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Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian
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We consider the fractional Langevin equation far from equilibrium (FLEFE) to describe stochastic dynamics
which do not obey the fluctuation-dissipation theorem, unlike the conventional fractional Langevin equa-
tion (FLE). The solution of this equation is Riemann-Liouville fractional Brownian motion (RL-FBM), also
known in the literature as FBM II. Spurious nonergodicity, stationarity, and aging properties of the solution are
explored for all admissible values α > 1/2 of the order α of the time-fractional Caputo derivative in the FLEFE.
The increments of the process are asymptotically stationary. However when 1/2 < α < 3/2, the time-averaged
mean-squared displacement (TAMSD) does not converge to the mean-squared displacement (MSD). Instead, it
converges to the mean-squared increment (MSI) or structure function, leading to the phenomenon of spurious
nonergodicity. When α � 3/2, the increments of FLEFE motion are nonergodic, however the higher order
increments are asymptotically ergodic. We also discuss the aging effect in the FLEFE by investigating the
influence of an aging time ta on the MSD, TAMSD and autocovariance function of the increments. We find
that under strong aging conditions the process becomes ergodic, and the increments become stationary in the
domain 1/2 < α < 3/2.
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I. INTRODUCTION

In his famous note “On the Theory of Brownian Motion”
of 1908, Paul Langevin formulated Newton’s second law for
a test Brownian particle immersed in a fluid or gas at equilib-
rium [1]. In modern terms, Langevin’s stochastic differential
equation for the position x of the particle at time t is given by
(in this paper, we consider the one-dimensional case) [2–4]

m
d2x(t )

dt2
= −mη

dx(t )

dt
+ f (t ), (1)

where m is the mass of the particle and η is friction coefficient
with dimension time−1. The first term on the right-hand side
represents the frictional force exerted by the medium and
the second term is the random force f (t ) due to the random
collisions of the surrounding molecules with the test particle.
In the theory of Brownian motion, the random force is cho-
sen as zero-mean white Gaussian noise with autocovariance
function (ACF) 〈 f (t ) f (t ′)〉 = 2Kδ(t − t ′), where K is the
noise intensity and δ(·) is the Dirac delta function, following
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∫∞
−∞ δ(τ )dτ = 1. Importantly, the friction and random forces

are not independent: the noise intensity and friction coefficient
are related by K = kBT mη, in which kB is the Boltzmann
constant and T is the temperature of the gas or fluid in
which the Brownian particle is immersed. The last relation
is the simplest example of the fluctuation-dissipation theorem
(FDT) for a particle in an equilibrated bath or at thermal
equilibrium [5]. A noise obeying the FDT is called internal [6]
and otherwise external. The overdamped form of the Langevin
equation neglects the inertial term on the left hand side of
Eq. (1) and is used for the description of Brownian motion
in a medium with strong friction, that is, large viscosity,

dx(t )

dt
=

√
2Kξ (t ). (2)

A typical example for a Brownian particle are micron-sized
colloidal spheres in water. In Eq. (2), ξ (t ) denotes zero-mean
white Gaussian noise with 〈ξ (t )ξ (t ′)〉 = δ(t − t ′) and K of
physical dimension length2/time is the diffusion coefficient
that follows the Einstein relation or FDT K = kBT/(mη).
Eq. (2) encodes the familiar linear time dependence of the
mean-squared displacement (MSD), 〈x2(t )〉 = 2Kt , which is
called normal diffusion. In what follows we will deal with
generalizations of the overdamped Langevin equation (2).

Over the past decades, anomalous diffusion phenomena
characterized by a nonlinear dependence of the MSD have
been found ubiquitously in nature and studied intensively.

2470-0045/2025/111(1)/014128(20) 014128-1 ©2025 American Physical Society

https://orcid.org/0000-0001-5287-9430
https://orcid.org/0000-0002-1786-3932
https://orcid.org/0000-0002-3301-3487
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-3803-1174
https://ror.org/02jkmyk67
https://ror.org/05qbk4x57
https://ror.org/03bnmw459
https://ror.org/05qbk4x57
https://ror.org/011hxwn54
https://ror.org/008fyn775
https://ror.org/0095xwr23
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.014128&domain=pdf&date_stamp=2025-01-13
https://doi.org/10.1103/PhysRevE.111.014128


WEI, WANG, TANG, METZLER, AND CHECHKIN PHYSICAL REVIEW E 111, 014128 (2025)

Here we refer the reader to several monographs [7–10] as well
as reviews [11–15] and numerous references therein. In the
most typical form of anomalous diffusion with a power-law
form 〈x2(t )〉 � tα and scaling exponent α. One distinguishes
between slow diffusion, or subdiffusion if the MSD grows
sublinearly in time (0 < α < 1), and fast diffusion, or su-
perdiffusion characterized by superlinear increase of the MSD
(α > 1). There are two generic Langevin-like models based
on generalizations of Eqs. (1) and (2), which account for
anomalous diffusion in a lot of practical applications.

The first generalization is related to the fractional
Brownian motion (FBM), introduced by Kolmogorov [16],
and Mandelbrot and van Ness [17], which can be defined via
the Langevin equation

d

dt
x(t ) =

√
2Kαξα (t ), (3)

where Kα is the generalized diffusion coefficient with phys-
ical dimension length2/timeα , and ξα (t ) is the fractional
Gaussian noise, that is a stationary Gaussian process with
zero-mean and long-time power-law decay of the ACF
(t ′ � t), 〈ξα (t )ξα (t ′)〉 ∼ [α(α − 1)/2]|t1 − t2|α−2 for which
the anomalous diffusion exponent α ∈ (0, 2]. In the mathe-
matical literature, FBM is defined with the Hurst exponent
H = α/2. The ordinary BM in Eq. (2), corresponds to the
case α = 1 [18]. The MSD of FBM grows like � tα , so
FBM accounts for both sub- and superdiffusion phenomena1.
Importantly, the FBM (3) does not fulfill the FDT and thus
cannot describe diffusion in systems close to equilibrium. In-
stead, the noise is considered to be external which is immanent
to open systems [6], e.g., living cells [19,20], crowded fluids
[21,22], movement ecology [23], serotonergic brain fibers
[24,25], or financial markets [26–28].

The second model, the generalized Langevin equa-
tion (GLE) suggested by Mori and Kubo [3,5,29], provides
a stochastic description of thermalized systems near equilib-
rium. The overdamped form reads [5,29]∫ t

0
γ (t − t ′)

dx(t ′)
dt ′ dt ′ = ζ (t ), (4)

in which γ (t ) is the friction kernel of dimension time−2

and ζ (t ) is a Gaussian fluctuating driving force whose ACF
is coupled to the friction kernel by the FDT 〈ζ (t )ζ (t ′)〉 =
[kBT/m]γ (|t − t ′|). The GLE reduces to the normal Langevin
equation when γ (t ) = 2ηδ(t ) [30,31]. In the cytoplasm of
a biological cell or cell extract, a particle moves through a
medium characterized by macromolecular crowding and the
presence of elastic elements, which provides the cytoplasm
with viscoelastic properties. In other words, the cytoplasm
“pushes back” and ensures long-time correlations in the par-
ticle’s trajectory [19]. The particle then exhibits subdiffusive
behavior, which is modeled by the fractional Langevin equa-
tion (FLE) [32] that is a particular case of the GLE in Eq. (4)
with a power-law friction kernel γα (t ) ∝ t−α , where 0 < α <

1 [33,34].

1Note that in order to describe subdiffusion, the integral from zero
to infinity over the ACF of the noise must be zero [17].

The FLE can be conveniently written in terms of the Ca-
puto fractional derivative of order n − 1 < α < n, n ∈ N+,
which is defined as [35,36]

C
0 Dα

t [ f (t )] ≡ dαx(t )

dtα
=
∫ t

0
f (n)(u)

(t − u)−α+n−1

	(n − α)
du. (5)

In particular, when α = n ∈ N0, the Caputo derivative is re-
duced to the normal derivative C

0 Dn
t [ f (t )] = f (n)(t ) [37].

Then the overdamped form of the FLE reads

ηα

dαx(t )

dtα
= ζα (t ), 0 < α < 1, (6)

where the noise ζα (t ) satisfies the FDT 〈ζα (t )ζα (t ′)〉 =
[kBT ηα/(m	(1 − α))]|t − t ′|−α with ηα of dimension
timeα−2. Its MSD grows like 〈x2(t )〉 = 2Kαtα with
Kα = [kBT/(	(1 + α)mηα )], which shows that the FLE
(6) describes a subdiffusion process. According to the
δ-function property limα→1−[|τ |−α/	(1 − α)] = 2δ(τ ) [38],
the Markovian limit of this description is obtained with
〈ζ1(t )ζ1(t ′)〉 = 2[kBT η1/m]δ(t − t ′), which corresponds to
the overdamped Langevin equation (2).

