& now it's time for something completely different

Molecular search in gene regulation

— Bad Honnef, 28th May 2018 —

Main protagonist: bacteria cells such as E.coli

Cell size: roughly $2\mu m \times 1/2\mu m$ Cell volume: $\approx 1\mu m^3$

DNA length: 4.7×10^6 base pairs or $\approx 1.6 {\rm mm}$

Number of proteins in cell: $\approx 2.4 \times 10^6$ Different proteins (# genes): 4,300

Some proteins occur only as few or few tens of copies/cell (nM concentrations)

Main protagonist: bacteria cells such as E.coli

Cell size: roughly $2\mu m \times 1/2\mu m$ Cell volume: $\approx 1\mu m^3$

DNA length: 4.7×10^6 base pairs or ≈ 1.6 mm

Number of proteins in cell: $\approx 2.4 \times 10^6$ Different proteins (# genes): 4,300

Some proteins occur only as few or few tens of copies/cell (nM concentrations)

RW Corbin et al, PNAS (2003); McGuffee & Elcock, PLoS Comp Biol (2010)

Sources of cellular noisiness: chemical vs physical

Gene expression one molecule at a time

synthesised proteins (bursty) along three cell lineages, dashed lines marking cell divisions

Yu et al, Science (2006); I Golding et al, Cell (2005)

Gene regulation by transcription factors: Lac repressor

Smoluchowski search picture

Search rate for a particle with diffusivity D_{3d} to find an immobile target of radius a (assuming immediate binding):

 $k_{
m on}^S = 4\pi D_{
m 3d} a$

Protein-DNA interaction: $a \approx \{\text{few bp}\} \approx 1 \text{nm}$ $D_{3d} \approx 10 \mu \text{m}^2/\text{sec}$ (typically $\varnothing_{\text{TF}} \approx 5 \text{nm}$):

$$k_{\mathrm{on}}^S pprox rac{10^8}{(\mathrm{mol/l}) imes \mathrm{sec}}$$

Lac repressor [AD Riggs, S Bourgeois, M Cohn, J Mol Biol 53, 401 (1970)]:

$$k_{\rm on} pprox rac{10^{10}}{({
m mol}/l) imes {
m sec}}$$

\rightarrow Facilitated diffusion picture

M v Smoluchowski, Physikal. Zeitschr. (1916); P von Hippel and O Berg, J Biol Chem (1989)

Facilitated diffusion: the Berg-von Hippel model

Non-specific binding energy based on in vivo data

 $[\mathbf{X}] = [\mathbf{X}_{\mathrm{free}}] + [\mathbf{X}_{@\mathrm{O}_{\mathrm{P}}}] + [\mathbf{X}_{\mathrm{NSB}}]$

 $\Delta G_{\rm NSB}({\rm CI}) = -4.1 \pm 0.9 \, \rm kcal/mol,$ $\Delta G_{\rm NSB}({\rm Cro}) = -4.2 \pm 0.8 \, \rm kcal/mol$

A Bakk & RM, FEBS Lett (2004); J Theoret Biol (2004)

 $\Delta = 1.74 \pm 0.35, 1.85 \pm 0.24, 2.08 \pm 0.39, 1.95 \pm 0.17$

YM Wang, RH Austin & EC Cox, PRL (2006); IM Sokolov, RM, K Pant & MC Williams, Biophys J (2005)

11

Calculating facilitated diffusion (our version): manifestation of intermittency

$$\frac{\partial n(x,t)}{\partial t} = \left(D_{1d} \frac{\partial^2}{\partial x^2} - k_{\text{off}} \right) n(x,t) - j(t)\delta(x) + G(x,t) + k_{\text{off}} \int_{-\infty}^{\infty} dx' \int_{0}^{t} dt' W_{\text{bulk}}(x-x',t-t')$$

n: line density of TFs

x: chemical co-ordinate along DNA

 k_{off} : unbinding rate of non-specifically bound TFs

$$D_{1d}$$
: 1D diffusion constant ($\sim 10^{-2}D_{3d}$)

$$j(t)$$
: flux into target (δ sink @ $x = 0$)

