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Abstract
In this work we consider a generalised Ornstein–Uhlenbeck (O–U) process for
a stochastically driven particle in an harmonic potential which is governed by
a Fokker–Planck equation in the presence of a memory kernel. We analyse
the probability density function, the mean and the mean squared displacement
(MSD) by employing the subordination approach connecting the operational
time of the process with the (generalised) laboratory time. We provide analyt-
ical results for the mean and the MSD in case of a power-law memory kernel
which corresponds to the fractional O–U process. The generalised O–U process
in the presence of Poissonian resetting is also investigated by using the renewal
equation approach, and the nonequilibrium stationary state approached in the
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long time limit is obtained. The analytical results are confirmed by numerical
simulations based on the coupled Langevin equations.

Keywords: Ornstein–Uhlenbeck process, subordination, stochastic resetting,
nonequilibrium stationary state

1. Introduction

Brownian motion, initially observed in the erratic movement of pollen granules suspended in
a liquid by Robert Brown in 1827 [1], has since become a cornerstone in the understanding of
stochastic processes and random motion in various scientific disciplines. This phenomenon,
characterised by the seemingly random and continuous movement of particles, has played a
pivotal role in shaping the theoretical and mathematical landscape of statistical physics. Albert
Einstein [2] and Marian Smoluchowski [3] independently laid the foundation for the statist-
ical treatment of Brownian motion in the early 20th century, opening the door to extensive
theoretical and mathematical investigations. Paul Langevin subsequently stated an extension
of Newton’s second law with a fluctuating force, resulting in an ordinary stochastic differen-
tial equation. The Ornstein–Uhlenbeck (O–U) process, introduced by Leonard Ornstein [4]
and George Uhlenbeck [5] emerged as a significant extension of Brownian motion, providing
a more nuanced understanding of the dynamics of particles undergoing random motion in a
harmonic potential. Originally, it was introduced as a model of the velocity of a Brownian
particle.

The O–U process is particularly notable for its ability to describe the motion of particles
subject to both random fluctuations and a restoring force, offering a valuable framework for
modelling diverse phenomena ranging from physics to finance. Ornstein and Uhlenbeck’s
seminal work in the 1930 s not only provided an exact expression for the mean squared dis-
placement (MSD) of harmonically bound particles but also established a profound connection
between their model and the Fokker–Planck equation, contributing to the broader comprehen-
sion of the universality of Brownian motion as a Markovian phenomenon. In contemporary
research, it has become evident that non-Markovian anomalous transport is a pervasive and
general phenomenon across various scientific fields. This has led to the extension of the O–U
approach to non-Markov random processes, garnering considerable attention. This extension
encompasses non-Markovian Langevin equations [6] and the spectral properties of the Fokker–
Planck equation propagator [7]. We mention that the motivation for exploring the O–U pro-
cess and its generalisations lies in their broad applicability across various fields, including
modelling anomalous diffusion in inhomogeneous media [8, 9], which results in fractional
transport [10, 13], as well as applications in turbulent diffusion [14, 15]; moreover, to describe
overdamped Brownian particles in optical tweezers [18] and tracer diffusion in critical random
environments [19], financial modelling [16, 20], and the activity of neuronal systems [21].
Additionally, there is a broader connection between random matrix theory and Gaussian pro-
cesses with long-range correlations [17].

The O–U process, in its standard and generalised variations, both with and without reset-
ting, have been subject to extensive examination in previous works, as documented in [22–27].
Addressing the intricacies of the O–U process in the presence of stochastic resetting, the ana-
lysis in [23], represents a pivotal contribution to the understanding of how stochastic resetting
influences its dynamics. Furthermore, the investigation of the O–U process on two and three-
dimensional comb structures, with and without resetting, as discussed in [28, 29], provides
insights into the process within a specific geometric context.
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Building upon this established groundwork, our paper seeks to extend the O–U process by
implementing a memory kernel within the corresponding Fokker–Planck equation. The paper
is organised as follows. In section 2, we derive the Fokker–Planck equation with memory ker-
nel for the generalised O–U process from the corresponding equation for the standard O–U
process by using the subordination approach. We give general results for the mean and the
MSD for a general form of the memory kernel. The time fractional O–U process is considered
and analysed in details in section 3. The analytically obtained results are compared with the
simulations which are performed by using the Langevin equation approach. In section 4 we
consider the generalised O–U process under stochastic resetting by introducing exponentially
truncated memory kernel. As a special case we consider the time fractional O–U process under
stochastic resetting and we derive the mean and the MSD. The system approaches a non-
equilibrium stationary state in the long time limit due to the resetting mechanism. The sum-
mary of the obtained results is given in section 5. In the Appendices we give the definitions
and properties of the fractional integral and derivatives, as well as of different Mittag–Leffler
functions, and the formulation of the Tauberian theorems. We also provide results for the mean
and the MSD for a generalised O–U process with mixed power-law memory kernel, as well as
for a combination of the standard and subdiffusive O–U process.

