Polymer translocation through nanopores

– Typeset by FoilT $_{E}X$ –

Theoretical and Computational Biophysics Group, University of Illinois, Urbana-Champaign

A Meller, L Nivon & D Brenton, PRL 86 (2001)

Cees Dekker group, TU Delft

11.0

240-12/11

J HANA

-

1

ETTER

and the

maille

110

-

SU

and the state

No.

ANT -

TIM

The state

-

Polymer model for translocation

- 1. Chain is polymer with N monomers
- 2. Chain is already threaded into pore
- 3. Reflecting B.C. @ s = 0
- 4. Absorbing B.C. @ s = N
- 5. Neglect chain-pore interactions
- 6. \exists reaction coordinate:

 $s = \# \left\{ \begin{array}{c} \text{translocated} \\ \text{monomers} \end{array} \right\}$

Entropic barrier

 \rightsquigarrow driving force needed for efficient translocation

J Chuang, Y Kantor & M Kardar, PRE (2001)

Driving force

Driving force creates chemical potential difference $\Delta\mu$ per monomer \rightsquigarrow drift

- 1. Trans-membrane potential
- 2. Binding proteins
- 3. Cis confinement (e.g., virus)
- 4. Active pulling

Driving: neglect polymeric d.o.f.

Driving: neglect polymeric d.o.f.

Forward translocation rate:

 $\mathsf{t}^+(m,n)=k$

Forward translocation rate:

 $\mathsf{t}^+(m,n)=k$

Backward translocation rate:

$$t^{-}(m,n) = k \times \Pr \left\{ \begin{array}{l} \text{trans binding site} \\ \text{site closest to} \\ \text{pore is vacant} \end{array} \right.$$

Forward translocation rate:

 $\mathsf{t}^+(m,n) = k$

Backward translocation rate:

$$t^{-}(m,n) = k imes \Pr{}$$

trans binding site site closest to pore is vacant

Chaperone unbinding rate:

 $\mathsf{r}^-(m,n)=nq$

Chaperone unbinding rate:

 $\mathsf{r}^-(m,n)=nq$

Chaperone binding rate:

$$\mathsf{r}^{+}(m,n) = c_0 K^{\mathrm{eq}} \times \mathscr{N} \begin{cases} \text{ways to add addtl} \\ \text{chaperone if} \\ n \text{ bound already} \end{cases}$$

T Ambjörnsson & RM, Physical Biology (2004); T Ambjörnsson, MA Lomholt & RM, J Phys Cond Mat (2005)

- 1. Slow binding dynamics: purely diffusive motion $au_T \simeq N^2$
- 2. Slow unbinding dynamics: ratcheted motion $\tau_T\simeq N$
- 3. Fast binding/unbinding: adiabatic elimination of chaperone dynamics

- 1. Slow binding dynamics: purely diffusive motion $au_T \simeq N^2$
- 2. Slow unbinding dynamics: ratcheted motion $au_T \simeq N$
- 3. Fast binding/unbinding: adiabatic elimination of chaperone dynamics

T Ambjörnsson & RM, Physical Biology (2004); T Ambjörnsson, MA Lomholt & RM, J Phys Cond Mat (2005)

Dependence of mean translocation velocity on binding strength:

T Ambjörnsson & RM, Physical Biology (2004); T Ambjörnsson, MA Lomholt & RM, J Phys Cond Mat (2005)

13

Mean translocation time as function of chain length:

T Ambjörnsson & RM, Physical Biology (2004); T Ambjörnsson, MA Lomholt & RM, J Phys Cond Mat (2005)

Polymer translocation: many groups, many opinions ...