In this paper, we consider another variant of the Langevin
equation that we call fractional Langevin equation far from
equilibrium (FLEFE),

dαx(t )

dtα
=
√

2Kαξ (t ), (7)

in which the parameter is defined for all α > 0, ξ (t ) is white
Gaussian noise as defined above and the fractional derivative
is to be interpreted in the Caputo sense (5). Hereafter, we
show that the statistical quantities of the FLEFE exist for
α > 1/2. The three Langevin equations, i.e., the FBM (3),
the FLE (6) and the FLEFE (7), constitute a set of generic
Langevin models that account for memory effects, but in a
different way: in the FBM case, the particle is driven by an
external random force exhibiting power-law correlations; in
the FLE and FLEFE cases, the memory effects arise from the
viscoelastic properties of the media; the FLE obeys the FDT,
but the FBM and FLEFE do not.

The FLEFE was introduced by Eab and Lim [39] who also
derived the exact solution which we reproduce in Sec. IV.
In particular, with zero initial conditions the solution is re-
duced to the Riemann-Liouville integral representation of
FBM (RL-FBM) proposed by Lévy [40], which is also known
as FBM II in the literature [27]. Moreover, in Ref. [41],
Lim discussed ensemble averages such as the MSD and the
mean-squared increment (MSI) of the RL-FBM in the domain
1/2 < α < 3/2 (which as we will see below, corresponds to
the Hurst exponent regime 0 < H < 1). Lim demonstrated
that RL-FBM lacks the stationary property of the increments,
unlike the standard FBM, which has stationary increments as
described by Eq. (3). Instead, they identified an asymptotic
stationarity of the increments in the long-time behavior of
RL-FBM indicating that in this domain of the exponent α,
RL-FBM is asymptotically ergodic at long times.

Here, we aim to develop the theory of FLEFE motion,
Eq. (7), for all α > 1/2 beyond the standard Hurst expo-
nent regime 0 < H < 1, by focusing on measurable quantities
including the MSD, the time-averaged MSD (TAMSD), the
MSI and the ACF (i.e., the autocovariance of the increments).
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We point the attention of the reader to the nonequivalence of
the generic definitions of the MSD and the mean TAMSD
which leads to a surprising spurious nonergodicity [42] in
the regime 1/2 < α < 3/2, and reveal a distinct coincidence
between the mean TAMSD and the MSI in the long-time limit.
In view of the nonstationarity of the increments of FLEFE
motion, it is therefore a natural question to explore aging
effects, i.e., the explicit dependence of physical observables
on the time span ta between the original system preparation
and the start of the recording of the particle motion.

The paper is organized as follows. In Sec. II, we recall
the fundamental concepts of diffusion processes we plan to
discuss in this paper. In Sec. III, we give a reminder of the
characteristic properties of two major stochastic processes,
FBM and FLE motion. In Sec. IV, we discuss the results for
RL-FBM, as the solution of FLEFE with zero initial condition.
Specifically, we focus on ergodic and asymptotically station-
ary properties by using the MSD, the MSI, and the mean
TAMSD for all α > 1/2. In Sec. V, we derive the form of
the (n + 1)th order MSI, and discuss its stationary property.
In Sec. VI, the aging effects for all α > 1/2 on the MSD and
mean TAMSD are considered. In Sec. VII, we summarize and
discuss our results.

II. STATISTICAL CHARACTERISTICS
OF DIFFUSION PROCESSES

To quantify the averaged diffusive behavior of tracer par-
ticles, the conventional measurable quantity is the MSD,
defined by averaging over the ensembles of trajectories xi(t )
at time t with respect to each trajectory’s initial position of the
diffusing particles such as

〈x2(t )〉 = 1

N

N∑
i=1

(xi(t ) − xi(0))2. (8)

Here N is the total number of trajectories. The MSI, qualifying
the increment of displacement during the lag time 
 starting
at physical time t , is defined as the mean-squared of the
increment in the form [43]〈

x2

(t )

〉 = 〈[x(t + 
) − x(t )]2〉. (9)

The MSI is equal to the MSD 〈x2(
)〉 if the process has
stationary increments. The definition of the MSI is identical
to the structure function originally introduced by Kolmogorov
and Yaglom in their works on locally homogeneous and
isotropic turbulence [44–48].

Alternatively, the diffusion of an individual particle can
be quantified from a single particle trajectory x(t ) via the
TAMSD [15,49]

δ2(
) = 1

T − 


∫ T −


0
[x(t ′ + 
) − x(t ′)]2dt ′, (10)

where T is the length of the time series (measurement time)
and 
 is the lag time. One can get the mean TAMSD by
averaging over an ensemble of N individual trajectories in
the form 〈

δ2(
)
〉
= 1

N

N∑
i=1

δ2
i (
). (11)

The TAMSD is typical used to evaluate few but long-time
series garnered in single particle tracking experiments, e.g., in
biological cells, of geo-tagged larger animals, or of financial
time series [49–52].

The concept of ergodicity which we will consider below
relies on the MSD-to-TAMSD equivalence in the limit of long
trajectories and short lag times, see Refs. [15,53], e.g.,

lim

/T →0

δ2(
) = 〈x2(
)〉. (12)

A stochastic process with stationary increment, for instance,
BM and FBM, is obviously ergodic according to this def-
inition. Weakly nonergodic models of anomalous diffusion
such as continuous time random walks with scale-free waiting
times are easily distinguished from ergodic diffusion models
by applying tests [54], for instance, the p-variation test [55]
and the moving average vs ensemble average test [56]. Nu-
merous stochastic processes reveal weak ergodicity breaking
that violates the equivalence of the MSD and TAMSD. Start-
ing with the work of Bouchaud [57], there has been growing
interest in weak ergodicity breaking. A particular case is
called ultraweak ergodicity breaking [57,58]: here the MSD
deviates from the TAMSD only in the prefactor, albeit they
have the same scaling exponent. The work by Mardoukhi et al.
[42] reported that the Ornstein-Uhlenbeck process, known
as a stationary and ergodic process, leads to spurious non-
ergodicity due to the failure of equivalence of the generic
MSD [depending on the initial condition x(0)] and TAMSD
in Eq. (12). The authors suggested that one should compare
the MSI and the TAMSD, a suggestion that we elaborate on in
this paper.

In a nonstationary setting, the origin of time can no longer
be chosen arbitrarily. This raises the question of aging, that
is, the explicit dependence of physical observables on the
time span ta between the original preparation of the system
and the start of the recording of data. Traditionally, aging is
considered as a key property of glassy systems [59]. For an
aged process, in which we measure the MSD starting from
the aging time ta until time t , the aged MSD is defined in the
form

〈x2(t )〉a = 〈[x(ta + t ) − x(ta)]2〉, (13)

which is similar to the MSI in Eq. (9). For a nonaged process
with ta = 0 the standard MSD is recovered, as it should. In the
aged process, the aged MSD (13) is reduced by the amount
accumulated until time ta, at which the measurement starts.

For an aged process originally initiated at t = 0 and mea-
sured from ta for the duration (measurement time) T , the aged
TAMSD is defined in the form [60,61]

δ2
a (
) = 1

T − 


∫ T +ta−


ta

[x(t ′ + 
) − x(t ′)]2dt ′, (14)

as a function of the lag time 
 and the aging time ta. Averag-
ing over an ensemble of N individual trajectories in the form

〈
δ2

a (
)
〉
= 1

N

N∑
i=1

δ2
a,i(
) (15)

defines the mean aged TAMSD.
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III. STATISTICAL PROPERTIES OF FBM AND FLE

FBM and FLE are important processes to describe anoma-
lous diffusion, the related quantities for these two major
anomalous diffusion models are widely studied [33,62,63].
FBM and FLE have a different physical nature, albeit both
models share many common features. Here we briefly recall
the statistical properties of FBM and FLE.

A. FBM

The formal solution of FBM in Eq. (3) is

x(t ) =
√

2Kα

∫ t

0
ξα (t ′)dt ′, (16)

in which the anomalous diffusion exponent range is 0 < α �
2.

Its ACF is [17]

〈x(t1)x(t2)〉 = Kα

(
tα
1 + tα

2 − |t2 − t1|α
)
. (17)

Using the ACF, we find that the MSD, MSI, as well as the
mean TAMSD obey the same power-law [15,33]〈

x2

(t )

〉 = 〈x2(
)〉 =
〈
δ2(
)

〉
= 2Kα
α, (18)

which implies that FBM is an ergodic process.

B. FLE

The solution of the overdamped FLE in Eq. (6) is given by
[34]

x(t ) = 1

	(α)ηα

∫ t

0
(t − t ′)α−1ζα (t ′)dt ′, (19)

in which the exponent α is defined in the range (0, 1], corre-
sponding to normal diffusion and subdiffusion. Its ACF is [34]

〈x(t1)x(t2)〉 = Kα

(
tα
1 + tα

2 − |t2 − t1|α
)
. (20)

with the generalized diffusion coefficient Kα = kBT/[	(1 +
α)mηα]. Thus we immediately arrive at the MSI, MSD, and
mean TAMSD with the scaling behaviors [33,34]〈

x2

(t )

〉 = 〈x2(
)〉 =
〈
δ2(
)

〉
= 2Kα
α, (21)

indicating that the FLE process is also ergodic.