2. From standard to generalised O–U process

2.1. Standard O–U process

In this section we introduce the O–U process. We will lay out some of the main results of
this process such as the probability density function (PDF), and the first two moments of the
displacement as well elaborate on the main properties of the process.

The standard O–U process is defined in terms of the modified stochastic overdamped
Langevin equation (see [5, 20, 30])

ẋ(t) = λ [µ− x(t)]+σξ (t) , (1)

where λ is the rate of mean reversion and represents the magnitude of the drift with which the
process is driven towards some long term mean value µ, ξ(t) is a white noise of zero mean and
correlation ⟨ξ(t)ξ(t ′)⟩= δ(t− t ′), andσ is the standard deviation. The first term of equation (1)
is the deterministic or the driving part of the equation, while the second term stands for the
stochastic part, contributing to the process only with the random fluctuations due to the white
noise.

The standard O–U process can also be defined by its corresponding Fokker–Planck
equation

∂

∂t
P0 (x, t) = LFPP0 (x, t) , (2)

with initial condition P0(x, t= 0) = δ(x− x0) and zero boundary conditions at infinity both
for the PDF P0(x, t) and its first space derivative, where

LFP = λ
∂

∂x
[(x−µ)]+

σ2

2
∂2

∂x2
, (3)
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is the Fokker–Planck operator. The solution to the partial differential equation for the O–U
process (2) is given by [31]

P0 (x, t) =
exp

(
− [x−x0e

−λt−µ(1−e−λt)]
2

σ2
λ e−2λt(e2λt−1)

)
√
2π σ2

2λe
−2λt (e2λt− 1)

. (4)

The previous expression for the PDF is used to further calculate the moments of the displace-
ment, namely the mean value and the MSD

⟨x(t)⟩= x0 e
−λt+µ

(
1− e−λt

)
, (5)

⟨x2 (t)⟩= x20 e
−2λt+µ2

(
1+ e−2λt

)
− 2µ2 e−λt+

σ2

2λ

(
1− e−2λt

)
+ 2µx0

(
1− e−λt

)
e−λt. (6)

This can also be represented as a relaxation to the thermal value, see [8]. The long-time limit
of the MSD saturates at ⟨x2(t)⟩ ∼ µ2 + σ2

2λ due to the potential, and for λ= 0 we retrieve the
result for the MSD of the normal Wiener process ⟨x2(t)⟩= x20 +σ2t. We note that in Laplace
space the mean value and the MSD are given by

⟨x̂(s)⟩= x0
s+λ

+µλ
s−1

s+λ
, (7)

⟨x̂2 (s)⟩= x20 +σ2s−1

s+ 2λ
+

2λµ
(
x0 +λµs−1

)
(s+λ)(s+ 2λ)

, (8)

respectively. These results will be used later for calculation of the mean and MSD in case of
generalised O–U process with memory.

2.2. Generalised O–U process: subordination approach

In this section we will consider a generalisation of the standard O–U process, which is the
main objective of this paper. Under these generalisations the standard and fractional O–U
processes arise as special cases. Here we will use the subordination approach to calculate the
displacement moments of the process, namely the mean value and the MSD. The generalised
process in question mathematically can be described by considering a continuous time random
walk (CTRW)7 model according to which the PDF to find the particle at position x at time t is
given by [34]

P(x, t) =
∑
n

P0 (x,n)hn (t) , (9)

where P0(n, t) is the PDF to find the particle at x after n steps for the standard O–U process,
while hn(t) is the PDF to make exactly n steps up to time t. This function is connected to the
waiting time PDF ψ(t) in the Laplace space as [34]

ĥn (s) =
1− ψ̂ (s)

s
ψ̂n (s)≃ ϕ̂(s)

s
e−nϕ̂(s), (10)

7 In its decoupled version, a CTRW is defined as a random walk process based on a jump length PDF λ(x) and a
waiting time PDF ψ(t). Here we consider a finite-variance λ(x) and a ψ(t) with both finite and infinite mean waiting
time [32, 33].
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where ϕ̂(s) = 1− ψ̂(s). The random number of steps n performed in this CTRW process has
the role of the operational time. The MSD is a function of the mean number of steps ⟨x2(t)⟩ ∼
⟨n(t)⟩.