G: virgin flux of previously unbound TFs

 W_{bulk} : 3D diffusion propagator

Long chain, fast dynamics: Lévy flights & fractional derivatives

The antenna effect

Target search rate for cylindrical DNA model:

$$k_{\rm on} \sim 4\pi D_{3d} \ell_{\rm sl}^{\rm eff} \times \frac{1}{\sqrt{\ln(\ell_{\rm sl}^{\rm eff}/r_{\rm int})}}$$

Sliding length:

Effective sliding length:

$$\ell_{\rm sl}^{\rm eff} = \sqrt{\frac{k_{\rm on}}{2\pi D_{3d}}} \times \ell_{\rm sl}$$

B van den Broek, MA Lomholt, S-M Kalisch, RM & GJL Wuite, PNAS (2008)

More compact DNA conformations speed up the search

[NaCl]	$k_{\mathrm{on}}^{\mathrm{straight}}$ [Ms]	$l_{\rm sl}^{\rm eff}$ [bp]	$1/\sqrt{l_{\rm DNA}}$ [bp]	$\ell_p \; [bp]$	R_{theory}	$R_{\rm measured}$
0 mM	0.8×10^{8}	195	518	188	1.18	1.3 ± 0.2
25 mM	1.0×10^{8}	250	485	175	1.23	1.1 ± 0.2
100 mM	1.0×10^{8}	250	150	159	1.67	1.7 ± 0.3
150 mM	0.9×10^{9}	15.5	120	153	1.15	1.3 ± 0.4

 $R = k_{\rm on}^{\rm max}/k_{\rm on}^{\rm straight}$: enhancement ratio of attachment rates @ max and straight configuration)

MA Lomholt, B van den Broek, S-M Kalisch, GJL Wuite & RM, PNAS (2009)

Speed-stability paradox in TF search along DNA

From simulations:

- B: Search & recognition modes for a zinc finger protein
- C: Intersegmental transfer of the protein

Facilitated diffusion: rate with search & recognition states

In vivo bacterial gene regulation: E.coli

Chromosome is approx an SAW [M Buenemann & P Lenz, PLoS ONE (2010)]

M Bauer & RM, PLoS ONE (2013)

In vivo gene regulation consistent with facilitated diffusion

@ optimum the target association time is $\tau \approx 311$ sec (no fit parameter) single molecule experiment: $\tau_{exp} = 354$ sec [Elf et al, Science (2007)]

M Bauer & RM, PLoS ONE (2013)

TF regulation effects gene proximity

Does distance between genes interacting via TFs matter?

Gene-gene distance distribution for local TFs (regulate < 4 operons, left) and global (regulate ≥ 4 operons, right). Blue line: random location of genes

Rapid search hypothesis

Spatial aspects: do gene locations matter?

Képès: TF targets are typically located next to or at regular distances from the TF gene \rightarrow TF gene-target pairs close in 3D

Kuhlman & Cox: • localisation of TF near TF gene • TF distribution highly heterogeneous

• TF gene influences distribution

Kepes et al, J Mol Biol (2004); Kuhlman & Cox, Mol Syst Biol (2012)

Transient intracellular signalling is diffusion controlled

Result 1: transient response to repression

Mean field approximation (full & dashed lines):

$$p_{on}(r,t) = \left\langle \frac{1 + K_{\rm NS} \rho_{\rm TF}(r,t)}{1 + \tilde{K} \rho_{\rm TF}(r,t)} \right\rangle \approx \frac{1 + K_{\rm NS} \langle \rho_{\rm TF}(r,t) \rangle}{1 + \tilde{K} \langle \rho_{\rm TF}(r,t) \rangle}$$

O Pulkkinen & RM, PRL (2013)

Result 2: time dependence of gene response

O Pulkkinen & RM, PRL (2013)

Result 3: gene location matters

Numerical analysis confirms relevance of proximity effect

Sequence (binding energy) effects on target search time

Energetic funnel facilitated diffusion

Weak regions at gene starts promote DNA denaturation

J-H Jeon, J Adamczik, G Dietler & RM, PRL (2010); J Adamczik, J-H Jeon, RM & G Dietler, Soft Matter (2012)

First-past-the-post: few-encounter limit & geometry control

T Mattos, C Mejía-Monasterio, RM & G Oshanin, PRE (2012); A Godec & RM, PRX (2016); Sci Rep (2016)

