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Abstract 

In recent years the phenomenon of anomalous diffusion has attracted more and more attention. 
One of the main impulses was initiated by de Gennes' idea of the "ant in the labyrinth". Several 
authors presented asymptotic probability density functions for the location of a random walker 
on a fractal object. As this density function and the time dependence of its second moment are 
now well established, a modified diffusion equation providing the correct result is formulated. 
The parameters of this fractional partial differential equation are uniquely determined by the 
fractal Hausdorff dimension of the underlying object and the anomalous diffusion exponent. The 
presented equation reduces exactly to the ordinary isotropic diffusion equation by appropriate 
choice of the parameters. A closed form solution is given in terms of Fox's H-function. In the 
asymptotic case a "halved" diffusion equation can be established. Furthermore, the differences to 
equations considered previously are discussed. 

1. Introduction 

In regular Euclidean spaces with dimension d, d a positive integer, the mean-square 

displacement o f  a random walker is given by ( r 2 ( t ) )  ,-~ t. Nevertheless, anomalous 

diffusion is theoretically predicted and experimentally observed [ 1-5] .  A process is 

referred to as anomalous diffusion i f  

(r2( t) ) ~ t 2/aw, (1)  

where dw is the anomalous diffusion exponent. Both cases enhanced and reduced diffu- 

sion speed are possible,  though, for a random walk on a fractal object only the second 

case occurs, i.e. dw > 2. The reason is given by the geometric obstacles existing on all 

length scales that slow down the random walker. 

The quantity dw can be computed for exact fractals and for percolation clusters 

near criticality. In their review, Havlin and Ben-Avraharn [4] also present the l imit ing 
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behaviour for the random walk's asymptotic probability density. The argumentation bases 
on scaling arguments as well as computer simulations for corresponding random walks. 
The result is a "stretched exponential" of the form [4] 

P(r ,  t) ~ A t  -dJdw e -c(r/R)", (2) 

valid in the asymptotic range r / R  >> 1 and t --~ ~ .  R and u are defined by 

g = v ~ ( t ) ) ,  (3) 
dw 

u = dw - 1' (4) 

so that the probability density (2) has a very unique shape. Nevertheless, this behaviour 
can be regarded as a general property of random walks on fractal objects of any kind. 
In the following the asymptotic limitation where (2) is valid is always referred to 
when we speak of the asymptotic behaviour of probability densities. In (2) two free 
parameters occur: the anomalous diffusion exponent dw and the fractal dimension df  
of the underlying object. The fraction 2df /dw is just the fracton dimension (spectral 
dimension) ds of the fractal [6]. 

In this paper we demonstrate that anomalous diffusion with the asymptotic behaviour 
(2) is provided by the phenomenological diffusion equation 

Ot2/dwP(r't) - r d,-I Or rd'-I  P ( r , t )  , (5) 

which is a fractional partial differential equation. In comparison with the ordinary 
isotropic diffusion equation in d dimensions, 

0 rd-----iO--~l 0 ( O ) ~ P ( r , t )  = r a-1 P ( r , t )  , (6) 

the Laplacian operator is generalized by introducing a non-integer dimension ds and the 
temporal differential operator is replaced by a fractional time derivation of order 2/dw, 
which is defined via the convolution integral [ 12] 

t 

02/d~ 1 O far P ( r , r )  
Ot2/dw P ( r ' t )  -- F(1 -2-2/dw) Ot j ( t~-~)57 dw (7) 

o 

for 0 _< 2/dw < 1. Starting out from a very general modified diffusion equation it will 
be shown in Section 3 that the fractional diffusion equation (5) is compatible with 
the conditions (1) and (2) and that the parameters in (5) are uniquely determined. 
Furthermore, the solution of Eq. (5) can be expressed in closed form by an H-function 
[ 13]. In order to discuss the connection between (5) and the equation proposed by 
Giona and Roman [ 10], a "halved" diffusion equation is constructed on the basis of 
(5) in Section 4. In the final section an interpretation of our Eq. (5) and the occurring 
parameters is given. 
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2. R~sum~ of earlier proposed equations 