IV. FLEFE AND RL-FBM

In what follows, we consider the FLEFE (7), in which
the exponent is defined for arbitrary α > 0, and the initial
conditions are given by x(k)(0), k = 0, . . . , [α], where [ · ]
denotes the integer part of a real-valued positive number. To
emphasize the remarkable difference between the FLEFE and
the FLE, we first note that in the FLEFE, the random force
is represented by white Gaussian noise, breaking the FDT
relation, and second, that the FLEFE motion is well defined
for arbitrary exponent α > 0.

The solution of Eq. (7) was given as [39]

x(t ) = a(t ) +
√

2Kα

∫ t

0

(t − t ′)α−1

	(α)
ξ (t ′)dt ′, (22)

in which the first part solely depends on the initial conditions,
a(t ) =∑[α]

k=0 t kx(k)(0)/	(k + 1), and the second part is iden-
tical to Lévy’s formulation of FBM (RL-FBM) with Hurst
exponent H = α − 1/2 [17].

Without loss of generality, we here introduce the new pro-
cess x(t ) ≡ x(t ) − 〈x(t )〉, such that 〈x(t )〉 = 0. Equivalently,
if one assumes that all initial conditions are zero, i.e., a(t ) =
0, the solution of the FLEFE (22) is equivalent to the RL-FBM
[41]

x(t ) =
√

2Kα

∫ t

0

(t − t ′)α−1

	(α)
ξ (t ′)dt ′. (23)

RL-FBM was first introduced by Lévy [40] and defined in
terms of a Riemann-Liouville fractional integral with initial
condition at t = 0. In contrast to the equilibrated FBM de-
veloped by Mandelbrot and van Ness, Lévy’s RL-FBM is a
stochastic process with nonstationary increments. This point
gives rise to interesting differences between FBM and FLEFE,
as we now explore.

A. MSD

The ACF of FLEFE motion is given by (supposing that
t1 � t2)

〈x(t1)x(t2)〉 = 2Kαtα
2 tα−1

1

α	(α)2
× 2F1

(
1 − α, 1; α + 1;

t2
t1

)
, (24)

where

2F1(a, b; c; z) = 	(c)

	(b)	(c − b)

∫ 1

0

t b−1(1 − t )c−b−1

(1 − tz)a
dt (25)

is the hypergeometric function. By taking t1 = t2 = t in the
two-point correlation function (24) and using the formula [64]

2F1(a, b; c; 1) = 	(c)	(c − a − b)

	(c − a)	(c − b)
, R(c) > R(a + b),

(26)

one can obtain the MSD [39]

〈x2(t )〉 = 2Kα

(2α − 1)	(α)2
t2α−1, (27)

and thus one can see that the MSD is meaningful for all α >

1/2. It is worth noting that this requirement for the exponent α

in the FLEFE differs from, e.g., those in SBM and FBM [65].

B. MSI

Lim derived the MSI of RL-FBM in the form [41]〈
x2

(t )

〉 = 〈[x(t + 
) − x(t )]2〉

= 2Kα

	(α)2

2α−1

{
Lα

(
t




)
+ 1

2α − 1

}
, (28)

where the integral Lα (z) is given by

Lα (z) =
∫ z

0
[(1 + s)α−1 − sα−1]2ds. (29)

In explicit form, the MSI of RL-FBM can be expressed
via the hypergeometric function [64] or the H-function [66]
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[see the derivation of Eq. (A4) in Appendix A]〈
x2

(t )

〉 = 2Kα

(2α − 1)	(α)2
[(t + 
)2α−1 + t2α−1]

− 4Kαtα (t + 
)α−1

α	(α)2 2F1

(
1 − α, 1; 1 + α;

t

t + 


)
.

(30)

We note here that both expressions (28) and (30) of the MSI
are valid for all α > 1/2 and underline the nonstationary
nature of RL-FBM. In particular, when α approaches 1, the
hypergeometric function 2F1(1 − α, 1; 1 + α; t/(t + 
)) = 1
and thus 〈x2


(t )〉 = 2K1
.
For sufficiently short times t � 
, the integral Lα (t/
) ≈

0 in Eq. (28), and the MSI reads〈
x2

(t )

〉 ∼ 2Kα

(2α − 1)	(α)2

2α−1, (31)

which is identical to the MSD (27) of RL-FBM.
We proceed to discuss the MSI in the long-time limit t �


 in the three relevant different regimes for the order α of the
fractional derivative in the FLEFE (RL-FBM). We arrive at
the same approximation for the MSI by using two approaches:
The first one, which is presented in the main text, uses the
approximation of the integral Eq. (28), while the second, one
applies a series expansion of the hypergeometric function or
the H-function in Eq. (30); the latter is shown in Appendix A.

1. Case 1/2 < α < 3/2

In the long-time limit t � 
, the integral in Eq. (28) con-
verges as [67]

Lα

(
t




)
+ 1

2α − 1
≈
∫ ∞

0
[(1 + s)α − 1 − sα −1]2ds + 1

2α − 1

= 	(α)2

	(2α)| cos(πα)| , (32)

and thus we arrive at the stationary MSI approximated as [41]

〈
x2

(t )

〉 ∼ 2Kα

	(2α)| cos(πα)|

2α−1, (33)

which depends solely on the lag time 
. The MSI becomes
stationary in the long-time regime t � 
 and has the same
anomalous diffusion exponent as the MSD (27) of RL-FBM,
but deviates from the MSD by a constant prefactor.

2. Case α > 3/2

For α > 3/2, the integral in Eq. (28) asymptotically reads

Lα

(
t




)
=
∫ t/


0
s2α−2[(1 + s−1)α−1 − 1]2ds

∼ (α − 1)2

2α − 3

(
t




)2α−3

, (34)

and thus the MSI is given by〈
x2

(t )

〉 ∼ 2(α − 1)2Kα

(2α − 3)	(α)2
t2α−3
2. (35)

In this range of α in the FLEFE, the MSI depends ballistically
on the lag time 
 and keeps a dependence on the measured
time, scaling as t2α−3.

3. Case α = 3/2

Apparently, it follows from Eqs. (33) and (35) that the case
α = 3/2 needs to be discussed separately. In this case, the
MSI (9) can be rewritten as〈

x2

(t )

〉 = 8K3/2

π

[
L3/2

(
t




)
+ 1

2

]

2, (36)

where the integral L3/2(z) can be evaluated explicitly as

L3/2(z) =
∫ z

0
(
√

1 + s − √
s)2ds

= z2 + z + 1

2
[sinh−1(

√
z) − √

z
√

z + 1(2z + 1)].

(37)

When t � 
, the integral can be approximated by the leading
term

L3/2

(
t




)
∼ 1

4
ln

(
t




)
. (38)

Therefore, inserting Eq. (38) into the Eq. (36) yields the MSI
with the dominant term〈

x2

(t )

〉 ∼ 2K3/2

π

2 ln

(
t




)
, (39)

which also implies nonstationarity in the sense that the t-
dependence remains.

The MSI of RL-FBM in the long-time limit t � 
 for all
α > 1/2 can thus be summarized as

〈
x2

(t )

〉 ∼
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα

	(2α)| cos(πα)|

2α−1, 1/2 < α < 3/2

2K3/2

π

2 ln

(
t



)
, α = 3/2

2(α−1)2Kα

(2α−3)	(α)2 t2α−3
2, α > 3/2

. (40)

As mentioned above, another approach to calculate the MSI is
presented in Appendix A.

Unlike the FBM (3), which has stationary increments,
the RL-FBM has nonstationary increments depending on the
measured time t , see the explicit form of the MSI (30) of RL-
FBM. In addition, we observe that the MSI tends to become
approximately stationary at long times when 1/2 < α < 3/2,
whereas for α � 3/2 the MSI remains nonstationary.

C. TAMSD

According to the definition (10) of the TAMSD, the mean
TAMSD of RL-FBM can be derived as (see Appendix B)〈
δ2(
)

〉
= 1

T − 


∫ T −


0
〈[x(t + 
) − x(t )]2〉dt

= Kα

α(2α − 1)	(α)2

T 2α − 
2α

T − 

+ Kα

α(2α − 1)	(α)2

×(T − 
)2α−1 − Iα (
, T ), (41)

where

Iα (
, T ) = 4Kα

α	(α)2

1

T − 


∫ T −


0
(t + 
)α−1

× tα × 2F1

(
1 − α, 1; 1 + α;

t

t + 


)
dt . (42)

In what follows, we discuss the approximations of the mean
TAMSD at long times, T � 
, in the different regimes of α.
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FIG. 1. Simulations (symbols) and analytical solutions (solid curves) for the MSD (27), MSI (28), and mean TAMSD (41) of RL-FBM
for (a) 1/2 < α < 3/2, (b) α = 3/2, and (c) α > 3/2. When 1/2 < α < 3/2, the mean TAMSD is identical to the MSI and not to the MSD,
leading to a spurious nonergodicity. When α � 3/2, RL-FBM is nonergodic, and the mean TAMSD exhibits ballistic motion. Other parameters:
time step dt = 0.1 and Kα = 0.5. The algorithm for the simulations is presented in Appendix C.