This CTRW process in the continuum approximation can be described in terms of the
coupled Langevin Equations [35–39]{

ẋ(u) = λ [µ− x(u)]+σξ (u) ,
ṫ(u) = ζ (u) ,

(11)

where λ> 0 and σ> 0, ξ(u) = dB(u)
du represents a white Gaussian noise with zero mean

⟨ξ(u)⟩= 0 and correlation ⟨ξ(u)ξ(u ′)⟩= δ(u− u ′), B(u) is the standard Brownian motion,
and thus the process x(u) =

´ u
0 {λ [µ− x(u ′)]+σξ(u ′)}du ′ is the standard O–U process with

PDF (4), while ζ(u) is a completely one-sided Lévy stable noise. The inverse process S(t)
of the one-sided Lévy stable process t(u) with the characteristic function

⟨
e−st(u)

⟩
= e−Ψ̂(s)u,

where Ψ̂(s) is a ‘characteristic exponent’8, is given by S(t) = inf{u> 0 : t(u)> t}, i.e. it rep-
resents a distribution of first passage times for the operational time u given the laboratory
time t [35, 42]. The processes B(u) and S(t) are independent. From the coupled Langevin
equations (11), one concludes that x(t) is parametrised in terms of the number of steps u (in
the CTRW model it corresponds to n), the so-called path or arc length along a particular tra-
jectory and initially introduced in [35] and later investigated in [43–45], as an intermediate
variable. The parameter u is also known as operational time. Its connection to the time vari-
able t is given by t(u) =

´ u
0 τ(u

′)du ′, where τ(u) is the total of individual waiting times τ for
each step. The path or arc length u can also be explained as steps or ‘eigentime’ of coupled
filtering process governed by a specific distribution, which is in control of the waiting times
of the main process. The corresponding Fokker–Planck equation for the process is

∂

∂t
P(x, t) =

d
dt

ˆ t

0
η (t− t ′)

{
λ
∂

∂x
[(x−µ)P(x, t ′)]+

σ2

2
∂2

∂x2
P(x, t ′)

}
dt ′, (12)

where η(t) = L−1
[
1/Ψ̂(s)

]
is a memory kernel, which is connected to the waiting time PDF

in the CTRWmodel as ψ̂(s)∼ 1− 1/η̂(s) [34]. The memory kernel is such that lims→0
1

η̂(s) =

0, as well as 1
η̂(s) is a complete Bernstein function which is needed for preserving the non-

negativity of the solution of the generalised Fokker–Planck equation, see for example [46–
49]. This equation contains many limiting cases. For example, for η(t) = 1 we recover the
standard O–U process given with equation (2), while for λ= 0, equation (12) is reduced to the
generalised diffusion equation for subordinated Brownian motion [34, 46, 47].

We can find the solution of the generalised Fokker–Planck equation (12) by using the sub-
ordination approach [50–54], i.e. by the subordination integral

P(x, t) =
ˆ ∞

0
P0 (x,u)h(u, t) du, (13)

8 Note that for Ψ̂(s) = sα, 0< α< 1, the noise ζ(u) is one-sided α-stable Lévy noise with the stable index
0< α< 1, while S(t) is called the inverse-time α-stable subordinator [40, 41].
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which follows from the PDF obtained from the CTRW model (9) (n→ u, hn(t)→ h(u, t) and∑
n →
´
du). In the Laplace space it becomes

P̂(x,s) =
ˆ ∞

0
P0 (x,u) ĥ(u,s) du

=

ˆ ∞

0
P0 (x,u)

1
sη̂ (s)

e−u/η̂(s)du=
1

sη̂ (s)
P̂0

(
x,

1
η̂ (s)

)
, (14)

where P0(x, t) is the solution of the Fokker–Planck equation for standard O–U process (4)
(without memory kernel, i.e. η(t) = 1), and the subordination function h(u, t) in Laplace space
is given by

ĥ(u,s) =
1

sη̂ (s)
e−u/η̂(s). (15)

From equation (14) one can easily calculate the mean ⟨x(t)⟩g =
´∞
−∞ xP(x, t)dx and the

MSD ⟨x2(t)⟩g =
´∞
−∞ x2P(x, t)dx for the generalised O–U process. Therefore, in Laplace

space, we have

⟨x̂(s)⟩g =
ˆ ∞

−∞
xP̂(x,s) dx=

1
sη̂ (s)

ˆ ∞

−∞
xP̂0

(
x,

1
η̂ (s)