15 

Before we start "deriving" Eq. (5) we, at first, briefly review some modified diffusion 
equations. Taking care of the anomalous time-behaviour ( 1 ) only, Schneider and Wyss 
[7] presented a fractional diffusion equation of the form 

t 

1 f 1.)2/aw_ 1 0 2 P(r, t) = fo(r) + r(e/aw------Y 
0 

where the convolution integral represents an integration of order 2/dw, and fo(r) is the 
initial distribution. The formulation as a fractional integral equation has the advantage 
of directly including a given initial value [ 8 ]. The solution can be given analytically 
in terms of Fox's H-function and the computation of its second moment delivers (1). 
Nevertheless, this equation can be denied at once for our purposes by taking into con- 
sideration that two free parameters are needed in the distribution function's asymptotic. 
In Eq. (8) only one, 2/dw, occurs. 

Another attempt is given by O'Shaugnessy and Procaccia [9]. Based on scaling and 
renormalization arguments they derive the equation 

OP(r,t) 1 O (K(r)rO_lOP(r,t) ~ 
Ot - r D-l or \ ~ ] '  (9) 

where an r-dependent diffusion coefficient 

K(r) = Kr -°  (10) 

is assumed. K is a constant and O = D + a - 2. The Laplacian operator is modified 
by introducing a general dimension D in the exponent of r. D can be identified with 
the Hausdorff dimension of the underlying fractal structure. Additionally, a second 
parameter, O, is amended. This is to be seen as a direct consequence of the Einstein 
relation connecting the diffusion constant K(r) and the underlying object's electrical 
conductivity, tr is the scaling power of r for the electrical resistance [9]. The exact 
solution to (9) is [9] 

2 + 0 ( 1 )  D/(2+°) 
P(r,t) = D F ( D / ( 2 + O ) )  K(2+O)2 t  

( r +O) 
xe xp  K(2+O)2 t  . (11) 

Comparing the second moment of ( 11 ) with ( 1 ), 2 + O is readily identified with dw, 
the anomalous diffusion exponent. But this solution (11) lacks the unique scaling in the 
exponential function as required by (2).  Thus, this equation also does not provide the 
requested asymptotic behaviour (2). 

Giona and Roman [ i0] attacked both the time derivative and the Laplacian. Taking 
the semi-differential diffusion equation of Oldham and Spanier [ 11,12] as starting point, 
they construct the modified equation 
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3Udwp(r't) - G  1 3  (rKP(r,t)), (12) 
3t 1/d~ = r K 3r 

which can be considered as a "halved" diffusion equation. In Section 4 we will go into 
more detail concerning this "halved" equation. In (12), a fractional time derivative of 

order 1/dw is introduced and the abbreviation K is given by K = df/dw - 1/2. In [10] 
the asymptotic behaviour of P(r, t) is calculated via the method of steepest descent 
leading to the correct asymptotic form (2). In terms of an H-function the solution of 
Eq. (12) can be given exactly as 

p(r,t)  = Br_dI Hl,O l r (1,1/dw) ] 
' ~ ( d f - K , 1 )  ' (13) 

where B is a constant. The asymptotic behaviour (2) can therefore be calculated from 

(13), as well. But by an appropriate choice of the parameters dw ~ 2 and df --+ d 
neither (12) nor (13) do reduce to the d-dimensional ordinary diffusion equation (6) 
and Gaussian solution, respectively. Only for the special values d = I and d = 3 the 
reduction is working. The reason for this inconsistency, especially for d = 2, is due to 
the formulation of a "halved" equation which is only exact for the special values d = I 
and d = 3 (see Section 4). To overcome this limitation a "full" diffusion equation has 
to be formulated. 

