Theoretical biological physics

2. Principles of gene regulation

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Smoluchowski search picture

Search rate for a particle with diffusivity D_{3d} to find an immobile target of radius a (assuming immediate binding):

 $k_{
m on}^S = 4\pi D_{
m 3d} a$

Protein-DNA interaction: $a \approx \{\text{few bp}\} \approx 1 \text{nm}$ $D_{3d} \approx 10 \mu \text{m}^2/\text{sec}$ (typically $\varnothing_{\text{TF}} \approx 5 \text{nm}$):

$$k_{
m on}^S pprox rac{10^8}{({
m mol}/{
m l})\cdot{
m sec}}$$

Lac repressor [AD Riggs, S Bourgeois, M Cohn, J Mol Biol 53, 401 (1970)]:

$$k_{
m on} pprox rac{10^{10}}{({
m mol}/l) \cdot {
m sec}}$$

\curvearrowright Facilitated diffusion picture

M v Smoluchowski, Physikal. Zeitschr. (1916); von Hippel and Berg, J Biol Chem (1989)

Facilitated diffusion: the Berg-von Hippel model

Non-specific binding energy based on in vivo data

 $[X] = [X_{\rm free}] + [X_{@O_P}] + [X_{\rm NSB}]$

 $\Delta G_{\rm NSB}({
m CI}) = -4.1 \pm 0.9 \, {
m kcal/mol},$ $\Delta G_{\rm NSB}({
m Cro}) = -4.2 \pm 0.8 \, {
m kcal/mol}$

A Bakk & RM, FEBS Lett (2004); J Theoret Biol (2004)

Promoter activity as function of TF concentration

- Non-specific binding relevant
- \clubsuit LacZ activity optimum as function of [CI]
- Simple switch as function of [Cro]

Single molecule dynamics of TATA binding protein

 $\Delta = 1.74 \pm 0.35, \, 1.85 \pm 0.24, \, 2.08 \pm 0.39, \, 1.95 \pm 0.17$

IM Sokolov, RM, K Pant & MC Williams, Biophys J (2005); YM Wang, RH Austin & EC Cox, PRL (2006)

{B van den Broek, S-M Kalisch, G Wuite, MA Lomholt & RM}, Proc Natl Acad Sci USA (2008), (2009)

More compact DNA conformations speed up the search

[NaCl]	$k_{\mathrm{on}}^{\mathrm{straight}}$ [Ms]	$l_{\rm sl}^{\rm eff}$ [bp]	$1/\sqrt{l_{\rm DNA}}$ [bp]	$\ell_p \; [bp]$	R_{theory}	$R_{\rm measured}$
0 mM	0.8×10^{8}	195	518	188	1.18	1.3 ± 0.2
25 mM	1.0×10^{8}	250	485	175	1.23	1.1 ± 0.2
100 mM	1.0×10^{8}	250	150	159	1.67	1.7 ± 0.3
150 mM	0.9×10^{9}	15.5	120	153	1.15	1.3 ± 0.4

 $R = k_{on}^{max}/k_{on}^{straight}$: enhancement ratio of attachment rates @ max and straight configuration)

{B van den Broek, S-M Kalisch, G Wuite, MA Lomholt & RM}, Proc Natl Acad Sci USA (2008), (2009)

Bacteria eaters (bacteriophages): bacteria get infected

Purely lytic cycle

Phage λ **pathways**

Geometrical considerations

Outer radius $a_0 = 21$ nm Outer height $b_0 = 54$ nm DNA length $L = 6.6 \mu$ m DNA persistence length $\ell_p \approx 53$ nm Inner volume $V \approx 4.6 \times 10^4$ nm³ Cylinder /w $L \& d_{\text{eff}} \approx 2.5$ nm: $V \approx 3.2 \times 10^4$ nm³

Purohit et al, Biophys J (2005); comp Kindt et al, PNAS (2001)

14

Stat Mech approach to gene stability

Probability to find system in one of the 40 states s:

$$f_s = \frac{\exp(-\Delta G(s)/RT)[\mathrm{CI}_2]^{i_s}[\mathrm{Cro}_2]^{j_s}[\mathrm{RNAP}]^{k_s}}{\sum_s \exp(-\Delta G(s)/RT)[\mathrm{CI}_2]^{i_s}[\mathrm{Cro}_2]^{j_s}[\mathrm{RNAP}]^{k_s}}$$

- Steady state description without dynamics
- 🖢 Based on in vitro data
- Highly dimensional parameter space

MA Shea & GK Ackers, J Mol Biol (1985); A Bakk, RM & K Sneppen, Biophys J (2004), Isr J Chem (2004)