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Continuity equation:

$$\frac{\partial}{\partial t}P(s,t) = -\frac{\partial}{\partial s}j(s,t)$$

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Continuity equation:

$$\frac{\partial}{\partial t}P(s,t) = -\frac{\partial}{\partial s}j(s,t)$$

Probability current:

$$j(s,t) = -D\left(\frac{\partial}{\partial s}P(s,t) + \frac{P(s,t)}{k_BT}\frac{\partial}{\partial s}\mathscr{F}(s)\right) \quad \therefore \quad D = \frac{\mu}{k_BT}$$

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Continuity equation:

$$\frac{\partial}{\partial t}P(s,t) = -\frac{\partial}{\partial s}j(s,t)$$

Probability current:

$$j(s,t) = -D\left(\frac{\partial}{\partial s}P(s,t) + \frac{P(s,t)}{k_BT}\frac{\partial}{\partial s}\mathscr{F}(s)\right) \quad \therefore \quad D = \frac{\mu}{k_BT}$$

Resulting Fokker-Planck equation (rescaled à la $s \rightarrow sN$ & $t \rightarrow tD/N^2$):

$$\frac{\partial}{\partial t}P(s,t) = \frac{\partial^2}{\partial s^2}P(s,t) + (\gamma_{\mathscr{G}} - 1)\frac{\partial}{\partial s}\frac{1 - 2s}{(1 - s)s}P(s,t)$$

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Continuity equation:

$$\frac{\partial}{\partial t}P(s,t) = -\frac{\partial}{\partial s}j(s,t)$$

Probability current:

$$j(s,t) = -D\left(\frac{\partial}{\partial s}P(s,t) + \frac{P(s,t)}{k_BT}\frac{\partial}{\partial s}\mathscr{F}(s)\right) \quad \therefore \quad D = \frac{\mu}{k_BT}$$

Resulting Fokker-Planck equation (rescaled à la $s \rightarrow sN$ & $t \rightarrow tD/N^2$):

$$\frac{\partial}{\partial t}P(s,t) = \frac{\partial^2}{\partial s^2}P(s,t) + (\gamma_{\mathscr{G}} - 1)\frac{\partial}{\partial s}\frac{1 - 2s}{(1 - s)s}P(s,t)$$

Resulting scaling of translocation time $au_T \simeq N^2/D$

Translocation dynamics sufficiently slow \rightsquigarrow diffusion in potential with PDF P(s,t)

Continuity equation:

$$\frac{\partial}{\partial t}P(s,t) = -\frac{\partial}{\partial s}j(s,t)$$

Probability current:

$$j(s,t) = -D\left(\frac{\partial}{\partial s}P(s,t) + \frac{P(s,t)}{k_BT}\frac{\partial}{\partial s}\mathscr{F}(s)\right) \quad \therefore \quad D = \frac{\mu}{k_BT}$$

Resulting Fokker-Planck equation (rescaled à la $s \rightarrow sN$ & $t \rightarrow tD/N^2$):

$$\frac{\partial}{\partial t}P(s,t) = \frac{\partial^2}{\partial s^2}P(s,t) + (\gamma_{\mathscr{G}} - 1)\frac{\partial}{\partial s}\frac{1 - 2s}{(1 - s)s}P(s,t)$$

Resulting scaling of translocation time $au_T \simeq N^2/D$

NB: For $s\text{-independent drift:}\ \tau_T\simeq N/V$ where V the stationary velocity

Sung & Park, PRL 77 (1996), Muthukumar J Chem Phys 111 (1999)

Kramers escape theory across free energy barrier $\mathscr{F}(s)$ delivers diffusive scaling:

$$au_T \simeq rac{N^2}{D}$$

Kramers escape theory across free energy barrier $\mathscr{F}(s)$ delivers diffusive scaling:

$$au_T \simeq rac{N^2}{D}$$

First remark: au_T for crossing of $\mathscr{F}(s)$ only 20% longer than for pure diffusion

Kramers escape theory across free energy barrier $\mathscr{F}(s)$ delivers diffusive scaling:

$$au_T \simeq rac{N^2}{D}$$

First remark: τ_T for crossing of $\mathscr{F}(s)$ only 20% longer than for pure diffusion Second remark: Equil. time of free polymer estimated by diffusion over R_g :

$$au_R \simeq rac{R_g^2}{D_{
m c.o.m.}} \simeq rac{R_g^2 N}{D_{
m mon}} \simeq rac{N^{1+2
u}}{D_{
m mon}}$$

