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In recent years the fractional calculus approach to describing dynamic processes in disordered or
complex systems such as relaxation or dielectric behavior in polymers or photo bleaching recovery
in biologic membranes has proved to be an extraordinarily successful tool. In this paper we apply
fractional relaxation to filled polymer networks and investigate the dependence of the decisive
occurring parameters on the filler content. As a result, the dynamics of such complex systems may
be well–described by our fractional model whereby the parameters agree with known
phenomenological models. ©1995 American Institute of Physics.
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I. INTRODUCTION

Relaxation processes deviating from the classical Deb
or exponential behavior include dielectric relaxation, stre
relaxation, stress–strain relations, NMR relaxation or diff
sion in materials like liquids, liquid crystals, polymer mel
and solutions, amorphous polymers, rubbers or biopolym
The deeper physical understanding of non-exponential re
ation processes belongs to the many unresolved problem
physics, as well as other topics occurring when one de
with such complex systems: the glass transition, the Vog
Tamann–Fulcher~VTF! behavior for viscosity or the
Williams–Landel–Ferry ~WLF! relation for viscoelastic
quantities or physical aging of polymers.1,2

Non-exponential relaxation implies memory. A natur
way to incorporate such memory effects is fractional calcu
as shown by Glo¨ckle and Nonnenmacher3–9 and Friedrich
and Braun.10 Via the involved convolution integral the
present state of the underlying system is influenced by
states at earlier timest850..t. In recent papers3–9 the frac-
tional relaxation concept with consideration of initial value
was introduced and a physical interpretation of the para
eters involved was given. Here, we first give a short su
mary of this concept before applying it to relaxation pr
cesses in filled polymers.

II. FRACTIONAL RELAXATION

We start off from the well-known standard solid or Zen
model ~see Fig. 1! with the constitutive equation

s~ t !1t0
ds~ t !

dt
5~Gm1Ge!t0

de~ t !

dt
1Gee~ t ! ~1!

describing the stress–strain relationship. Here, the charac
istic time constantt0[Gm /hm was introduced~see Fig. 1!.
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This rather simple model exhibits a nonzero instant modulu
Gm1Ge , involves creep for intermediate times and show
solid behavior with the equilibrium modulusGe for large
times t!t0 . But for complex systems a more sophisticate
approach is required. There, stress and strain are, in gene
dependent on all strains and stresses at all time
t8P(0,..,t), respectively, i.e. they are functionals of the form

s~ t !5S @e~ t !#, ~2!

e~ t !5E @s~ t !#. ~3!

The functional dependence usually finds expression in
Boltzmann integral.11 A special case of such an integral re-
lation is given by involving a power law kernel~memory!
leading to fractional derivatives. The background of such
kernel is discussed in Ref. 7. Thus a possible generalizati
of Eq. ~1! can be acquired by the formal substitution of
integer-order by fractional-order derivatives leading to

s~ t !2s01t0
2q d

2qs~ t !

dt2q

5Get0
2m d

2me~ t !

dt2m 1~Gm1Ge!~e~ t !2e0! ~4!

in the formulation as a fractional integral equation.3 e0 and
s0 are the initial strain and stress, respectively. Here, the lh
of Eq. ~1! was generalized by a fractional powerq, the rhs
involvesm, say. Two different fractional parameters are in
troduced as in general stress and straina priori possess
memories of different strengths. Both parameters fulfill th
inequalities 0<q,m<1, i.e. play an intermediate role in
between Hooke’s (s(t)5Ee(t)) and Trouton’s
(s(t)5hė(t)) laws.11 q and m must obey the additional
restrictionq>m for sake of monotonically decreasing relax-
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7181Metzler et al.: Relaxation in filled polymers
ation functions.3 Whether such restrictions for the fractiona
parameters are readily implied via the Kramers–Kron
relations—which must be valid as the fractional model bas
on a linear response theory—is topic of current investig
tions.

Schiessel and Blumen12 and more recently Heymans an
Bauwens13 use hierarchical model analogues of springs a
dashpots to motivate fractional derivatives.

For q5m one arrives at a fractional formulation of th
Cole–Cole model whereas forGe50 the fractional Maxwell
model discussed by Nonnenmacher9 is recovered which re-
duces to the standard Maxwell model forq→1.