3. G e n e r a l  case  

In the following a generalized diffusion equation is introduced and it is shown that only 
a particular set of parameters can reproduce (1) and (2). Considering the diffusion- 
type Eqs. (9) and (12), a generalized (and still exactly solvable) fractional partial 

differential equation embracing Eqs. (9) and (12) can be written out as follows: 

3 ~ P ( r , t ) -  1 3 ( ff-~ ) 3t---~ r D-I Or r-°rt)-I P(r, t) . (14) 

Here, yet three parameters, y, D and O are present. They are to be specified in the 
further procedure. The reason for the consideration of the additional power O of r is 
to investigate whether the argumentation of O'Shaugnessy and Procaccia [9] can be 
saved somehow. It should not be denied from the very beginning. But before starting 
off towards the solution it is worth remarking that a term of the form 

air 2. P(r, t), (15) 

a an arbitrary constant, may be added to (14) without changing the asymptotical shape 
of the solution. Such an additionary term cancels out in the asymptotic expansion. In 
fact, this peculiarity enables one to obtain the correct form (2) from Eq. (12). 

Let us first summarize the following procedure as a kind of recipe providing a helpful 
survey over the steps to come: After the (i) Solution of the fractional partial differential 
equation in the Laplace domain including the (ii) Fulfilling of the asymptotic decrease 
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for large r the (iii) Normalization condition determines the shape of the solution in 
Laplace-space unequivocally. Subsequent (iv) Inversion of the Laplace transformation 
reveals the general solution of Eq. (5) in the time domain and the free parameters are 
successively determined by the (v) Calculation of the second moment and comparison 
with (1) and the (vi) Adjustment of the solution's asymptotic expansion to Eq. (2). 

(i) Application of the Laplace transformation 

OO 

P( r ;  s) = / d t  e -st P(r, t) (16) 
, I  

o 

to Eq. (14) results in the ordinary differential equation 

s ~ ' ( r ; s ) -  1 O ( ~r- ) r °-1 Or r-°r°-I  P(r;s) (17) 

in the Laplace space. The solution can be given in terms of Bessel functions of the 
first and second kind depending on a complex variable or in terms of modified Bessel 
functions of a real argument. 

(ii) By physical reasons, the result is not allowed to tend to infinity for r going to 
infinity. Thus the result of (17) is 

(r(2+O)/2~l-D/(2+O) ( 2 ~  ) 
f i ( r ; s ) = A \  s-~ J Kv r(2+O)/2SY/2  , (18) 

where v = 1 - D/(2 + O) is the order of the modified Bessel function K~ [ 14]. A is a 
constant of integration possibly depending on s. 

(iii) The arbitrariness of A = A(s) can be removed by demanding P(r, t) to be 
normalized for all times, i.e. (PN(r, t)) = 1 or 

(PN(r;s))= 1 (19) 
s 

The index N denotes the normalized distribution function. The volume element in the 
procedure of normalization shall follow a scaling law 

dV o( rd-ldr, (20) 

with d left unspecified for the moment. Of course, it is expected to be dy, the Hausdorff 
dimension of the underlying fractal geometry. But it will be shown in course of our 
argumentation that it is actually completely determined. Thus the normalization condition 
can be written in the form 

OO 

(#N(r;s))=Q(s) fdr/-'P(r;s) = -'sl (21) 

o 
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where Q(s) guarantees the correct s-dependence. Finally, the normalized result in s- 
space 

2/y-2d/(2+O) #sv(r; s) = .Yi @(2+o)/2) 

×H2:0 ( 2 ) 2 ' r r ( 2 + o ) / r  s ( a + v  1 )  ( r e - ,  1 )  ] 
\ ~ - - O . }  2 ' ' 7 ' (22) 

is obtained. Here, the modified Bessel function is already expressed by its corresponding 
H-function [ 13]. ,~ is a constant and the abbreviations re and v are standing for 

2d 2 
re = + v (23) 

2 + 0  31 

and 

D 
v = 1 - _-----~, (24) 

e , + 2  

respectively. 