1. Case 1/2 < α < 3/2

From the derivation of Eq. (B12) in Appendix B, we obtain
the mean TAMSD of RL-FBM in Eq. (41) in the long-time
limit T � 
 in the form〈

δ2(
)
〉
∼ 2Kα

	(2α)| cos(πα)|

2α−1. (43)

The mean TAMSD in this range of α deviates from the MSD
(27) in the prefactor but has the same form as the MSI (33).

2. Case α > 3/2

According to the derivation of Eq. (B13) in Appendix B,
we obtain the mean TAMSD (41) of RL-FBM in the long-time
limit T � 
 as〈

δ2(
)
〉
∼ (α − 1)Kα

(2α − 3)	(α)2
T 2α−3
2. (44)

In this case, the mean TAMSD depends ballistically on the lag
time 
 and keeps a dependence on the measurement time T
with the scaling T 2α−3.

3. Case α = 3/2

Using the explicit power-logarithmic expansion of the H-
function for α = 3/2 as shown in Eq. (B14), one can obtain
the approximation of the TAMSD [see the derivation of
Eq. (B17) in Appendix B for details] when T/
 � 1,〈

δ2(
)
〉
∼ 2K3/2

π

2 ln

(
T




)
. (45)

In summary, the mean TAMSD of the RL-FBM in the three
relevant regimes of α reads

〈
δ2(
)

〉
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα

	(2α)| cos(πα)|

2α−1, 1/2 < α < 3/2

2K3/2

π

2 ln

(
T



)
, α = 3/2

(α−1)Kα

(2α−3)	(α)2 

2T 2α−3, α > 3/2

. (46)

The results of our simulations for the moments (MSD,
MSI, TAMSD) are shown in Fig. 1 for RL-FBM with different
α along with the analytical solutions (27) for the MSD, the
MSI (28), and the mean TAMSD (41). The mean TAMSD
is identical to the MSI when 1/2 < α < 3/2 for sufficiently
long trajectories, while the discrepancies between the mean
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FIG. 2. Ratio
〈
δ2(
)

〉
/〈x2


(t )〉 and
〈
δ2(
)

〉
/〈x2(
)〉 as a function of the measurement time T for different regimes. In (a) and (b), α1 = 0.8,

and in (c) and (d), α2 = 1.2. When 1/2 < α < 3/2, in the long-time limit T/
 � 1 the mean TAMSD of RL-FBM (FLEFE) does not converge
to its MSD but to the MSI in the strong aging limit. Here we set t = T/2 for the MIS. In all panels we chose the lag time as 
 = 0.1; the time
step is dt = 0.1, and Kα = 0.5.

TAMSD and the MSI or MSD is retained when α � 3/2. The
algorithm of the numerical approach to generate the trajecto-
ries of RL-FBM (23) is presented in Appendix C.

Figure 2 shows the ratios of the mean TAMSD (41) to the
MSD (27) and the MSI (28) with 1/2 < α < 3/2, illustrating
that at long times T/
 � 1 the TAMSD of RL-FBM con-
verges to the MSI rather than the MSD.

In the context of single particle tracking experiments the
conclusion about ergodicity of the process (in the mean
squared sense) is deduced from the convergence of the mean
TAMSD to the MSD for sufficiently long trajectories, see
Eq. (12) in Ref. [15]. However, by its construction, we show
here that it is advisable to compare the mean TAMSD (11)
with the MSI (9), rather. The MSD and MSI coincide for
processes with stationary increments, such as FBM and FLE
motion. However, this is not the case for processes with
nonstationary increments. Taking RL-FBM as an exemplary
process one can see that the mean TAMSD (46) and MSD (27)
differ in the entire domain α > 1/2 even in the long trajectory
limit. This may lead to the conclusion about nonergodicity
of RL-FBM in the entire domain of the fractional exponent.
However, it is a spurious nonergodicity in the domain 1/2 <

α < 3/2. Indeed, the increments of RL-FBM in this regime
become asymptotically stationary as follows from Eq. (33),
and the mean TAMSD converges to the MSI in the limit of
long trajectories, compare Eqs. (33) and (43).

V. STATIONARITY OF THE (n + 1)th ORDER
MSI FOR RL-FBM

In the previous section, the MSI (40) of RL-FBM was
found to be stationary at long times t � 
 in the regime
1/2 < α < 3/2, whereas it is nonstationary when α � 3/2. A
natural question is whether stationarity is recovered in higher
orders of the MSI of RL-FBM. The aim of this section is
to investigate the regime of the exponent α in which the nth
order MSI will restore the stationarity property. The (n + 1)th
order increment is defined as the difference of the nth order
increment over a lag time τn+1 [68],


(n+1)x(t ; τ1, . . . , τn+1)

= 
(n)x(t + τn+1; τ1, . . . , τn) − 
(n)x(t ; τ1, . . . , τn),
(47)
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FIG. 3. Simulations (symbols) for the second order MSI of RL-
FBM at long times t � 
 + τ1 for different α. The theoretical result
(52) is represented by solid lines. Other parameters: dt = 0.1, τ1 =
0.1, and Kα = 0.5.

similar in spirit to the theory of nth order increments by
Yaglom [46,47].

According to this definition, the first and second order
increments are given by


(1)x(t ; τ1) = x(t + τ1) − x(t ) (48)

and


(2)x(t ; τ1, τ2) = 
(1)x(t + τ2; τ1) − 
(1)x(t ; τ1), (49)

where 
(1)x(t ; τ1) is the first order increment of the displace-
ment and 
(2)x(t ; τ1, τ2) is an increment of the first order
increment. With the approximation


(1)x(t ; τ1)

τ1
= x(t + τ1) − x(t )

τ1
≈ dx(t )

dt
(50)

at long times t � τ1 for the first order increment, one yields
the integral representation


(1)x(t ; τ1) = τ1
dx(t )

dt
=

√
2Kα

	(α − 1)
τ1

∫ t

0
(t − t ′)α−2ξ (t ′)dt ′.

(51)

We note that the integral representation of the first order
increment is analogous to that of the FLEFE (22) whose MSI
was found to become stationary in the regime 1/2 < α < 3/2
given by Eq. (33). Then, by a similar computation, we obtain
that the second order MSI in the regime 3/2 < α < 5/2 takes
on the form〈[


(2)x(t ; τ1,
)
]2〉 = 〈[
(1)x(t + 
; τ1) − 
(1)x(t ; τ1)

]2〉
∼ 2Kατ 2

1

	(2α − 2) cos(πα)

2α−3 (52)

in the long-time limit t � τ1 + 
. This latter result is in-
dependent of the measurement time t , and thus revels the
stationarity of the second order increment. The simulations
of the second order MSI is shown in Fig. 3, showing perfect
agreement with the analytical results.

More generally, the (n + 1)th MSI〈[

(n+1)x(t ; τ1, . . . , τn,
)

]2〉
= 〈[
(n)x(t + 
; τ1, . . . , τn) − 
(n)x(t ; τ1, . . . , τn)

]2〉
∼ 2Kα (τ1 × . . . × τn)2

	(2α − 2n)| cos(π (α − n))|

2α−2n−1 (53)

restores stationarity in the regime (2n + 1)/2 < α < (2n +
3)/2.

VI. AGING EFFECTS

A distinct effect that can be probed for experimental data
is aging, leading to a possible dependence on the aging time
ta. We here analyze aging for the MSD and TAMSD.

A. Aging of the MSD

As the aged MSD with aging time ta defined in Eq. (13) is
analogous to the MSI (28) of RL-FBM with process time t ,
one can immediately obtain the aged MSD. According to the
results for the MSI of RL-FBM in Eqs. (31) and (40), we find
the aged MSD for weak aging (ta � t),

〈x2(t )〉a ∼ 2Kα

(2α − 1)	(α)2
t2α−1 (54)

for all α > 1/2, which is identical to the nonaged MSD (27)
of RL-FBM.

For strong aging, ta � t , the aged MSD for 1/2 < α < 3/2
is independent of the aging time ta, exhibiting the same power-
law scaling as the weakly aged MSD but with a different
prefactor, whereas for α � 3/2, the aged MSD has a ballis-
tic scaling with the aging time ta. We summarize the aged
MSD as

〈x2(t )〉a ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα

	(2α)| cos(πα)| t
2α−1, 1/2 < α < 3/2

2K3/2

π
t2 ln

( ta
t

)
, α = 3/2

2(α−1)2Kα

(2α−3)	(α)2 t2α−3
a t2, α > 3/2

. (55)

B. Aging of the TAMSD

According to the definition (14) of the aged TAMSD, we
obtain the explicit aged mean TAMSD as〈

δ2
a (
)

〉
= 1

T − 


∫ T +ta−


ta

〈[x(t ′ + 
) − x(t ′)]2〉dt ′

= Kα

α(2α − 1)	(α)2

(T + ta)2α − (ta + 
)2α

T − 


+ Kα

α(2α − 1)	(α)2

(T + ta − 
)2α − ta2α

T − 


+ Qα (
, ta, T ). (56)

Here Qα (
, ta, T ) is given via the hypergeometric function in
the form

Qα (
, ta, T ) = − 4Kα

α	(α)2

1

T − 


∫ T +ta−


ta

(t + 
)α−1tα

× 2F1

(
1 − α, 1; 1 + α;

t

t + 


)
dt . (57)
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FIG. 4. Simulations and analytical results for the aged MSD and mean aged TAMSD of RL-FBM for (a) 1/2 < α < 3/2, (b) α = 3/2, and
(c) α > 3/2. The theoretical weakly aged MSD (54), and the mean aged TAMSD (58) are represented by dashed curves, while the strongly
aged MSD (55) and mean aged TAMSD (59) are represented by solid curves. Note that the (red and green) solid curves overlap since ergodicity
is restored in the strong aging case. Other parameters: the simulation time step is dt = 0.1, the measurement time is T = 100 and Kα = 0.5.