Kramers escape theory across free energy barrier $\mathscr{F}(s)$ delivers diffusive scaling:

$$au_T \simeq rac{N^2}{D}$$

First remark: τ_T for crossing of $\mathscr{F}(s)$ only 20% longer than for pure diffusion Second remark: Equil. time of free polymer estimated by diffusion over R_g :

$$au_R \simeq rac{R_g^2}{D_{
m c.o.m.}} \simeq rac{R_g^2 N}{D_{
m mon}} \simeq rac{N^{1+2
u}}{D_{
m mon}}$$

Phantom chain (u = 1/2): $au_R \simeq N^2/D_{
m mon}$ marginal

Kramers escape theory across free energy barrier $\mathscr{F}(s)$ delivers diffusive scaling:

$$au_T \simeq rac{N^2}{D}$$

First remark: τ_T for crossing of $\mathscr{F}(s)$ only 20% longer than for pure diffusion Second remark: Equil. time of free polymer estimated by diffusion over R_g :

$$\tau_R \simeq \frac{R_g^2}{D_{\text{c.o.m.}}} \simeq \frac{R_g^2 N}{D_{\text{mon}}} \simeq \frac{N^{1+2\nu}}{D_{\text{mon}}}$$

Phantom chain (u = 1/2): $au_R \simeq N^2/D_{
m mon}$ marginal

SA chain ($\nu(2D) = 3/4$ and $\nu(3D) = 0.59$): τ_R longer than translocation time τ_T fl

J Chuang, Y Kantor & M Kardar, PRE (2001)

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

1. Assume scaling $R_g\simeq N^{
u}$ and chain relaxation time $au_R\simeq R_g^z$ /w dynamic expt. z

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

- 1. Assume scaling $R_g\simeq N^{
 u}$ and chain relaxation time $au_R\simeq R_g^z$ /w dynamic expt. z
- 2. Translocation progress has variance $\langle \Delta s^2(t) \rangle \simeq t^{2\zeta}$

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

- 1. Assume scaling $R_g\simeq N^{
 u}$ and chain relaxation time $au_R\simeq R_q^z$ /w dynamic expt. z
- 2. Translocation progress has variance $\langle \Delta s^2(t) \rangle \simeq t^{2\zeta}$
- 3. $0 \tau_T \simeq N^{\nu z}$ we should reach the value $N^2 \simeq \langle \Delta s^2(\tau_T) \rangle \simeq \tau_T^{2\zeta} \simeq N^{2\zeta\nu z}$

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

- 1. Assume scaling $R_g\simeq N^{
 u}$ and chain relaxation time $au_R\simeq R_q^z$ /w dynamic expt. z
- 2. Translocation progress has variance $\langle \Delta s^2(t) \rangle \simeq t^{2\zeta}$

3. $0 \tau_T \simeq N^{\nu z}$ we should reach the value $N^2 \simeq \langle \Delta s^2(\tau_T) \rangle \simeq \tau_T^{2\zeta} \simeq N^{2\zeta\nu z}$

4. $\rightsquigarrow \zeta = 1/(\nu z)$

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

- 1. Assume scaling $R_g\simeq N^{
 u}$ and chain relaxation time $au_R\simeq R_q^z$ /w dynamic expt. z
- 2. Translocation progress has variance $\langle \Delta s^2(t) \rangle \simeq t^{2\zeta}$
- 3. $0 \tau_T \simeq N^{\nu z}$ we should reach the value $N^2 \simeq \langle \Delta s^2(\tau_T) \rangle \simeq \tau_T^{2\zeta} \simeq N^{2\zeta\nu z}$
- 4. $\rightsquigarrow \zeta = 1/(\nu z)$
- 5. For diffusive translocation $z=(1+2\nu)/\nu$ and thus $\zeta=1/(1+2\nu)$

Extended simulations in 1D: $au_T \simeq N^2$

In 2D: $au_T \simeq N^{2.5}$

Kantor & Kardar suggest $au_T \simeq N^{1+2
u}$ like chain relax. time au_R , but with large prefactor