(iv) The next step in the general procedure is the back-transformation to time-space. 
This step is quite easy for the class of H-functions because the integral transformation 
reduces to a formal manipulation of the parameters of the H-function [ 15]. The result 
is 

Psv( r, t) = A* (r(2+°)/2) 2/~'-2a/(2+°) 
t 

[( 2 "~ 2/~ r(2+°)/~ 
×.2...0 L t rc-  j , 

(0, 1) ] 

(25) 

with A* being a constant. For an H-function 

[ [(ap,Ap)] (26)  npm'q n Z (bq,  Bq) ' 

with n = O, the asymptotic behaviour for ]zl >> 1 becomes exponential [ 13] 

rn'° [Z ] O(exp(-lZZi/~'[71/*`) z (p+1/2'/t*) (27) np,q ,~" 

provided that A > 0, [ arg z[ < rrM2, and #.t > 0. O denotes the well known Landau 
symbol and the Greek letters symbolize 

p q 

jS= H (Aj)AJ H (Bj)-sJ, 
j=l j=l 

(28) 
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q 
2' 
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q p 

p= Z b j -  E a j +  P (29) 
2 

j= l  j= l  

q P 

Iz= Z Bj - E A j, (30) 
j= l  j= l  

m q p 

A = ~ - ' ~ B j -  E B j - Z A J "  (31) 
j= l  j=m+ 1 j= l  

For the special case (25) this means p = a - 1 and/~ = 2/% Since v cancels out 
according to (29), and with it every term of the form (15), it does not affect the 
asymptotic behaviour. In the asymptotic domain, (25) is now revealed to be of  the form 

PN(r,t) ~ r2/-Trcr-~ t ~  exp - c  r(2+°)/2/F/2 , (32) 

which is of the required type. 

(v) The time-dependence of the distribution's second moment may be calculated from 

(r2(s)> = f dr rd-lr2pN(r; s) , (33) 

o 

leading to 

(rZ(t)> c~ t]r~o (34) 

in the time domain. We require the power of t in (34) to be equal to 2/dw. A relation 

23/ 2 
2 + O - dw (35) 

emanates connecting y and O. Three different cases are worth mentioning. For arbitrary 
values of y, O must be equal to dwy - 2. The special cases with 9' = 1 requiting O = 
dw - 2, and y = 2/dw demanding O = 0 regain the models discussed by O'Shaugnessy 
and Procaccia [9], and Giona and Roman [ 10], respectively. 

(vi) Using (35), the result of the introduced diffusion equation (14) in the asymptotic 
domain has the form 

PN(r, t) ,~ r 2/,-, t~2-,)dw exp - c  rdwy/2/t y/2 l/(1-y/2) 

where c is a constant. Comparison of the exponential functions in (36) and (2) leads 
to 

dw dw 
- ( 3 7 )  

2 / y -  1 d w -  1 
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Thus, the only possible value for 3/ is 3/ = 2/dw. The powers of r and t before the 
exponential function demand 

d - d w D / 2  = 0 (38) 
dw - 1 

and 

D - 2d d I 
w 

2(dw - l) dw' 
(39) 

respectively. 

With (38) and (39) we arrive at the generalized diffusion equation (5) with ds = 
2df/dw. Hence, all the parameters occurring in (14) are uniquely determined and in 
addition the volume element (20), necessary in the calculation of the moments scales 
with d = df, as expected. According to (25), the solution of (5) is given by 

r& -dww'  1) 
PN(r,t)  = A*t -az/dw H~I ° --7- d f  , (40) 

dw'  , O, 

with the constant A* defined by 

2-dw-3dw 
A* = (41) 

r (-'2 + d :  - ½d,) r (½d:)" 

