

MIFelf(x); 0F: 7} = I'(@) cos %M{f(x); 1-3g). (A2)

A similar relation helds for the Fourier sine transform [35]. Equation (A2} altows one to go
from the w domain to the Mellin domain; the inverse Mellin transformation then brings one
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back to the time domain. A three-step transformation, as depicted in figure 9 is sometimes
a very convenient way to perform the inverse cosine (or sine) transform g f FsH.
We turn now to the evaluation of the inverse Mellin transform
1 ctHioo .
FOy= MU f@yat = — dzf(2)x ™. (A3)
c—ics

The transform M™! is intimately related to the so-called H-functions, as given by Fox in
terms of a modified Mellin-Barnes integral [38]. The notation and the definition of the

H-functions are
Hmn(x) = gmn [x (ap, Ap) :I Hrrm |:
P

(als AI) (a2= AZ)? ey (apa Ap) ]

(b.;rs Bq) (bl: BI) (b2, B2), ..., (bgv Bq)
_ 1 2z
== fL dzx (2)x (Ad)

with the integral density
17T — B[} T —a; + As2)

Tl T = b5+ B;2) [To T — A7)
(For constraints on the occurring parameters see e.g. [3,38]). Note that from equation (A4)
the inverse Mellin transform of a function containing products and quotients of Gamma
functions is expressible in the time domain through H-functions.

We list now some very convenient properties of Fox H-functions [38].

Property 1. The H-function is symmetric with respect to the permutations of
(ala Al), RN (arn An)$ of (aﬂ+]1 An+1), ey (ap, AP)’ of (b], BI), - (bm, Bm) and of

(bm+h Bm-:-])r ey (bq; Bq)-
Property 2. For n z 1 and g > m one has

Hmn (alv Al) (a27 Az): ey (a{h Ap) ]
(b] » Bl) (bZr BZ) (bq—ls Bq—l)v (ah Al)
Property 3.

x(@) =

(AS)

— pmn— (a2v Az ..., {ap, Ap) ]
H i [" ‘ (b1, B, (Byets Byt) | (A6)

mn (aP’ F) } nm[ (1 bqra Bq) ]
H, [ (bg. By) H —ay Ay | (A7)
Property 4. For k > 0
mn (a » ) — mr | _k (a kA )
x| G | = [#] Gk | @)
Property 5. )
o mnd (avA) mn (II +C"A ) )
*H 5| by B ] H, [ Gy + By, B:) } (A9)

An H-function may be written in terms of an alternatmg power series [38], a fact which
is convenient for computations. As an example, for H}; this results in

" (a’ A) o e (_l)kx(k-}-a)/A
Hy {x (@, A); (0, 1) ]‘A ;r(1+(k+a)/A) 10

from which one finds the following rule for the differentiation of H}J:

d {a, 4) (@a— A, A)
& 15| @ 4% 0,1) ] Hiz [ (@— A, A% (0, 1) ] (@A)

dx
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Now the series in (A10) does not converge fast for large values of x. Thus it is important
to have property 3 at hand, which allows one to rewrite H|] as a function of 1/x, from
which & series in 1/x follows, by help of (Al0). We have

H! [ (1—a, A); (1, 1) ]= A_li (~1)¥ (1 /x)f+1-a)/A

(1—a,4) «T(1 —(k+1—a)/A)
This allows the numerical evaluation of H}} for large x-values.
The behaviour for small and large x follows immediately from the power series (A10)
and (Al2):

(Al12)

(a, A) ~ 1 ajA
AHiz [x (@, A); (0, 1) ] T T +a/a) (AL3)
for x < 1 and 7
1 (a, 4) ~ 1 {a=—13/4
Aflrn [x (a, A); (0, 1) ]" rd+@—-1/4)" (Al4)

forx > 1
Throughout this paper we use the symbol = to mean *asymptotically equivalent’.
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