One may yield approximations of the mean aged TAMSD
from expansion of the hypergeometric function or the
H-function, analogous to the nonaged mean TAMSD in
Appendix B. Here we simply present the results for the mean
aged TAMSD of RL-FBM with different α.

Thus, for weak aging ta � T and T � 
, the results for
the asymptotic behaviors are summarized as

〈
δ2

a (
)
〉
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα

	(2α)| cos(πα)|

2α−1, 1/2 < α < 3/2

2K3/2

π

2 ln

(
T



)
, α = 3/2

(α−1)Kα

(2α−3)	(α)2 

2T 2α−3, α > 3/2

, (58)

which coincides with the nonaged mean TAMSD (46).
For strong aging ta � T , the mean aged TAMSD has the

same asymptotics as the aged MSD (55) in the strong aging
regime ta � t , namely,

〈
δ2

a (
)
〉
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα

	(2α)| cos(πα)|

2α−1, 1/2 < α < 3/2

2K3/2

π

2 ln

( ta



)
, α = 3/2

2(α−1)2Kα

(2α−3)	(α)2 

2t2α−3

a , α > 3/2

, (59)

from which ergodicity is restored in the regime 1/2 < α <

3/2, since in the limit ta � T the collection of the increments
x(t + 
) − x(t ) for t ∈ [ta, ta + T − 
] in the TAMSD (14)
changes only marginally and is almost identical to x(ta +

) − x(ta).

Simulations of the aged MSD and the mean aged TAMSD
for RL-FBM with different α are shown in Fig. 4, demonstrat-
ing perfect agreement with our theoretical results in the weak
and strong aging regimes. For completeness, we also analyzed
the aged ACF of RL-FBM increments, and the results are
presented in Appendix D.

VII. CONCLUSIONS

We introduced and discussed FLEFE motion, that pro-
vides a Langevin equation based formulation as an alternative
to the FBM and FLE approaches for systems character-
ized by long-ranged temporal correlations. The characteristic
features of FLEFE motion is its validity beyond the (stan-
dard) Hurst exponent domain 0 < H � 1 and the ability to
explore properties of nonequilibrium systems—with long-
ranged correlations—that do not obey the FDT. The solution
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of the FLEFE with a fractional derivative of order α > 1/2
and zero initial conditions is given by the RL-FBM (FBM II)
process with Hurst exponent H = α − 1/2. The increments or
the MSI of RL-FBM become stationary (t-independent) in the
domain 1/2 < α < 3/2 in the long-time limit; however, they
remain nonstationary when α � 3/2. We also showed that
the (n + 1)th MSI restores stationarity for (2n + 1)/2 < α <

(2n + 3)/2 in the long-time limit. The nonequivalence of the
TAMSD and MSD is observed in the whole regime α > 1/2,
leading to spurious nonergodicity in the long-time limit when
1/2 < α < 3/2. More specifically, the mean TAMSD of RL-
FBM converges to the MSI rather than to the MSD. We also
investigated the influence of the aging time ta on the MSD,
TAMSD, and ACF of the increments. In the limit of strong
aging, we demonstrated that ergodicity is restored, i.e., the
disparity between aged MSD and aged mean TAMSD vanish.
Under strong aging, the increment-ACF becomes stationary
and solely depends on the lag time 
 in the regime 1/2 <

α < 3/2, while it depends on the aging time ta when α � 3/2.
This contrasts standard FBM and FLE which are both ergodic
processes and always independent of ta. We thus promote
the MSI and the (n + 1)th order MSI for data analysis, e.g.,
in terms of statistical observables [15,21,49,69,70], machine
learning [71–77], or Bayesian analyses [78,79].

In nonequilibrium bio-systems, as well as other complex
systems, the FLEFE may indeed be a more suitable candidate
for evaluating the observed stochastic dynamics than the FBM
and FLE approaches. Generally speaking, FLEFE motion will
be relevant when we have nonequilibrium initial conditions,
when the measurement is started immediately after inserting
tracer particles such as colloidal beads or quantum dots into
the medium, without waiting that they equilibrate with the
medium [80]. One might also test nonequilibrium effects by
deliberately moving tracer particles out of equilibrium, e.g.,
by puilling on them with optical tweezers [81]. Furthermore,
the movement of birds, animals, or bacteria is always in
nonequilibrium, such that the use of the FLEFE model appears
preferable. This also holds true for inherently nonequilibrium
processes such as financial market fluctuations or climate
dynamics. We also note that RL-FBM (the solution of the
FLEFE) can be easily modified by allowing the exponent to
vary over time or space, as it is defined from a nonequilibrated
initial condition at t = 0. In contrast, the FBM defined by
Mandelbrot is less adaptable due to its definition in an equi-
librated state starting from t = −∞ [17]. Moreover, recent
single-particle-tracking experiments revealed that intracellu-
lar transport of tracers of various sizes in cells is often not
only anomalous, but also heterogeneous in time and space
[82–87]. This implies that a single diffusion exponent and
diffusing coefficient are insufficient to describe the underlying
physical phenomena. In this sense, it is of interest to consider
the FLEFE motion when both diffusivity and diffusion expo-
nent are functions of time [88,89] or space or even randomly
chosen from certain distribution [67]. In fact, RL-FBM with
time-dependent exponents has been successfully validated in
terms of the MSD and the power spectral density through

recent experimental measurements of quantum dot motion
within the cytoplasm of live mammalian cells, as observed by
single-particle tracking [90]. We hope that our development of
the RL-FBM model, especially in the context ergodicity, will
offer experimentalists new insights into understanding the role
of heterogeneity in anomalous diffusion transport phenomena.

One more relevant application of the FLEFE model may
be in the physics of climate. The stochastic Markovian energy
balance models (EBM) introduced by Hasselmann [91] and
recognized by the award of the 2021 Nobel Prize for Physics,
has achieved a great success in climate modeling. Due to the
complex intake and dissipation of energy when the FDT may
be broken, and taking memory effects of the global tempera-
ture anomaly into account, the FLEFE and its generalizations
may be more adequate tools to describe the climate dynamics
in the long-time limit, see e.g., the recent review [92] and
references therein.

In the future, other potential issues for the FLEFE process
are to be considered, including harmonic potential, reflecting
or absorbing boundaries, resetting search [93] and delay ef-
fects [94].
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APPENDIX A: MSI

Considering the MSI given by Eq. (9) we find

〈
x2

(t )

〉 = 〈[x(t + 
) − x(t )]2〉

= 2Kαt2α−1

(2α − 1)	(α)2

[(
1 + 


t

)2α−1

+ 1

]

− 4Kαtα (t + 
)α−1

α	(α)2
× 2F1

(
1− α, 1; 1+ α;

t

t + 


)
.

(A1)

Using the Pfaff transformation (Eq. (15.3.4) in Ref. [64]) for
the hypergeometric function in Eq. (A1), we obtain

4Kαtα (t + 
)α−1

α	(α)2
× 2F1

(
1 − α, 1; 1 + α;

t

t + 


)

= 4Kαtα
α−1

α	(α)2
× 2F1

(
1 − α, α; 1 + α; − t




)
. (A2)
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With the relation between the hypergeometric function and the H-function, Eq. (1.131) in Ref. [95] as well as Eq. (8.3.2.7) in
Ref. [66], we get

2F1

(
1 − α, α; α + 1; − t




)
= α

	(1 − α)
H1,2

2,2

[
t




∣∣∣∣∣(α, 1), (1 − α, 1)

(0, 1), (−α, 1)

]
= α

	(1 − α)
H2,1

2,2

[



t

∣∣∣∣∣(1, 1), (1 + α, 1)

(1 − α, 1), (α, 1)

]
. (A3)

This yields an alternative form for the MSI, namely,

〈
x2

(t )

〉 = 2Kαt2α−1

(2α − 1)	(α)2

[(
1 + 


t

)2α−1

+ 1

]
− 4Kαtα
α−1

	(α)2	(1 − α)
H2,1

2,2

[



t

∣∣∣∣∣(1, 1), (1 + α, 1)

(1 − α, 1), (α, 1)

]
. (A4)

The first term in Eq. (A4) can be transformed into the series

first term = 2Kαt2α−1

(2α − 1)	(α)2

[
2 +

+∞∑
k=1

(
2α − 1

k

)(



t

)k
]

= 2Kαt2α−1

	(α)2

[
2

2α − 1
+ 


t
+ (α − 1)

(



t

)2

+ O

((



t

)3
)]

. (A5)

To expand the second term (the H-function) in Eq. (A4), one needs to be more careful since different expansions need to be
implemented based on the value of α.