The H-function occurring in (40) can be expressed via a convergent power series 

expansion [13] with the result 

PN(r, t)  = A * ~ t  -d:/dw 

j--o F - & - d-7 --d~ 

+ Z F d l _ d e  ~j'~ (42) 
j=0 

For r -~ 0 the probability density becomes PN(r = O, t) (x t -dl/dw which is the tempo- 
ral decreasing of the returning probability to the origin [4]. For t --* 0, rdI-IPN(r, t) 
approaches the &function, 6 ( r ) ,  so that PN (r, t) actually describes the location prob- 
ability of a particle starting at r = 0. In the limit of a small argument, i . e .  r&/ t  <<5. 1, 
an algebraic behaviour is revealed. The density PN(r, t) is monotonically decreasing in 
r. The spreading of the probability in course of time is slower than in the normally 
diffusive case. In Fig. 1 PN(r, t ) /A* is plotted versus r for the times t = 0.5, 1,3, 10. 
The chosen values of the fractal dimension, df  = 1.58 and the anomalous diffusion 
exponent, dw = 2.32, correspond to the two-dimensional Sierpifiski gasket [4]. 
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Fig. 1. Probabili ty densi ty (40)  for d f  = 1.58 and dw = 2.32 at the times t = 0.5, 1,3,  10 ( the curve with the 
largest value at r = 0 corresponds to the smallest  t ime) .  

4. The "halved" diffusion equation 

What is actually meant by this term? To see this, and how Eq. (12) fits into the 
whole scheme, let us briefly remind the procedure of  Oldham and Spanier [ 11,12] for 
the one-dimensional case before starting out for the general case of  re-writing Eq. (5) 
as a "halved" one. 

The standard diffusion equation in one dimension is 

&2 ~ P(r,  t) = ~r2P(r, t) (43) 

and the solution in the Laplace domain is P(r;s)  = aexp(v / - s r )  + f l e x p ( - x / ~ r  ). 
By requiring a finite total probability, a must be zero. So the result in s-space is 

P(r; s) = f l e x p ( - x / ~ r ) ,  where fl may still be dependent on s. The first derivative of  
this exponential function is 

0 ~ 
- -P( r ;  s) = - v G  P(r; s). (44) 
8r 

Back-transformation results - by use of  the definition of  a fractional derivative - in 

&l/2 
Otl/iP(r, t) = - O t), (45) 

which is the semi-differential or "halved" one-dimensional diffusion equation. 
Following this scheme, we now start out from the generalized diffusion equation (5) 

and rewrite it as a "halved" equation. In s-space the solution of  (5) may be written as 

P(r;s )  = ~rl-ds/2Kds/2_ 1 (rs 1/dw) (46) 
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where/3 is an s-dependent coefficient. 
A general feature of Bessel functions is the following property [ 14] : 

d 
- - z - ~ K ~  (z)  = - z -~K~+l  ( z ) ,  (47) 
dz 

so that we can deduce for P(r; s) in the Laplace domain 

s 1/dwl orP(r;O ~ s) = --f~rl-d~/2Kd,/2(rsl/dw ) 

= - P ( r ;  s) Kds/2(rsl/dw) (48) 
Kds/2_ 1 (rsl/dw) " 

A recursion formula for successive Bessel functions K~ may be written as [ 14] 

K~+I(Z._____~) = 1 + - -  1 1 + o  + - - .  (49) 
K~(z) z 2z z 

The infinite summation breaks off if and only if u = ±1/2 .  This means ds/2 -- 1/2, 3/2 
or df/dw = 1/2, 3/2. Especially for the case of normal diffusion, i.e. dw = 2, the 
transition to a "halved" diffusion equation is only possible for one- and three-dimensional 
geometries. Nevertheless, in the limit z >> 1, 

KI,+I (z)  1 + 1/2 +------Z, (50) 
K~(Z) z 

so that in this limit the transition to such a "halved" equation for arbitrary ds is allowed. 
The result is 

-~r P ( r ; s ) = -  sl/dw+ r - P ( r ;  s). (51) 

Rewritten in time-space we arrive at 

01/dw 
tgll/d~ P( r, t) = --rl/2-ds/2 Lrds/2-1/2p(r,or t), (52) 

which is valid in the asymptotic case, only. Thus, we have constructed Eq. (12) properly 

and have shown its limitation to the asymptotic domain. 