Scaling argument for anomalous dynamics:

- 1. Assume scaling $R_g\simeq N^{
 u}$ and chain relaxation time $au_R\simeq R_q^z$ /w dynamic expt. z
- 2. Translocation progress has variance $\langle \Delta s^2(t) \rangle \simeq t^{2\zeta}$
- 3. $0 \tau_T \simeq N^{\nu z}$ we should reach the value $N^2 \simeq \langle \Delta s^2(\tau_T) \rangle \simeq \tau_T^{2\zeta} \simeq N^{2\zeta\nu z}$
- 4. $\rightsquigarrow \zeta = 1/(\nu z)$
- 5. For diffusive translocation z=(1+2
 u)/
 u and thus $\zeta=1/(1+2
 u)$
- 6. $\rightsquigarrow \zeta(2D) = 0.4$ and $\zeta(3D) \approx 0.46$, i.e., subdiffusion

J Chuang, Y Kantor & M Kardar, PRE (2001)

Pausing events of duration t distributed as

$$\psi(t) \simeq rac{ au^{lpha}}{t^{1+lpha}} \qquad \therefore \qquad \langle t
angle = \int_0^\infty t \psi(t) dt o \infty$$

Pausing events of duration $t\ {\rm distributed}$ as

$$\psi(t) \simeq rac{ au^{lpha}}{t^{1+lpha}} \qquad \therefore \qquad \langle t
angle = \int_0^\infty t \psi(t) dt o \infty$$

Associated dynamic equation: Fractional Fokker-Planck equation

$$\frac{\partial}{\partial t}P(s,t) = {}_{0}D_{t}^{1-\alpha} \left(-v_{\alpha}\frac{\partial}{\partial s} + K_{\alpha}\frac{\partial^{2}}{\partial s^{2}} \right)P(s,t); {}_{0}D_{t}^{1-\alpha}f(t) = \frac{\partial}{\partial t}\frac{1}{\Gamma(\alpha)}\int_{0}^{t}\frac{f(t')dt'}{(t-t')^{1-\alpha}}dt'$$

Pausing events of duration $t\ {\rm distributed}$ as

$$\psi(t) \simeq rac{ au^{lpha}}{t^{1+lpha}} \qquad \therefore \qquad \langle t
angle = \int_0^\infty t \psi(t) dt o \infty$$

Associated dynamic equation: Fractional Fokker-Planck equation

$$\frac{\partial}{\partial t}P(s,t) = {}_{0}D_{t}^{1-\alpha} \left(-v_{\alpha}\frac{\partial}{\partial s} + K_{\alpha}\frac{\partial^{2}}{\partial s^{2}} \right)P(s,t); \ {}_{0}D_{t}^{1-\alpha}f(t) = \frac{\partial}{\partial t}\frac{1}{\Gamma(\alpha)}\int_{0}^{t}\frac{f(t')dt'}{(t-t')^{1-\alpha}}$$

Moments:

$$\langle s(t)
angle \simeq v_{lpha} t^{lpha} \stackrel{!}{\simeq} \sqrt{\langle \Delta s^2(t)
angle} \qquad \qquad v_{lpha} = 0: \quad \langle s^2(t)
angle \simeq K_{lpha} t^{lpha}$$

Pausing events of duration t distributed as

$$\psi(t) \simeq rac{ au^{lpha}}{t^{1+lpha}} \qquad \therefore \qquad \langle t
angle = \int_0^\infty t \psi(t) dt o \infty$$

Associated dynamic equation: Fractional Fokker-Planck equation

$$\frac{\partial}{\partial t}P(s,t) = {}_{0}D_{t}^{1-\alpha} \left(-v_{\alpha}\frac{\partial}{\partial s} + K_{\alpha}\frac{\partial^{2}}{\partial s^{2}} \right)P(s,t); \ {}_{0}D_{t}^{1-\alpha}f(t) = \frac{\partial}{\partial t}\frac{1}{\Gamma(\alpha)}\int_{0}^{t}\frac{f(t')dt'}{(t-t')^{1-\alpha}}$$

