Molecular search in gene regulation

- Houston, 5th December 2019 -

Main protagonist: bacteria cells such as E.coli

Cell size: roughly $2 \mu \mathrm{~m} \times 1 / 2 \mu \mathrm{~m}$
Cell volume: $\approx 1 \mu \mathrm{~m}^{3}$
DNA length: 4.7×10^{6} base pairs or $\approx 1.6 \mathrm{~mm}$
Number of proteins in cell: $\approx 2.4 \times 10^{6}$
Different proteins (\# genes): 4,300
Some proteins occur only as few or few tens of copies/cell (nM concentrations)

Gene expression one molecule at a time

\# synthesised proteins (bursty) along three cell lineages, dashed lines marking cell divisions

Smoluchowski search picture

Search rate for a particle with diffusivity $D_{3 \mathrm{~d}}$ to find an immobile target of radius a (assuming immediate binding):

$$
k_{\mathrm{on}}^{S}=4 \pi D_{3 \mathrm{~d}} a
$$

Protein-DNA interaction: $a \approx\{$ few bp$\} \approx 1 \mathrm{~nm}$ $D_{3 \mathrm{~d}} \approx 10 \mu \mathrm{~m}^{2} / \mathrm{sec}\left(\right.$ typically $\varnothing_{\mathrm{TF}} \approx 5 \mathrm{~nm}$):

$$
k_{\mathrm{on}}^{S} \approx \frac{10^{8}}{(\mathrm{~mol} / \mathrm{l}) \times \mathrm{sec}}
$$

Lac repressor [AD Riggs, S Bourgeois, M Cohn, J Mol Biol 53, 401 (1970)]:

$$
k_{\mathrm{on}} \approx \frac{10^{10}}{(\mathrm{~mol} / l) \times \mathrm{sec}}
$$

\rightarrow Facilitated diffusion picture

Facilitated diffusion: the Berg-von Hippel model

Non-specific binding energy based on in vivo data

A Bakk \& RM, FEBS Lett (2004); J Theoret Biol (2004)

Proof of 1D search mode

McGee \& van Hippel isotherm

$$
f=\frac{N \lambda}{L} \simeq K_{\mathrm{ns}} \lambda C, f \ll 1
$$

$$
\Delta=1.74 \pm 0.35,1.85 \pm 0.24,2.08 \pm 0.39,1.95 \pm 0.17
$$

The antenna effect

Target search rate for cylindrical DNA model:

$$
k_{\mathrm{on}} \sim 4 \pi D_{3 d} \ell_{\mathrm{sl}}^{\mathrm{eff}} \times \frac{1}{\sqrt{\ln \left(\ell_{\mathrm{sl}}^{\mathrm{efl}} / r_{\mathrm{int}}\right)}}
$$

Sliding length:

$$
\ell_{\mathrm{sl}}=\sqrt{\frac{D_{1 d}}{k_{\mathrm{off}}}}
$$

Effective sliding length:

$$
\ell_{\mathrm{sl}}^{\mathrm{eff}}=\sqrt{\frac{k_{\mathrm{on}}}{2 \pi D_{3 d}}} \times \ell_{\mathrm{sl}} \quad \text { microhop correction: } \quad \sqrt{\frac{k_{\mathrm{on}}}{2 \pi D_{3 d}}}
$$

The rôle of DNA conformations

$[\mathrm{NaCl}]$	$R_{\text {theory }}$	$R_{\text {measured }}$
0 mM	1.18	1.3 ± 0.2
25 mM	1.23	1.1 ± 0.2
100 mM	1.67	1.7 ± 0.3
150 mM	1.15	1.3 ± 0.4

In vivo gene regulation consistent with facilitated diffusion

@ optimum the target association time is $\tau \approx 311 \mathrm{sec}$ (no fit parameter)
single molecule experiment: $\tau_{\exp }=354 \mathrm{sec}$ [Elf et al, Science (2007)]

Spatial aspects: do gene locations matter?