When α �= 1, 3/2, 2, 5/2, . . . , we are allowed to use expansion (8.2.3.3) in Ref. [66] at 
 � t ,

H2,1
2,2

[



t

∣∣∣∣∣(1, 1), (1 + α, 1)

(1 − α, 1), (α, 1)

]
=

+∞∑
k=0

(−1)k	(1 + k − α)

(2α − 1 − k)k!

(



t

)1−α+k

+
+∞∑
k=0

(−1)k	(1 − k − 2α)	(k + α)

	(1 − k)k!

(



t

)α+k

. (A6)

Since the Gamma function has simple poles at nonpositive integers [96], only the single term k = 0 survives in the second
summation of Eq. (A6). Then the second term in Eq. (A4) can be written as

second term = 4Kαt2α−1

	(α)2	(1 − α)

[+∞∑
k=0

(−1)k	(1 + k − α)

(2α − 1 − k)k!

(



t

)k

+ 2	(1 − 2α)	(α)

	(1 − α)

(



t

)2α−1
]

= 2Kαt2α−1

	(α)2

[
2

2α − 1
+ 


t
+ (2 − α)(1 − α)

2α − 3

(



t

)2

+ O

((



t

)3
)

+ 2	(1 − 2α)	(α)

	(1 − α)

(



t

)2α−1
]
. (A7)

Substituting Eqs. (A5) and (A7) into Eq. (A4), one can see that the main order terms proportional to t2α−1(
/t )0 and
t2α−1(
/t )1 cancel out. With the main remaining terms we obtain

〈
x2

(t )

〉 = 2Kαt2α−1

	(α)2

[
(α − 1)2

2α − 3

(



t

)2

− 2	(1 − 2α)	(α)

	(1 − α)

(



t

)2α−1
]
. (A8)

When 1/2 < α < 3/2, the MSI at long times t � 
 in Eq. (A8) is dominated by the second term; using Euler’s reflection
formula of the Gamma function, 	(z)	(1 − z) = π/ sin(πz), for z /∈ Z, we arrive at the approximation

〈
x2

(t )

〉 ∼ −4Kα	(1 − 2α)

	(α)	(1 − α)

2α−1 = 2Kα

	(2α)| cos(πα)|

2α−1. (A9)

When α > 3/2, the MSI in Eq. (A8) is dominated by the first term and asymptotically reads

〈
x2

(t )

〉 ∼ 2Kα (α − 1)2

(2α − 3)	(α)2
t2α−3
2. (A10)

We note that for α = 1, 3/2, 2, 5/2, . . . are all the singular points in the series expansion (A6) that need to be excluded. Next,
we consider the cases α = 3/2, 5/2, 7/2, . . . , and α = 1, 2, 3, . . . , respectively. In the former situation, the series of the
H-function should be more complicated, with power-logarithmic expansions; and in the latter, the H-function expansion fails.
In that case we expand the hypergeometric function in Eq. (A1) rather than the H-function in Eq. (A4).

When α = 3/2, 5/2, 7/2, . . . ,, using the power-logarithmic expansions (1.4.7) from Ref. [97] in Eq. (A4), we find

H2,1
2,2

[



t

∣∣∣∣∣(1, 1), (1 + α, 1)

(1 − α, 1), (α, 1)

]
=

2α−2∑
k=0

(−1)k	(k + 1 − α)

(2α − k − 1)k!

(



t

)1−α+k

− 	(α)

	(2α)

(



t

)α

ln

(



t

)
+ O

((



t

)α

ln

(



t

))
.

(A11)
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Then the second term in the MSI (A4) asymptotically reads for t � 


second term ∼ 4Kαt2α−1

	(α)2	(1 − α)

[
2α−2∑
k=0

(−1)k	(k + 1 − α)

(2α − k − 1)k!

(



t

)k

− 	(α)

	(2α)

(



t

)2α−1

ln

(



t

)
+ O

((



t

)2α−1

ln

(



t

))]
.

(A12)

When α = 3/2, this second term is

second term ∼ 8K3/2t2

π

[
1 + 


t
− 1

4

(



t

)2

ln

(



t

)
+ O

((



t

)2

ln

(



t

))]
. (A13)

Substituting Eqs. (A13) and (A5) into Eq. (A4), we arrive at the MSI with α = 3/2 at long times t � 
,

〈
x2

(t )

〉 ∼ 2K3/2

π

2 ln

(
t




)
. (A14)

When α � 5/2, namely, for α = 5/2, 7/2, 9/2, . . ., the second term asymptotically reads

second term ∼ 2Kαt2α−1

	(α)2

[
2

2α − 1
+ 


t
+ (2 − α)(1 − α)

(2α − 3)

(



t

)2

+ 2	(α)

	(2α)	(1 − α)

(



t

)2α−1

ln

(



t

)
+ O

((



t

)2α−1

ln

(



t

))]
. (A15)

Substituting Eq. (A15) and Eq. (A5) into Eq. (A4), we obtain the MSI with the leading term as

〈
x2

(t )

〉 ∼ 2Kα (α − 1)2

(2α − 3)	(α)2
t2α−3
2

[
1 − 2(2α − 3)	(α)

	(2α)	(1 − α)(α − 1)2

(



t

)2α−3

ln

(



t

)]

∼ 2Kα (α − 1)2

(2α − 3)	(α)2
t2α−3
2. (A16)

This result is identical to Eq. (A10).
When α = 1, 2, 3, 4, . . ., we turn to the hypergeometric function (A2) and then use formulas (15.8.6) and (15.2.4) in

Ref. [96] with α ∈ N+,

2F1

(
1 − α, α; 1 + α; − t




)
= (α)α−1

(1 + α)α−1

(
t




)α−1

2F1

(
1 − α, 1 − 2α; 2 − 2α; −


t

)
(A17)

and

2F1

(
1 − α, 1 − 2α; 2 − 2α; −


t

)
=

α−1∑
n=0

(
α − 1

n

)
(1 − 2α)n

(2 − 2α)n

(



t

)n

, (A18)

where (q)n is the (rising) Pochhammer symbol,

(q)n =
{

1, n = 0

q(q + 1) · · · (q + n − 1), n > 0
. (A19)

We then rewrite Eq. (A2) in the form with t > 


4Kαtα
α−1

α	(α)2 2F1

(
1 − α, α; 1 + α; − t




)
= 4Kαt2α−1

	(α)2

[
α−1∑
n=0

(
α−1

n

)
2α − 1 − n

(



t

)n
]

= 2Kαt2α−1

	(α)2

[
2

2α − 1
+ 


t
+ (α − 1)(α − 2)

2α − 3

(



t

)2

+ . . . +
(




t

)α−1
]
. (A20)

Substituting Eq. (A20) into the MSI (A1) and considering the expansion of the first term in Eq. (A5), one can easily find that at
long times t � 
 the cases α = 1 (here only the constant remains in Eq. (A20)) and α = 2, 3, 4, . . . agree with the asymptotics
(A9) and (A10), respectively.
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APPENDIX B: TAMSD

According to the definition (10) of the TAMSD, the mean TAMSD of RL-FBM can be derived as

〈
δ2(
)

〉
= 1

T − 


∫ T −


0
〈[x(t + 
) − x(t )]2〉dt

= Kα

α(2α − 1)	(α)2

T 2α − 
2α

T − 

+ Kα

α(2α − 1)	(α)2
(T − 
)2α−1 − Iα (
, T ), (B1)

where

Iα (
, T ) = 4Kα

α	(α)2

1

T − 


∫ T −


0
(t + 
)α−1tα × 2F1

(
1 − α, 1; 1 + α;

t

t + 


)
dt . (B2)

Applying the same transformation from the hypergeometric function to the H-function as in Eqs. (A2) and (A3) and the identities
(1.16.4.1) and (8.3.2.1) for the H-function in Ref. [66], we obtain

Iα (
, T ) = 4Kα

	(α)2	(1 − α)


2α

(T − 
)

∫ T −




0
sαH1,2

2,2

[
s

∣∣∣∣∣(α, 1), (1 − α, 1)

(0, 1), (−α, 1)

]
ds

= 4Kα

	(α)2	(1 − α)


2α

(T − 
)

(T − 
)α+1


α+1
H1,3

3,3

[
T − 





∣∣∣∣∣(−α, 1), (α, 1), (1 − α, 1)

(0, 1), (−α, 1), (−1 − α, 1)

]

= 4Kα

	(α)2	(1 − α)

(T − 
)α


1−α
H1,3

3,3

[
T − 





∣∣∣∣∣(−α, 1), (α, 1), (1 − α, 1)

(0, 1), (−1 − α, 1), (−α, 1)

]
. (B3)

Moreover, using the identities (8.3.2.6) and (8.3.2.7) in Ref. [66] to reduce to lower orders of the H-function, we find

H1,3
3,3

[
T − 





∣∣∣∣∣(−α, 1), (α, 1), (1 − α, 1)

(0, 1), (−1 − α, 1), (−α, 1)

]
= H1,2

2,2

[
T − 





∣∣∣∣∣(α, 1), (1 − α, 1)