Moments:

$$\langle s(t) \rangle \simeq v_{\alpha} t^{\alpha} \stackrel{!}{\simeq} \sqrt{\langle \Delta s^2(t) \rangle} \qquad v_{\alpha} = 0: \quad \langle s^2(t) \rangle \simeq K_{\alpha} t^{\alpha}$$

Mode relaxation:

$$T_n(t) = t_n E_\alpha \left(-\lambda_{n,\alpha} t^\alpha \right) \sim t_n \begin{cases} 1 - t^\alpha / \Gamma(1+\alpha) \\ t^{-\alpha} / \Gamma(1-\alpha) \end{cases}$$

RM & J Klafter, Biophys J (2003); Review: RM & J Klafter, Phys Rep (2000) & J Phys A (2004)

Agreement with simulations data: drift-free case

MC simulations: JLA Dubbeldam, A Milchev, VG Rostiashvili & TA Vilgis, PRE R.C. (2007)

Agreement with simulations data: constant drift case

MC simulations: JLA Dubbeldam, A Milchev, VG Rostiashvili & TA Vilgis, PRE R.C. (2007)

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

Excellent agreement with simulations [Dubbeldam et al, EPL (2007); Gauthier & Slater, JCP (2007)]

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

Excellent agreement with simulations [Dubbeldam et al, EPL (2007); Gauthier & Slater, JCP (2007)]

From theory with memory effects: $au_T \simeq N^{(1+2
u)/(1+
u)}$ [Vocks et al, J Phys Cond Mat (2008)]

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

Excellent agreement with simulations [Dubbeldam et al, EPL (2007); Gauthier & Slater, JCP (2007)]

From theory with memory effects: $\tau_T \simeq N^{(1+2\nu)/(1+\nu)}$ [Vocks et al, J Phys Cond Mat (2008)] Also corroborated by simulations [Vocks et al, J Phys Cond Mat (2008)]

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

Excellent agreement with simulations [Dubbeldam et al, EPL (2007); Gauthier & Slater, JCP (2007)]

From theory with memory effects: $\tau_T \simeq N^{(1+2\nu)/(1+\nu)}$ [Vocks et al, J Phys Cond Mat (2008)] Also corroborated by simulations [Vocks et al, J Phys Cond Mat (2008)]

¿ Can we reconcile these conflicting statements ?

REM: Rouse relaxation time $au_R \simeq N^{1+2
u}$

¿How does the translocation time scale with N: $au_T \simeq N^{lpha}$?

Kramers/Brownian approach: $au_T \simeq N^2$ unbiased, $au_T \simeq N$ with drift

Estimate for lower bound under driving: $au_T \simeq N^{1+
u}$ [Kantor & Kardar, PRE (2004)]

Excellent agreement with simulations [Dubbeldam et al, EPL (2007); Gauthier & Slater, JCP (2007)]

From theory with memory effects: $\tau_T \simeq N^{(1+2\nu)/(1+\nu)}$ [Vocks et al, J Phys Cond Mat (2008)] Also corroborated by simulations [Vocks et al, J Phys Cond Mat (2008)]

¿ Can we reconcile these conflicting statements ?

Yes, we can . . .

K Luo, T Ala-Nissilä, S-C Ying & RM, EPL (2009)

Slow versus fast translocation

In 3D interpolation between $\alpha = 1 + \nu \approx 1.59$ and $\alpha' = (1 + 2\nu)/(1 + \nu) \approx 1.37$

K Luo, T Ala-Nissilä, S-C Ying & RM, EPL (2009)

Fast translocation: nonequilibrium effects

K Luo, T Ala-Nissilä, S-C Ying & RM, EPL (2009)

Fast translocation: nonequilibrium effects

K Luo, T Ala-Nissilä, S-C Ying & RM, EPL (2009)