Képès: TF targets are typically located next to or at regular distances from the TF gene \rightarrow TF gene-target pairs close in 3D

Kuhlman \& Cox: - TF distribution highly heterogeneous - TF gene influences distribution: localisation of TF near TF gene

TF-regulation effects gene-proximity: rapid-search-hypothesis

Gene-gene distance distribution for local TFs (regulate <4 operons, left) and global (regulate ≥ 4 operons, right). Blue line: random location of genes

Transient intracellular signalling is geometry-controlled

Result 1: transient response to repression

Mean field approximation (full \& dashed lines):

$$
p_{o n}(r, t)=\left\langle\frac{1+K_{\mathrm{NS}} \rho_{\mathrm{TF}}(r, t)}{1+\tilde{K} \rho_{\mathrm{TF}}(r, t)}\right\rangle \approx \frac{1+K_{\mathrm{NS}}\left\langle\rho_{\mathrm{TF}}(r, t)\right\rangle}{1+\tilde{K}\left\langle\rho_{\mathrm{TF}}(r, t)\right\rangle}
$$

Result 2: time dependence of gene response: bursts!

TF density at the target operator

Target expression

Numerical analysis confirms relevance of proximity effect
Volume 20 Number $12 \mid 28$ March 2018 | Pages 7899-8360

Brownian impromptu: from mere means to distributions

Search rate for particle with diffusivity $D_{3 \mathrm{~d}}$ to find an immobile target of radius a (assuming immediate binding):

$$
k_{\mathrm{on}}=4 \pi D_{3 \mathrm{~d}} a
$$

Uniformity index for two independent first-passage times τ_{1}, τ_{2} :

$$
\omega=\frac{\tau_{1}}{\tau_{1}+\tau_{2}}
$$

$\curvearrowright \omega=1 / 2$ means good reproducibility

Beyond mere means: first-passage time distributions

Even in $\mu \mathrm{m}$-sized bacteria cells biochemical reactions are distance-dependent (geometrycontrolled) [Kolesov et al, PNAS (2007); O Pulkkinen \& RM, PRL (2013)]

Geometry- versus reaction-control in finite-reactivity scenario

Full first passage time density:

Direct vs indirect trajectories:

$$
\langle t\rangle=\frac{\left(r_{0}-r_{a}\right)\left(2 R^{3}-r_{0} r_{a}\left[r_{0}+r_{a}\right]\right)}{6 D r_{0} r_{a}}
$$

$$
+\frac{R^{3}-r_{a}^{3}}{3 \kappa r_{a}}
$$

Sequence (binding energy) effects on target search time

full line: centred target
dashed line: target @ boundary

Energetic funnel facilitated diffusion

Weak regions at gene starts promote DNA denaturation

DNA superhelical density:

$$
\sigma=\frac{\mathrm{Lk}-\mathrm{Lk}_{0}}{\mathrm{Lk}_{0}} \approx-0.06
$$

Quorum sensing dynamics in heterogeneous populations

SH Hong et al, Nat Comm 3, 613 (2011); O Kindler, O Pulkkinen, AG Cherstvy \& RM, Sci Rep (2019)

Acknowledgements

Eli Barkai (Bar-Ilan U Ramat Gan)
Carsten Beta (U Potsdam)
Andrey Cherstvy, Aleksei Chechkin (U Potsdam)
Aljaz Godec (MPIBC Göttingen)
Denis Grebenkov (École Polytechnique)
Jae-Hyung Jeon (POSTECH Pohang)
Michael Lomholt (Syddansk U Odense)
Marcin Magdziarz (Politechnika Wrocławska)
Lene Oddershede (NBI Københavns U)
Gleb Oshanin (Sorbonne)
Gianni Pagnini (BCAM Bilbao)
Christine Selhuber-Unkel (U Kiel)
Flavio Seno (Universitá di Padova) Igor Sokolov (Humboldt U Berlin)
Ilpo Vattulainen (Helsingin Yliopisto)
Matthias Weiss (U Bayreuth)
Agnieszka Wyłomańska (Politechnika Wrocławska)

TAMPERE UNIVERSITY OF TECHNOLOGY

SUOMEN AKATEMIA