But there is one shortcoming issue. As our starting poi
the standard Zener model, describes a solid system the f
tional model should also display solid-like behavior. For t
fractional integral Eq.~4! this does not hold true forq.m but

FIG. 1. Standard solid or Zener model.
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it features a slow creep for larger times, an issue in direct
consequence of the assignment of unequally strong memo
ries ~the strain has a ‘‘weaker’’ memory and thus relaxes
faster than the strain causing a fluid-like behavior!. To over-
come this feature, the formal addition of a term
G`t0

2qd2q/dt2qe(t) involving a memory of strengthq is
necessary to balance the strain for larget@t0 . Thus one
results in

t0
2q d

2qs~ t !

dt2q 1s~ t !2s0

5~Gm1Ge1G`!~e~ t !2e0!1Get0
2m dt

2me~ t !

dt2m

1G`t0
2q d

2qe~ t !

dt2q . ~5!

This model is called fractional solid model. It reduces to the
fractional Zener model above Eq.~4! for G`→0. For
q,m→1 one recovers a normal Zener model with an equilib-
rium modulus given byḠe[Ge1G` .

Several experimentally relevant functions~relaxation
and retardation function, complex modulus and compliance
relaxation and retardation time spectrum etc.! may be calcu-
lated via the Laplace–Mellin transform technique and can be
expressed in closed form by use of Fox’sH-function.3,5,8,14

Here we are interested in describing a stress-strain exper
ment with a harmonic external force. Hence we need the
complex modulus which is given via3

G* ~v!5
~Gm1Ge!1Ge~ ivt0!

2m

11~ ivt0!
2q 1G` ~6!

for the non-transient regime. The storage modulus thus be
comes
G8~v!5

Gmeṽ
qcos

pq

2
1Geṽ

q2mcos
p~q2m!

2
1Gmeṽ

2q1Geṽ
2q2mcos

pm

2

ṽ2q12ṽqcos
pq

2
11

1G` ~7!

and the loss modulus is

G9~v!5

Gmeṽ
qsin

pq

2
1Geṽ

q2msin
p~q2m!

2
2Geṽ

2q2msin
pm

2

ṽ2q12ṽqcos
pq

2
11

, ~8!

where the abbreviationsṽ5vt0 andGme5Gm1Ge were introduced.
The relaxation time spectrum15 is given by3

H~t!5
1

p

Gme~t/t0!
qsin pq2Ge~t/t0!

msin pm1Ge~t/t0!
m1qsin p~q2m!

~t/t0!
2q12~t/t0!

qcospq11
~9!
No. 16, 22 October 1995



l

g

b

a
e

o

n

-

-

s

s

7182 Metzler et al.: Relaxation in filled polymers
and shows a power law tailH(t);(t/t0)
m2q for t/t0@1.

Clearly, for m→q the turnover point to the final long tai
power law is shifted towardst top→`. The spectrum is dis-
played for various values of the fractional parameters in Fi
2 and 3. Fig. 4 shows the change of the spectrum for sim
taneously decreasedq andm with the additionally decreasing
difference of both. The ‘‘hill’’ flattens and the shift of the
turnover point is obvious. This mirrors the actual situation
the experiments discussed here.

III. FILLED POLYMERS

Since the discovery of vulcanization of natural rubber
Charles Goodyear in 1839 and the patent for the first pneu
the Belfast veterinary John Boyd Dunlop in 1888 one h
been interested in improving the mechanical properties
rubber, not at least for safety and economy in automobilis

The mechanical properties of polymer networks are m
sively influenced by the addition of certain filling substanc
~fillers!.15 Whereas the quasistatic behavior of filled ne
works is fairly well understood16 it is the dynamics that still
lacks adequate descriptions. Here, we introduced our fr
tional model which provides a pretty good description

FIG. 2. SpectrumH(t) for Gm59, Ge51, and the fractional parameter
q50.3,0.5,0.7,0.9~from left top to bottom! andm50.7. The full line cor-
responds toq5m.

