Stochastic processes: Assignment sheet 4

(1) Fractional Fokker-Planck equation

Consider the fractional Fokker-Planck equation for the probability density P(x, t),

$$\frac{\partial}{\partial t}P(x,t) = {}_{0}D_{t}^{1-\alpha}\left(\frac{\partial}{\partial x}\frac{V'(x)}{m\eta_{\alpha}} + K_{\alpha}\frac{\partial^{2}}{\partial x^{2}}\right)P(x,t),$$
(1)

where the fractional Riemann-Liouville operator is defined as $(0 < \alpha \leq 1)$

$${}_{0}D_{t}^{1-\alpha}P(x,t) = \frac{1}{\Gamma(\alpha)}\frac{\partial}{\partial t}\int_{0}^{t}\frac{P(x,t')}{(t-t')^{1-\alpha}}dt'.$$
(2)

Here, V(x) is an external potential, m is the mass of the test particle, and η_{α} and K_{α} are the generalised friction and diffusion coefficients. Finally, $\Gamma(\cdot)$ denotes the complete Gamma function. For the initial condition, use $P(x, 0) = \delta(x - x_0)$.

(i) First consider the linear potential V(x) = ax. Calculate the transport moments $\langle x(t) \rangle$, $\langle x(t)^2 \rangle$, and $\left\langle \left(x(t) - \langle x(t) \rangle \right)^2 \right\rangle$. Discuss the case $0 < \alpha < 1$ in comparison to the case $\alpha = 1$.

Next, plot the probability density P(x,t) for different times by help of the subordination relation

$$P_{\alpha}(x,t) = \int_{0}^{\infty} \mathscr{E}_{\alpha}(s,t) P_{1}(x,s) ds, \qquad (3)$$

where $P_1(x,t)$ is the solution of the fractional Fokker-Planck equation for $\alpha = 1$, and $P_{\alpha}(x,t)$ corresponds to the subdiffusive case. Use the explicit form

$$\mathscr{E}_{1/2}(s,t) = \frac{1}{\sqrt{\pi t}} \exp\left(-\frac{s^2}{4t\tau}\right). \tag{4}$$

What do you observe in comparison to the normal-diffusive case $\alpha = 1$?

(ii) Now consider the case of the fractional Ornstein-Uhlenbeck process in the harmonic potential $V(x) = \frac{1}{2}m\omega^2 x^2$ with the frequency ω . Calculate the moments and their relaxation behaviour at long times in terms of the Mittag-Leffler function $E_{\alpha}(\cdot)$ (see the handout sent around). Use the thermal value $\langle x^2 \rangle_{\rm th}$ for the second moment.

In the next step use the known Brownian solution for this process and plot the probability density function for different times for the cases $\alpha = 1$ and $\alpha = 1/2$, including the stationary limit at long times.

Finally, use the method of separation of variables and split the fractional Fokker-Planck equation into the eigenequations for the spatial and temporal parts (write P(x,t) = X(x)T(t) and determine the eigenvalues. Use the resulting series expression for P(x,t) to plot and compare the results to the subordination procedure.