S	$O_{\rm R}3$		$O_{\rm R}2$		$O_{\rm R}$ 1	terms	GFE
1	0		0		0	Reference state	0
2	0		0		R	ΔG_1	-12.5
3	0		R		0	ΔG_2	-10.5
4	R		0		0	ΔG_3	-9.5
5	0		0		С	$\Delta G_{1'}$	-12.0
6	0		С		0	$\Delta G_{2'}$	-10.8
7	С		0		0	$\Delta G_{3'}$	-13.4
8	RNAP		0		0	$\Delta G_{ m RM}$	-11.5
9	0			RNAP		$\Delta G_{ m R}$	-12.5
10	0		R	\leftrightarrow	R	$\Delta G_1 + \Delta G_2 + \Delta G_{12}$	-25.7
11	R		0		R	$\Delta G_1 + \Delta G_3$	-22.0
12	R	\leftrightarrow	R		0	$\Delta G_2 + \Delta G_3 + \Delta G_{23}$	-22.9
13	0		С	\leftrightarrow	С	$\Delta G_{1'} + \Delta G_{2'} + \Delta G_{12'}$	-23.8
14	С		0		С	$\Delta G_{1'} + \Delta G_{3'}$	-25.4
15	С	\leftrightarrow	С		0	$\Delta G_{2'} + \Delta G_{3'} + \Delta G_{23'}$	-24.8
16	RNAP			RNAP		$\Delta G_{\rm RM}$ + $\Delta G_{\rm R}$	-24.0
17	0		С		R	$\Delta G_1 + \Delta G_{2'}$	-23.3
18	0		R		С	$\Delta G_{1'}$ + ΔG_2	-22.5
19	R		0		С	$\Delta G_{1'} + \Delta G_3$	-21.5
20	С		0		R	$\Delta G_1 + \Delta G_{3'}$	-25.9
21	R		С		0	$\Delta G_{2'} + \Delta G_3$	-20.3
22	С		R		0	$\Delta G_2 + \Delta G_{3'}$	-23.9
23	R			RNAP		$\Delta G_{\rm R} + \Delta G_3$	-22.0
24	RNAP		R		0	$\Delta G_2 + \Delta G_{\rm RM}$	-22.0
25	RNAP		0		R	$\Delta G_1 + \Delta G_{ m RM}$	-24.0
26	С			RNAP		$\Delta G_{ m R} + \Delta G_{ m 3'}$	-25.9
27	RNAP		С		0	$\Delta G_{2'}$ + $\Delta G_{ m RM}$	-22.3
28	RNAP		0		С	$\Delta G_{1'}$ + $\Delta G_{ m RM}$	-23.5
29	R		R	\leftrightarrow	R	$\Delta G_1 + \Delta G_2 + \Delta G_3 + \Delta G_{12}$	-35.2
30	С	\leftrightarrow	С	\leftrightarrow	С	$\Delta G_{1'} + \Delta G_{2'} + \Delta G_{3'} + \Delta G_{123'}$	-37.1
31	С		R	\leftrightarrow	R	$\Delta G_1 + \Delta G_2 + \Delta G_{3'} + \Delta G_{12}$	-39.1
32	R		С		R	$\Delta G_1 + \Delta G_{2'} + \Delta G_3$	-32.8
33	R	\leftrightarrow	R		С	$\Delta G_{1'} + \Delta G_2 + \Delta G_3 + \Delta G_{23}$	-34.9
34	R		С	\leftrightarrow	С	$\Delta G_{1'} + \Delta G_{2'} + \Delta G_3 + \Delta G_{12'}$	-33.3
35	С		R		С	$\Delta G_{1'} + \Delta G_2 + \Delta G_{3'}$	-35.9
36	С	\leftrightarrow	С		R	$\Delta G_1 + \Delta G_{2'} + \Delta G_{3'} + \Delta G_{23'}$	-37.3
37	RNAP		R	\leftrightarrow	R	$\Delta G_1 + \Delta G_2 + \Delta G_{\rm RM} + \Delta G_{12}$	-37.2
38	RNAP		С	\leftrightarrow	С	$\Delta G_{1'} + \Delta G_{2'} + \Delta G_{\rm RM} + \Delta G_{12'}$	-35.3
39	RNAP		С		R	$\Delta G_1 + \Delta G_{2'} + \Delta G_{\rm RM}$	-34.8
40	RNAP		R		С	$\Delta G_{1'} + \Delta G_2 + \Delta G_{\rm RM}$	-34.0

Stability analysis of phage λ switch

A Bakk, RM & K Sneppen, Biophys J (2004); Isr J Chem (2004)

17

In vivo gene regulation

Chromosome is approx a SAW [M Buenemann & P Lenz, PLoS ONE (2010)]

M Bauer & RM, PLoS ONE (2013)

Intra/intercellular signalling is diffusion controlled

O Pulkkinen & RM, PRL (2013)