FIG. 3. SpectrumH(t) for Gm59, Ge51, and the fractional parameter
q50.7 andm50.3,0.5,0.7,0.9~from right top to bottom!. The full line cor-
responds toq5m.
J. Chem. Phys., Vol. 103,
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unfilled polymers and want to investigate its usefulness if
applied to filled systems. We will show that it is also working
well there and thus serves as a phenomenological descriptio
of the dynamics involved.

The increased strain energy of filled networks bases on
two main issues: On the one hand adhesional contacts be
tween polymer chains and filler surface create additional
crosslinks and thus enlarge the elastic moduli. On the other
hand the accessible volume of the polymer matrix is reduced
by the space occupied by the filler leading to a higher intrin-
sic stress in the network.15,16 In that course the involved pa-
rameters should also vary with changing filler content, and,
reversely—if experimentally measured—should retain cer-
tain information on the filler content itself.

The dynamics in complex systems are discussed paral
lelly to the glass forming process in Ref. 17.

IV. RESULTS

Four different series of specimens were measured by
Schick,18 two apiece filled with carbon black and silicates,
respectively. Here we concentrate on the silica filled series
labeled NR32237 and the carbon black filled series S10 in-

FIG. 5. Storage modulus for NR32237 with a varying filler content
F50,20,40% phr~from bottom to top curve!.

FIG. 4. SpectrumH(t) for Gm59, Ge51 and the fractional parameters
q50.8,m50.65 ~—!, q50.6,m50.5 ~- - -!, q50.52, m50.515~–•–!, and
q5m50.45 (•••).
No. 16, 22 October 1995
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7183Metzler et al.: Relaxation in filled polymers
volving seven and four different filler degrees respective
The experimental measurement is seriously sensitive
preparation and handling. Thus some of the data po
—especially of the two series not considered here—had to
discarded. Nevertheless there remain enough for a mean
ful discussion. Filler content was varied from 0 up to 60 p
~chemical mass concentration! meaning relative mass frac
tions in the range 0...37.5%. Via harmonic stress-strain
periments the complex modulus was measured. By const
tion of a master curve one obtains the modulus in
frequency window from approximately 1022.5 to 1012 c/sec.

Data fits are done by use of the standard simp
algorithm19 simultaneously executed forG8 andG9. Typical
fits of the loss and storage moduli according to Eqs.~7! and
~8! for three different filler contents are displayed in Figs
and 6. The relaxation time spectra of the series correspo
ing to these figures are displayed in Fig. 7. In principle, th
is similar behavior for silicate and carbon black filled ne
works, only the absolute magnitude of some of the char
teristic quantities is different~see below!. As can be seen
G8 is correctly described over a range of 15 decades in t
whereasG9 can simultaneously fitted over about 10 decad
only, indicating that there additional processes not accoun

FIG. 6. Loss modulus for NR32237 with a varying filler conte
F50,20,40% phr~from bottom to top curve!.

FIG. 7. Relaxation time spectrum for NR32237. Filler content: 0,30,6
phr. The higher the filler content the more the power law tail is shifted
higher vertical values.
J. Chem. Phys., Vol. 103,
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for by our model considerably effect the dissipation. In Fig. 8
the spectra for a carbon black filled series, S10, are plotte
for comparison. Clearly, for increased filler content the
maxima of the spectra are slightly shifted to higher time
constants and—the major effect indeed—the center hill
flattened and the slope of the long tail is decreased showi
the more and more enhanced relative existence of slow
relaxation processes. This means that added filler particl
causing a successively higher degree of structural inhomog
neity broaden the spectrum significantly. The range ove
which H(t) is plotted is optimistically chosen to be wider
than the correctly described range of the master curves
order to make the changes utterly visible.

A. Equilibrium modulus

Figure 9 shows the equilibrium modulusGe for all
specimens~except altogether 3 discarded data points!. Each
series ofGe is normalized in respect to its own zero value
Ge(F50) whereF denotes the filler content in the chemical
mass fraction phr. Note that some points may represent mo
than one specimen. All normalized data show satisfying da
collapsing indicating the independence of the actually unde
lying specimen’s matrix. Thus having at hand these data o
Ge it is not possible to distinguish between silica and carbo
black filled systems. That a difference of the fit paramete

t

%
to

FIG. 8. Relaxation time spectrum for S10. Filler content: 0,20,40,60% ph
The higher the filler content the more the power law tail is shifted to highe
vertical values.

