University of Potsdam Institute of Physics and Astronomy Lecture Stochastic Processes (SS 2018) Prof. R. Metzler

Problem Set 7

(discussion on June 21st)

Drift and subdiffusion to an absorbing boundary (continued)

At time $t_0 = 0$ a density $Q_{\alpha}(x, t_0) = \delta(x - x_0)$ is created at a position x_0 . We consider a subdiffusive random process in the presence of an absorbing boundary at the origin, with a bias $v_{\alpha} < 0$ and evolving according to the fractional diffusion equation

$$\partial_t Q_\alpha = {}_0 D_1^{1-\alpha} \left(-v_\alpha \partial_x Q_\alpha + K_\alpha \partial_x^2 Q_\alpha \right). \tag{1}$$

We can interpret the subdiffusive process with density Q_{α} as a subordination of the normal drift-diffusion process with absorbing boundary and density Q_1 .

$$Q_{\alpha}(x,u) = \int_{0}^{\infty} Q_{1}(x,s) \mathcal{E}_{\alpha}(s,u) ds$$
⁽²⁾

How are the mean $\langle x \rangle_{Q_{\alpha}}$, the survival probability S_{α} and the first passage time density p_{α} related to their counterparts of the non-subordinated, normal drift-diffusion process (in Laplace space and in the time domain)? Calculate or recall $\langle x \rangle_{Q_1}$, S_1 and p_1 and plot the subordinated quantities in double logarithmic scales, e.g. for $\alpha = 1/2$.