University of Potsdam Institute of Physics and Astronomy Lecture Stochastic Processes (SS 2018) Prof. R. Metzler

Problem Set 3

(discussion on may 17th)

Diffusion in a harmonic potential

A small particle of mass m diffuses in a medium of viscosity η at a temperature T. The particle is restricted to one dimensional movement and subjected to a linear restoring force F(x) = -kx, e.g. by optical tweezers or by tethering to an elastic polymer.

- (a) Write down the Fokker-Planck-Smoluchovsky equation for the probability density function of the particle position. If possible, rescale space and time to reduce the number of parameters.
- (b) Use partial integration to derive ordinary differential equations for the first moment $m = \langle x \rangle$ and the variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$ of the pdf. Solve the ODEs under the initial conditions $m(t=0) = x_0$ and $\sigma^2(t=0) = 0$.
- (c) Show either that a Gaussian distribution $p(x,t) = G(x m, \sigma^2)$ solves the Fokker-Planck-Smoluchovsky equation where m and σ^2 evolve according to the ODEs derived above, or
- (d) find the partial differential equation for the Fourier transform p(k,t) of the pdf and solve it under the initial condition $p(x,t=0) = \delta(x-x_0)$ by the method of characteristics [wikipedia]. Identify the solution as the Fourier transform of a Gaussian and determine its mean and variance.
- (+) Solve the eigenvalue problem (in Fourier space) and find the expansion of the exact solution into these eigenfunctions. Find the real space representations of these eigenfunctions.