FIG. 9. Normalized equilibrium modulus vs filler content.
No. 16, 22 October 1995
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7184 Metzler et al.: Relaxation in filled polymers
Fcrit of about 10 phr does not affect the fit’s quality signi
cantly is due to the nonlinear connection tovcrit ~see below!
that is not too much affected in this special range of va
tion. Fig. 10 shows the same for the series S10, exclusiv
~as it occurs to be the best measured of the four series!.

Two models are employed to fit these data: Brinkma
formula20

Ge

G0
5S 12

F

Fcrit
D 22.5

, ~10!

and Eilers’ and van Dijck’s formula21,22

Ge

G0
5S 111.25

F

12F/Fcrit
D 2, ~11!

whereG0[G(F50) is the modulus of the unfilled specime
of the actual series, andFcrit is a free fit parameter. For th
few data points one cannot distinct upon the use of eit
function. Also for S10 which shows the most accurate dep
dence both formulas do their job well. The critical filler co
tent is listed in Table I where forvcrit the critical volume
fraction of the filler an a`-peu-près conversion factor was ap
plied.

Now both of these formulas show some common a
very appealing features. For low values ofF ~andFcrit51
for Brinkman’s! they reduce to the theoretically predicte
Einstein–Smallwood relation23,24

Ge

G0
5111.25

F

100
~12!

valid for ideal balls in suspension. For the influence of t
particle shape see Ref. 16. Both formulas show a pole
F5Fcrit of about 0.8...0.9 corresponding to a volume p

FIG. 10. Normalized equilibrium modulus vs filler content for the ser
S10.

TABLE I. Critical parameters for the equilibrium modulus.

Formula Series Fcrit vcrit

Eilers and van Dijck all 0.798 0.28
S10 0.805 0.29

Brinkman all 0.936 0.32
S10 0.901 0.31
J. Chem. Phys., Vol. 103,
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centage near 30%. These poles may be assigned critical po
exponents25 of b522.5 or 22 for Brinkman’s and Eilers
and van Dijck’s formulas, respectively. This observation en-
ables one to speak of critical filler concentrations in the per
colation scheme: given a certain amount of filler worked into
the polymer sample it will form clusters. Near the critical
concentrationFcrit the largest cluster expands in a power law
divergence, the filler percolates. This causes the existence
a critical point in the dependence ofGe onF. A comparison
with the percolation threshold for a three-dimensional simple
cubic lattice of about 31% shows a reasonable agreemen
For further discussion see Ref. 16. The formation of a filler
cluster running through the whole specimen massively stiff-
ens the sample and causes a flattened relaxation time spe
trum.

Concluding this subsection it is worth remarking that by
the relatively clear dependence ofGe on F—if samples are
carefully handled—our model parameterGe may be well
bequested to render information onF if compared toG0 .

B. ‘‘Homogeneity’’ a5q2m

Besides the modulus, one is interested in the relaxatio
time spectrum, especially the power law regions. In spite o
the data collapsing forGe indicating a general physical
mechanism of fillers upon the equilibrium modulus,a is
strongly dependent on the very single series, i.e. the unde
lying network. a is very sensitive on the accuracy of the
constructed master curves. For the NR32237 series the da
points show the clear behavior plotted in Fig. 11. Fig. 12
displays the data for the carbon black filled series S10. Fo
the silica filled samples the variation is much more signifi-
cant than for the carbon black series. The last could in fac
also be fitted by an exponential. Nevertheless all data point
displayed in Fig. 11 are side-checked to be reliable and, in
addition, both kinds of fillers should cause a similar effect.
Formula ~13! is thus applied to both of them showing nice
agreement~even for Fig. 12 this is a meaningful statement
despite of the use of three fit parameters to merely four dat
points as Eq.~13! issues a very unique behavior!. For F50
a bears its largest value~maximum presence of polymer!.
Addition of filler causes a decreasing ofa and forF→Fcrit

es FIG. 11. Difference of the fractal parametersa5q2m for the series
NR32237 fitted by modified VTF law forFcrit50.936 phr and 0.798 phr
~dashed!.