5. Conclusions 

We have formulated a generalized diffusion equation composed of an extended Lapla- 
cian operator and a fractal time derivative. By comparison to the known results, second 
moment (1) and asymptotic probability density function (2),  the introduced parameters 
could be reduced and the remaining two could be assigned definite values, df and dw, 
the fractal Hausdorff dimension and the anomalous diffusion exponent, respectively. The 
presented equation reduces exactly to the ordinary diffusion equation in d-dimensional 
Euclidean space for appropriate choice of the free parameters. The equation can be 
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solved exactly in terms of an H-function. This solution is valid for all t and for all r. 
A corresponding "halved" diffusion equation in space-time is revealed as an alternative 

formulation which is valid in the asymptotic domain. A generalization in the sense of 
O'Shaugnessy and Procaccia, i.e. by amending r -~  inside the Laplacian operator, cannot 
provide the demanded result. 

In our diffusion equation (5) three types of generalizations occur: the scaling of the 
volume element in the normalization integral, the fractal time derivative and the altered 

Laplacian operator. Those facets shall now be accounted for. 
For calculating the moments of P(r ,  t) the integration has to be performed by use 

of a volume element scaling with the fractal Hausdorff dimension of the underlying 
geometrical object. By definition, the integration for the calculation of the moments, 
especially the normalization, must average a given function on the hypervolume on 
which it is defined. Thus it seems to be quite clear that dV must be of the revealed 

form, i.e. V must scale with the fractal dimension df since the integral is to be calculated 

on the static fractal structure. 
For the fractional time derivative the following reasoning applies. Given the asymptotic 

distribution function one can calculate its moments. The moment-operator .~n shall have 
the property ~np  (r, t) = (r n ( t)) .  A straightforward integration results in 

• 4nP(r,  t) = ant n/a', (53) 

where an is a constant. The proposed Eq. (14) with O = 0 can be restated in a more 
general way using an arbitrary time-operator 7 ~ that shall be dependent on time only, 

~ P (  r, t) = rl-D O-~-rO-l cgrP( r, t) .  (54) 
ar 

Now ~n is applied on both sides of Eq. (54). The rhs can be restated by use of an 

integration by parts as 

CX~ 

rhs = / dr BrdI+n-3p(r, t ) ,  (55) 
J 

0 

valid for all n > 2. B is a constant. Thus the rhs of (53) can be re-written as 
rhs = Ban_2t n/a'-2/aw. The exponentially decreasing shape of the probability func- 
tions' asymptotic form causes [~?,-~n] = 0 so that the lhs of (54) after application of 
/~n becomes lhs = Tant n/a'. Hence the following equation emanates for 

]~t n/d" = Bn tn/dw-2/dw, (56) 

which is fulfilled by a fractional time derivation operator of  the order 2/dw. For every 
n > 2, the n-dependent coefficients cancel out in the same way, so that ~ is uniquely 
determined for all moments with n >__ 2. 

The effect of  the occurring differential operator is the introduction of a memory effect. 
Contrary to the Euclidean case, former values of P(r ,  t) influence the present value of 
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P(r ,  t).  The memory effect in the time domain reflects the correlation in space caused 
by the fractal geometry. 

A question that is still open, is why the fracton dimension happens to occur in the 
Laplacian operator. The proposed diffusion equation can be considered in terms of an 
effective volume Very = r d` entering into the Laplacian operator. Thus the diffusing 
particles "see" their environment not as a fractal of its Hausdorff-dimension df but as a 
fractal of the fracton dimension ds, where ds < df.  
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