(0, 1), (−1 − α, 1)

]

= H2,1
2,2

[



T − 


∣∣∣∣∣(1, 1), (2 + α, 1)

(1 − α, 1), (α, 1)

]
, (B4)

such that the third term in Eq. (B1) yields as

Iα (
, T ) = 4Kα

	(α)2	(1 − α)

(T − 
)α


1−α
H2,1

2,2

[



T − 


∣∣∣∣∣(1, 1), (2 + α, 1)

(1 − α, 1), (α, 1)

]
. (B5)

Therefore the alternative expression for the mean TAMSD can be obtained explicitly,

〈
δ2(
)

〉
= Kα

α(2α − 1)	(α)2

T 2α − 
2α

T − 

+ Kα

α(2α − 1)	(α)2
(T − 
)2α−1

− 4Kα

	(α)2	(1 − α)

(T − 
)α


1−α
H2,1

2,2

[



T − 


∣∣∣∣∣(1, 1), (2 + α, 1)

(1 − α, 1), (α, 1)

]
. (B6)

To obtain the approximations of the TAMSD at long times T � 
, we consider the first and second terms in Eq. (B6),

first term = KαT 2α−1

α(2α − 1)	(α)2

[
1 −

(



T

)2α
](

1 − 


T

)−1

= KαT 2α−1

	(α)2

[
1

α(2α − 1)
+ 1

α(2α − 1)




T
+ 1

α(2α − 1)

(



T

)2

+ O

((



T

)2
)]

(B7)

and

second term = Kα

α(2α − 1)	(α)2
(T − 
)2α−1

= KαT 2α−1

	(α)2

[
1

α(2α − 1)
− 


αT
+ α − 1

α

(



T

)2

+ O

((



T

)2
)]

. (B8)
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The approach to tackle the third term in Eq. (B6) is analogous to that for the MSI. When α �= 1, 3/2, 2, 5/2, . . ., using
formula (8.2.3.3) from Ref. [66], we get

H2,1
2,2

[



T − 


∣∣∣∣∣(1, 1), (2 + α, 1)

(1 − α, 1), (α, 1)

]
=

∞∑
k=0

(−1)k	(k + 1 − α)

(2α − k)(2α − k − 1)k!

(



T − 


)1−α+k

+
∞∑

k=0

(−1)k	(1 − 2α − k)	(α + k)

	(2 − k)k!

(



T − 


)α+k

. (B9)

In Eq. (B9), only two terms remain in the second series. With Eq. (B9) we obtain the third term of Eq. (B6) at long times
T � 
,

Iα (
, T ) = 4KαT 2α−1

	(α)2	(1 − α)

∞∑
k=0

	(k + 1 − α)(−1)k

(2α − k)(2α − k − 1)k!

(



T

)k(
1 − 


T

)2α−1−k

+ 4Kα
2α−1

	(α)2	(1 − α)

1∑
k=0

(−1)k	(1 − 2α − k)	(α + k)

	(2 − k)k!

(



T − 


)k

∼ 2KαT 2α−1

	(α)2

[
1

α(2α − 1)
+ 1 − α

α(2α − 1)




T
+
(

1 − α

α(2α − 1)
+ α − 2

2(2α − 3)

)(



T

)2

+ O

((



T

)2
)]

+ 4Kα	(1 − 2α)T 2α−1

	(α)	(1 − α)

[(



T

)2α−1

+ 1

2

(



T

)2α
]
. (B10)

Substituting Eqs. (B7), (B8), and (B10) into Eq. (B6), one can see that the main order terms proportional to T 2α−1( 

T )0 and

T 2α−1( 

T )1 cancel out. We thus obtain the mean TAMSD of RL-FBM at long times T � 
,

〈
δ2(
)

〉
∼ 2KαT 2α−1

	(2α)| cos(πα)|

[(



T

)2α−1

+ 1

2

(



T

)2α
]

+ (α − 1)KαT 2α−1

(2α − 3)	(α)2

(



T

)2

. (B11)

Moreover, for 1/2 < α < 3/2 the mean TMASD is dominated by the first term,〈
δ2(
)

〉
∼ 2Kα

	(2α)| cos(πα)|

2α−1, (B12)

whereas for α > 3/2, the third term is dominant,〈
δ2(
)

〉
∼ (α − 1)Kα

(2α − 3)	(α)2

2T 2α−3. (B13)

Conversely, for α = 3/2, 5/2, 7/2, . . . the power series expansion (B9) fails in Eq. (B6). Instead, we use the power-
logarithmic expansion (1.4.7) in Ref. [97],

H2,1
2,2

[



T − 


∣∣∣∣∣(1, 1), (2 + α, 1)

(1 − α, 1), (α, 1)

]
=

2α−2∑
k=0

(−1)k	(k + 1 − α)

(2α − k)(2α − k − 1)k!

(



T − 


)1−α+k

− 	(α)

	(2α)

(



T − 


)α

ln

(



T − 


)

+ O

((



T − 


)α

ln

(



T − 


))
, (B14)

and then the third term (B5) in the mean TAMSD (B6) in the long-time limit T � 
 reads

Iα (
, T ) = 4KαT 2α−1

	(α)2	(1 − α)

[
2α−2∑
k=0

	(k + 1 − α)(−1)k

(2α − k)(2α − k − 1)k!

(



T

)k(
1 − 


T

)2α−1−k

− 	(α)

	(2α)

(



T

)2α−1

ln

(



T

)
+ O

((



T

)2α−1

ln

(



T

))]
. (B15)

In particular, when α = 3/2,

I3/2(
, T ) = 8K3/2T 2

π

[
1

3
− 


6T
− 1

6

(



T

)2

+ 1

4

(



T

)2

ln

(



T

)
+ O

((



T

)2

ln

(



T

))]
. (B16)
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Substituting Eqs. (B16), (B7), and (B8) into Eq. (B6), we obtain the mean TAMSD with the leading term in the long-time limit
T � 
, 〈

δ2(
)
〉
∼ 2K3/2

π

2 ln

(
T




)
. (B17)

When α = 5/2, 7/2, 9/2, . . ., Eq. (B15) reads

Iα (
, T ) ∼ 2KαT 2α−1

	(α)2

[
1

α(2α − 1)

(
1 − 


T

)2α−1

+ 1

(2α − 1)

(



T

)(
1 − 


T

)2α−2

+ α − 2

2(2α − 3)

(



T

)2(
1 − 


T

)2α−3

− 2	(α)

	(2α)	(1 − α)

(



T

)2α−1

ln

(



T

)
+ O

((



T

)2α−1

ln

(



T

))]

∼ 2KαT 2α−1

	(α)2

[
1

α(2α − 1)
+ 1 − α

α(2α − 1)

(



T

)
+
(

1 − α

α(2α − 1)
+ α − 2

2(2α − 3)

)(



T

)2

+ O

((



T

)3
)]

− 4Kα
2α−1

	(α)	(2α)	(1 − α)
ln

(



T

)
. (B18)

Substituting Eqs. (B18), (B7), and (B8) into Eq. (B6), one can see that the main order terms proportional to T 2α−1(
/T )0 and
T 2α−1(
/T )1 cancel out. Thus, we obtain the mean TAMSD of RL-FBM in the long-time limit T � 
 as〈

δ2(
)
〉
∼ 2Kα

	(α)	(1 − α)

2α−1 ln

(



T

)
+ (α − 1)Kα

(2α − 3)	(α)2

2T 2α−3 ∼ (α − 1)Kα

(2α − 3)	(α)2

2T 2α−3. (B19)

For α = 1, 2, 3, . . . we make the variable transformation z = t/(t + 
) in Eq. (B2) and use the integral formula (1. 153.11)
for the hypergeometric function in Ref. [66]. As result we have

Iα (
, T ) = 4Kα

α(α + 1)	(α)2
T 2α−1

(
1 − 


T

)α

2F1

(
1 − α, 2; α + 2; 1 − 


T

)
. (B20)

Again, considering the series expansion of the hypergeometric function (A18) with integer α, we arrive at the third term in the
mean TAMSD (B1),

Iα (
, T ) = 4KαT 2α−1

α(α + 1)	(α)2

α−1∑
n=0

(−1)n

(
α − 1

n

)
(2)n

(2 + α)n

(
1 − 


T

)α+n

. (B21)

In particular, for α = 1,

I1(
, T ) = 2K1T

(
1 − 


T

)
, (B22)

and for α � 2,

Iα (
, T ) = 4KαT 2α−1

α(α + 1)	(α)2

[
A0 − A1




T
+ A2

(



T

)2

+ · · · + (−1)α−1Aα−1

(



T

)α−1
]
, (B23)

where

An =
n∑

k=0

(
α

n − k

)
2F (k)

1 (1 − α, 2; α + 2; 1)

k!
. (B24)

These factors can be obtained from the properties of the hypergeometric function and its kth (k � α − 1) order derivative with
integer α in the form

2F (k)
1 (1 − α, 2; α + 2; 1) = (1 − α)k (2)k

(α + 2)k
2F1(1 − α + k, 2 + k; α + 2 + k; 1). (B25)

Here,

2F1(1 − α + k, 2 + k; α + 2 + k; 1) = (α)α−1−k

(α + 2 + k)α−1−k
. (B26)

Thus Eq. (B23) reads

Iα (
, T ) = 2KαT 2α−1

	(α)2

[
1

α(2α − 1)
− α − 1

α(2α − 1)




T
+
(

1

2α − 1
− 1

α
+ α − 2

2(2α − 3)

)(



T

)2

+ O

((



T

)2
)]

. (B27)
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Substituting Eqs. (B22) and (B27) into the mean TAMSD
(B1), respectively, and considering the expansions of the first
and second terms, Eqs. (B7) and (B8), respectively, one can
easily find that at long times t � 
 the cases α = 1 and
α � 2 are in agreement with the asymptotics in Eqs. (B12)
and (B13), respectively.