No. 16, 22 October 1995
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7185Metzler et al.: Relaxation in filled polymers
only a small constant value responsible for the polymer
cupying the remaining space in between the percolating fi
should be left whereas the filler’s contribution vanishes id
tical to zero. A possible function fulfilling these requiremen
is the modified Vogel–Tamann–Fulcher~VTF! relation:

a5a rem1avar5a rem1a0exp
b

F2Fcrit
, ~13!

wherea rem denotes the remaining polymer for the critical
filled system and varyingavar is caused by polymer succe
sively replaced by filler material. Equation~13! has a hori-
zontal asymptote issuing the critical behavior in the vicin
of Fcrit . The value of the critical filler concentration is take
from theGe fit.

a0 is about 0.025 for NR32237 and 0.074 for S10. Th
a0 may be a candidate parameter to distinguish betw
filler types. Of course this statement needs verification
further experimental results not accessible to us so far.

This way, for the description of both quantities, equili
rium modulus anda altogether 4 fit parameters are neede
a may be interpreted as a measure of homogeneity. For
cessively added filler, i.e. for increasing structural inhom
geneity,a is decreasing. BothGe anda show clear behav-
iors in their variance uponF and vary in an expected
manner.

C. Other parameters

The behavior of all the involved fit parameters for S10
shown in Table II. Concerning the other occurring para
eters not discussed so far.Gm stays approximately constan
within one series but is dependent on the underlying n
work, i.e. dependent on the single series. Thus it is a cha

FIG. 12. Difference of the fractal parametersa5q2m for the series S10.
Fit by modified VTF law forFcrit50.901 phr and 0.805 phr~dashed!.

TABLE II. Parameters of the fractional model for the series S10.

Filler content@phr# q m Gm Ge Ginf t0

0 0.663 0.544 253 2.10 0.547 2.60•1028

20 0.631 0.535 254 4.82 0.713 4.27•1028

40 0.556 0.474 246 21.0 0 3.33•1027

60 0.551 0.477 217 53.1 0 4.54•1027
J. Chem. Phys., Vol. 103,
c-
ler
n-
ts

y
-

ty
n

s
en
by

-
d.
uc-
o-

is
-

t
et-
ac-

teristic quantity of the free network exclusively. Both of the
single fractional parameters,q andm, decay with increasing
filler content andq ranges in between ca. 0.8...0.5. The frac
tal parameters influence the whole shape of the modulus ov
the frequency axis so that both underlying network and fille
are responsible for their actual quantities. The range ov
whichq ranges for silica filled samples is approximately of a
factor of 2 in comparison to both of the carbon black serie
It is thus a reliable differentiation upon the filler type if a
whole series onF50,...,F.Fcrit is available.G` is always
relatively small—mostly even less than one—so that it i
only relevant for small filler concentrations where it is abou
a factor of 4 less thanGe . It determines the slope of the
storage modulus for low frequencies.t0 is merely a horizon-
tal shift in the log–log plot. It does vary within one order of
magnitude. AsGm is à–peu–pre`s constanthm is varied in-
versely proportional tot0 .

V. CONCLUSIONS

The concept of fractional relaxation was successfully ap
plied to describing filled polymer networks. Despite the
growing structural inhomogeneity with the addition of filler
material this homogeneous phenomenological concept do
provide an appropriate tool to modeling relaxation dynamic

The equilibrium modulus shows a critical behavior in
consistence with a simple percolation picture. The function
form follows well-known relations developed by Eilers and
van Dijck and Brinkman. In this scheme of percolation the
filler constitutes clusters the correlation length of which di
verges in the vicinity ofFcrit . By the same time the relax-
ation time spectrum becomes more and more flat involving
relatively higher percentage of longer relaxation times. Th
dependence ofa5q2m onF may be described by a Vogel–
Tamann–Fulcher law with an additional constant.

A clear dependence onF is exhibited by bothGe and
a but they do not give knowledge about the type of the fille
particles. This is provided by the range of variance of th
fractional parameterq being of a factor of about 2 for silica
particles in comparison to carbon black.
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