First-past-the-post for 2-channel diffusion

Few-encounter effect in cylindrical domain /w finite reactivity

D Grebenkov, RM & G Oshanin, NJP (2017); E-print (2018)

Anomalous diffusion of GFP in cell cytoplasm & nucleus

 $\langle \mathbf{r}^2(t) \rangle \simeq K_{\alpha} t^{\alpha}$: Subdiffusion when $0 < \alpha < 1$

C di Renzo, V Piazza, E Gratton, F Beltram & F Cardarelli, Nat Comm (2014)

Anomalous facilitated diffusion

Many unknowns in the modelling:

Physical mechanism of anomalous diffusion & cutoff time of anomalous motion?

Effects of crowders with different sizes: see eg Shin et al, Soft Matter (2015) influencing immediate rebinding?

DNA conformations & dynamics due to crowding & active motion: Shin et al, NJP (2015), NJP (2016)

L Liu, AG Cherstvy & RM, JPC (2017)

Low-# Michaelis-Menten

Active sensing limit

A Godec & RM, PRE(R) & PRE (2015), Sci Rep (2016) 36

O Pulkkinen & RM, Sci Rep (2015)

Gene regulation in eukaryotic cells

Exchange versus nucleic membrane, chromosomal dynamics & packaging

Active motion: motor transport, drag, or swirling (cytoplasmic streaming), see, e.g., Seisenberger et al, Science (2001) or Reverey et al, Sci Rep (2015)

K. Nørregaard, RM, C. Ritter, K. Berg-Sørensen & L. Oddershede, Chem Rev (2017)

Colocalisation still exists in the nucleus

Increase of percentage Q of coregulated pairs of genes in chromosome 19 which colocalise during the MD protocol. Red (???) highlighted regions designate chromosome regions involved in the coregulatory network

M Di Stefano, A Rosa, V Belcastro, D di Bernardo, & C Micheletti, PLoS Comp Biol (2013)

Superdiffusion in living Acanthamoeba castellani

JF Reverey, J-H Jeon, H Bao, M Leippe, RM & C Selhuber-Unkel, Sci Rep (2015)

Journal of Physics A's new Biological Modelling section

For anything interesting too mathematical for Biophys J, Phys Biol, or J Theoret Biol, or not general enough for PRL or NJP ...

Suggestions for topical reviews & special issues are welcome

Gene expression based on stochastic binding of TFs; facilitated diffusion model verified in vitro for certain TFs. Speed-stability paradox

Facilitated diffusion model also applies to in vivo gene regulation

■ Distance matters: conformation of DNA in facilitated diffusion & genegene distance for TF-TU regulation—support for rapid search hypothesis

III (Transient) anomalous diffusion of TFs in vivo

Anomalous diffusion models: RM & al, PCCP (2014) Anomalous diffusion in membranes: RM & al, BBA Biomembranes (2016) Single molecule manipulation & tracking: C Nørregaard et al, Chem Rev (2017)

Acknowledgements

Vincent Tejedor, Johannes Schulz, Jae-Hyung Jeon (KIAS) Igor Sokolov (HU Berlin), Irwin Zaid (U Oxford) Aljaz Godec, Max Bauer, Andrey Cherstvy (U Potsdam) Michael Lomholt (Syddansk U Odense), Tobias Ambjörnsson (Lunds U) Marcin Magdziarz (TU Wroclaw), Vladimir Palyulin (TUM) Surya Ghosh (Saclay), Jaeoh Shin (MPI Dresden) Ilpo Vattulainen, Hector Martinez-Seara, Otto Pulkkinen (TUT) Eli Barkai, Stas Burov, Yuval Garini (Bar-Ilan U) Anna Bodrova (HU Berlin), Gleb Oshanin (Paris) Aleksei Chechkin (KIPT Kharkov & U Padova) Henning Krüsemann, Yousof Mardoukhi, Igor Goychuk (U Potsdam) Christine Selhuber (U Kiel), Kirstine Berg-Sørensen (DTU) Lene Oddershede (NBI Københavns U)

'sdar

Federal Ministry of Education and Research

TAMPERE UNIVERSITY OF TECHNOLOGY

SUOMEN AKATEMIA

42