APPENDIX C: SIMULATION APPROACH FOR RL-FBM

Here we provide our numerical approach to discretize the
stochastic integral representation given by Eq. (23) to generate
the trajectories of RL-FBM x(t ) at discrete times tn = n × δt ,
n = N+, for all admissible values α > 1/2. To begin, we dis-
cretize the stochastic integral,

x(tn) =
√

2Kα

	(α)

n−1∑
i=0

∫ ti+1

ti

(tn − s)α−1ξ (s)ds. (C1)

The white Gaussian noise can be approximated by

ξ (s) = νi/
√

δt, (C2)

where νi is a normally distributed random variable with zero
mean and unit variance; then we have

x(tn) =
√

2Kα

	(α)

n−1∑
i=0

(
νi√
δt

)∫ ti+1

ti

(tn − s)α−1ds

=
√

2Kα

	(α)

n−1∑
i=0

(
νi√
δt

)
(tn − ti )α − (tn − ti − δt )α

α

=
√

2Kα

	(α)

n−1∑
i=0

(
νi√
δt

)
w(tn − ti )δt, (C3)

with the weight function

w(tn − s) = (tn − s)α − (tn − s − δt )α

αδt
. (C4)

This weight function in Eq. (C4) is the approximation of
the kernel (tn − s)α−1 in Eq. (C1) and does not contain any
singularity for all α > 1/2.

APPENDIX D: AGED ACF OF THE INCREMENTS

The aged ACF of the increments xδ (t ) = x(t + δ) − x(t )
of RL-FBM is defined as

C(ta,
) = 〈xδ (ta)xδ (ta + 
)〉, (D1)

where δ is a small time step obeying δ � 
. When 
 = 0, the ACF corresponds to the MSI or aged MSD.
With this notation we obtain

C(ta,
) = 2Kα

	(α)2

∫ ta+δ

0
(ta + δ − u)α−1[(ta + 
 + δ − u)α−1 − (ta + 
 − u)α−1]du

+ 2Kα

	(α)2

∫ ta

0
(ta − u)α−1[(ta + 
 − u)α−1 − (ta + 
 + δ − u)α−1]du. (D2)

After the change of variables q = ta + δ − u and q = ta − u in the first and second integral, respectively, we find

C(ta,
) = 2Kα

	(α)2

∫ ta

0
qα−1(q + 
)α−1

[
2 −

(
1 + δ

q + 


)α−1

−
(

1 − δ

q + 


)α−1
]

dq

+ 2Kα

	(α)2

∫ ta+δ

ta

qα−1(q + 
)α−1

[
1 −

(
1 − δ

q + 


)α−1
]

dq. (D3)

For a small time step δ → 0, we consider the series expansion under the condition that 
 � δ and neglect the higher order
terms,

(
1 ± δ

q + 


)α−1

∼ 1 ± (α − 1)
δ

q + 

+ (α − 1)(α − 2)

2

(
δ

q + 


)2

. (D4)

We thus arrive at the ACF

C(ta,
) ∼ 2Kα

	(α)2

[
(α − 1)(2 − α)δ2

∫ ta

0
qα−1(q + 
)α−3dq + (α − 1)δ

∫ ta+δ

ta

qα−1(q + 
)α−2dq

]

= 2Kα (α − 1)

	(α)2

{
(2 − α)δ2
2α−3

∫ ta



0
qα−1(1 + q)α−3dq + 
2α−2δ

∫ ta+δ



ta



qα−1(1 + q)α−2dq

}
. (D5)
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Then, for weak aging ta � 
, we have

C(ta,
) ∼ 2Kα (α − 1)

	(α)2

{
(2 − α)δ2
2α−3

∫ ta



0
qα−1dq

+
2α−2δ

[∫ ta+δ



0
qα−1dq −

∫ ta



0
qα−1dq

]}

= 2Kα (α − 1)

α	(α)2

{
(2 − α)δ2tα

a 
α−3

+ δ
α−2
[
(ta + δ)α − tα

a

]}
. (D6)

In particular, when ta = 0 the ACF reads

C(0,
) ∼ 2Kα (α − 1)

α	(α)2 δα+1
α−2, (D7)

and when ta � δ, we have

C(ta,
) ∼ 2Kα (α − 1)

	(α)2
δ2tα−1

a 
α−2. (D8)

Next we consider the case of strong aging (ta � 
) for
different α.

1. Case 1/2 < α < 3/2

For 1/2 < α < 3/2, for strong aging (ta � 
) we use the
following approximation for the first integral in Eq. (D5),∫ ta




0
qα−1(1 + q)α−3dq ≈

∫ ∞

0
qα−1(1 + q)α−3dq

= B(α, 3 − 2α), (D9)

where the (complete) Beta function is defined by [64]

B(a, b) =
∫ ∞

0
sa−1(1 + s)−a−bds = 	(a)	(b)

	(a + b)
. (D10)

The second integral in Eq. (D5) reads∫ ta+δ



ta



qα−1(1 + q)α−2dq ∼
∫ ta+δ




ta



q2α−3dq ∼
(




ta

)3−2α
δ



.

(D11)

Then, substituting Eqs. (D9) and (D11) into Eq. (D5), we have

C(ta,
) ∼ 2Kα (α − 1)(2α − 1)

	(2α)| cos(πα)| δ2
2α−3. (D12)

2. Case α > 3/2

For α > 3/2 and strong aging (ta � 
), the first integral
in Eq. (D5) diverges as t tends to infinity. We rewrite the first
integral in two parts,∫ ta




0
qα−1(1 + q)α−3dq

=
∫ M

0
qα−1(1 + q)α−3dq

+
∫ ta




M
qα−1(1 + q)α−3dq, for M � 1. (D13)

FIG. 5. Simulations (symbols) of the ACF of the increments of
RL-FBM at strong aging ta � 
. The theoretical results (D19) are
represented by solid lines. Here we set ta = 20, δ = dt = 0.1, and
Kα = 0.5.

Then the integral in Eq. (D13) is dominated by the second
term and can be approximated as∫ ta




0
qα−1(1 + q)α−3dq ∼

∫ ta



M
qα−1(1 + q)α−3dq

∼
∫ ta




M
q2α−4dq ∼ 1

2α − 3

(
ta



)2α−3

.

(D14)

The second term in Eq. (D5) can be approximated by
Eq. (D11). Then, substituting Eqs. (D14) and (D11) into
Eq. (D5), we obtain

C(ta,
) ∼ 2Kα (α − 1)2

(2α − 3)	(α)2
δ2t2α−3

a . (D15)

3. Case α = 3/2

For α = 3/2, the first integral in Eq. (D5) can be solved
explicitly, and for strong aging ta � 
, we find an approxi-
mation with the leading term∫ ta/


0
q1/2(q + 1)−3/2dq

= ln

(
ta



)
+ ln

(
1 + 


ta

)
− 2

√
ta

ta + 

∼ ln

(
ta



)
.

(D16)

The second term in Eq. (D5) can be approximated by
Eq. (D11) with α = 3/2,∫ (ta+δ)/


ta/

q1/2(1 + q)−1/2dq ∼ δ



. (D17)

Then, substituting Eqs. (D16) and (D17) into Eq. (D5), we get

C(ta,
) ∼ 2K3/2

π
δ2 ln

(
ta



)
. (D18)

014128-17



WEI, WANG, TANG, METZLER, AND CHECHKIN PHYSICAL REVIEW E 111, 014128 (2025)

To summarize, for strong aging ta � 
 the ACF of RL-
FBM increments for all α is given by

C(ta,
) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kα (α−1)(2α−1)
	(2α)| cos(πα)| δ2
2α−3, 1/2 < α < 3/2

2K3/2

π
δ2 ln

( ta



)
, α = 3/2

2Kα (α−1)2

(2α−3)	(α)2 δ
2t2α−3

a , α > 3/2.

(D19)

We note that in the regime 1/2 < α < 3/2 the ACF becomes
stationary and solely depends on the lag time 
. The con-
sistency of the simulated and analytical ACF for RL-FBM
increments at strong aging time ta � 
 in Eq. (D19) are
shown in Fig. 5. A small discrepancy is observed for the case
α = 1.2 around 
 = 0.1 because the relation δ � δ is not
perfectly fulfilled.
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Memory-multi-fractional Brownian motion with continuous
correlations, Phys. Rev. Res. 5, L032025 (2023).
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