Fast translocation: nonequilibrium effects

	F	ξ	F/ξ	$lpha \; (au \sim N^{lpha})$	$\delta~(v \sim N^{\delta})$	$eta \; (\langle s(t) angle \sim t^eta)$	lphaeta
Fast	10.0	0.7	14.28	1.37 ± 0.02	-0.79 ± 0.01	0.84 ± 0.01	1.15
	5.0	0.7	7.14	1.37 ± 0.05	-0.79 ± 0.02	0.85 ± 0.01	1.16
Slow	5.0	3.0	1.67	1.52 ± 0.01	-0.94 ± 0.01	0.71 ± 0.01	1.08
	2.5	3.0	0.83	1.51 ± 0.02	-0.95 ± 0.02	0.69 ± 0.01	1.04
	0.5	0.7	0.71	1.58 ± 0.03	-1.01 ± 0.02	0.64 ± 0.01	1.01

K Luo, T Ala-Nissilä, S-C Ying & RM, EPL (2009)

Variations on a theme

K Luo, RM, T Ala-Nissilä & S-C Ying, PRE (2009); K Luo & RM, JCP (2010), PRE (2010)

Chain /w N monomers of diam. σ

Chain /w N monomers of diam. σ

 $\sigma \ll R \ll R_g$: 2D SAW of n_b blobs

Chain /w N monomers of diam. σ

 $\sigma \ll R \ll R_g$: 2D SAW of n_b blobs

$$g = \left\{ \begin{array}{c} \# \text{monom.} \\ \text{per blob} \end{array} \right\} = \left(\frac{R}{\sigma} \right)^{1/\nu_{3D}}$$

Chain /w N monomers of diam. σ $\sigma \ll R \ll R_g$: 2D SAW of n_b blobs

$$g = \left\{ \begin{array}{c} \# \text{monom.} \\ \text{per blob} \end{array} \right\} = \left(\frac{R}{\sigma}\right)^{1/\nu_{3D}}$$

$$n_b = \left\{ \# \mathsf{blobs} \right\} = \frac{N}{g}$$

Chain /w N monomers of diam. σ

 $\sigma \ll R \ll R_g$: 2D SAW of n_b blobs

$$g = \left\{ \begin{array}{c} \# \text{monom.} \\ \text{per blob} \end{array} \right\} = \left(\frac{R}{\sigma}\right)^{1/\nu_{3D}}$$

$$n_b = \left\{ \# \mathsf{blobs} \right\} = \frac{N}{g}$$

Longitudinal size of polymer:

$$R_{\parallel} \simeq n_b^{\nu_{2D}} R \simeq N^{\nu_{2D}} \sigma \left(\frac{\sigma}{R}\right)^{\nu_{2D}/\nu_{3D}-1} \simeq N^{3/4} \sigma \left(\frac{\sigma}{R}\right)^{0.28}$$

Chain /w N monomers of diam. σ

 $\sigma \ll R \ll R_g$: 2D SAW of n_b blobs

$$g = \left\{ \begin{array}{c} \# \text{monom.} \\ \text{per blob} \end{array} \right\} = \left(\frac{R}{\sigma}\right)^{1/\nu_{3D}}$$

$$n_b = \left\{ \# \mathsf{blobs} \right\} = \frac{N}{g}$$

Longitudinal size of polymer:

$$R_{\parallel} \simeq n_b^{\nu_{2D}} R \simeq N^{\nu_{2D}} \sigma \left(\frac{\sigma}{R}\right)^{\nu_{2D}/\nu_{3D}-1} \simeq N^{3/4} \sigma \left(\frac{\sigma}{R}\right)^{0.28}$$

Longit. relax. time: polymer moves by its own size (diffusivity $D \simeq 1/N$):

$$\tau_{\parallel} \simeq \frac{R_{\parallel}^2}{D} \simeq N^{1+2\nu_{2D}} R^{2(1-\nu_{2D}/\nu_{3D})} \simeq N^{2.50} R^{-0.55}$$

K Luo, T Ala-Nissilä, S-C Ying & RM, PRE (2009)

28

K Luo, T Ala-Nissilä, S-C Ying & RM, PRE (2009)

K Luo, T Ala-Nissilä, S-C Ying & RM, PRE (2009)