)
dx=

1
sη̂ (s)

⟨x̂(1/η̂ (s))⟩, (16)

⟨x̂2 (s)⟩g =
ˆ ∞

−∞
x2P̂(x,s) dx=

1
sη̂ (s)

ˆ ∞

−∞
x2P̂0

(
x,

1
η̂ (s)

)
dx=

1
sη̂ (s)

⟨x̂2 (1/η̂ (s))⟩, (17)

respectively. From here one can conclude that the mean ⟨x̂(t)⟩g and the MSD ⟨x̂2(t)⟩g of
the generalised O–U process for a specific form of the memory kernel can be found explicitly
in Laplace space from the corresponding mean ⟨x̂(s)⟩, see equation (7), and the MSD ⟨x̂2(s)⟩,
see equation (8), for the standard O–U process. By using relations (7) and (16) for the mean,
and relations (8) and (17) for the MSD, we finally find

⟨x̂(s)⟩g =
[x0 +λµη̂ (s)]s−1

1+λη̂ (s)
, (18)

⟨x̂2 (s)⟩g =
[
x20 +σ2η̂ (s)

]
s−1

1+ 2λη̂ (s)
+

2λµ [x0 +λµη̂ (s)]s−1η̂ (s)
[1+ 2λη̂ (s)] [1+λη̂ (s)]

. (19)

For the case µ= 0, these results reduce to

⟨x̂(s)⟩g =
x0

s [1+λη̂ (s)]
, (20)

and

⟨x̂2 (s)⟩g =
[
x20 +σ2η̂ (s)

]
s−1

1+ 2λη̂ (s)
. (21)

Here we note that if instead of the harmonic potential, we consider a constant external force,
one can show that the generalised fluctuation–dissipation theorem is satisfied, as in the case of
the corresponding process without memory kernel, see [9, 55].

Remark 1. The same results for the mean and the MSD can be obtained from the
Fokker–Planck equation (12). Even though there is no exact solution of the Fokker–Planck
equation (12), one can find exact expressions for the moments of the PDF. In order to obtain
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the explicit expressions for these moments, equation (12) is multiplied by x and x2 corres-
pondingly and integrated from −∞ to +∞. Following these steps the equation for the mean
value is

∂

∂t
⟨x(t)⟩g =

d
dt

ˆ t

0
η (t− t ′) [λ⟨x(t ′)⟩g − 2λ⟨x(t ′)⟩g −λµ]dt ′, (22)

and in Laplace space

s⟨x̂(s)⟩g − x0 = sη̂ (s)

[
−λ⟨x̂(s)⟩g −

λµ

s

]
. (23)

From here one finds relation (18). Now performing the same steps for the MSD we end up
with the equation

∂

∂t
⟨x2 (t)⟩g =

d
dt

ˆ t

0
η (t− t ′)×

[
−2λ⟨x2 (t ′)⟩g + 2λµ⟨x(t ′)⟩+σ2

]
dt ′, (24)

or in Laplace space

s⟨x̂2 (s)⟩g − x20 = sη̂ (s)

[
−2λ⟨x̂2 (s)⟩g + 2λµ⟨x̂(s)⟩g +

σ2

s

]
, (25)

from where we derive relation (19).

3. Power-law memory kernel: time fractional O–U process

Now let us examine different memory kernels that can be employed in the generalised
Fokker–Planck equation (12) and the corresponding equations for the mean value (18) and
the MSD (19). First, we will investigate the process by implementing the power-law memory
kernel η(t) = tα−1

Γ(α) , 0< α < 1, η̂(s) = s−α, which corresponds to the fractional O–U process
governed by (see [8, 9] for µ= 0)

∂

∂t
P(x, t) = RLD

1−α
t

{
λ
∂

∂x
[(x−µ)P(x, t ′)]+

σ2

2
∂2

∂x2
P(x, t ′)

}
, (26)

where RLD
1−α
t is the Riemann–Liouville fractional derivative (A.3) of order 0< 1−α < 1.

We introduce such a memory kernel with 0< α < 1 since Ψ̂(s) = 1
η̂(s) = sα, which means

that the noise ζ(u) is one-sided α-stable Lévy noise with stable index 0< α < 1. This case
relates to the long-tailed waiting time PDF of the form ψ(t)∼ t−α−1 in the CTRW model,
see [34]. We note that the PDF of this equation for µ= 0 was obtained as a series of Hermite
polynomials and via a subordination integral in [8, 9].

3.1. Mean value and MSD

From the general results for themean (18) and theMSD (19), for the power-lawmemory kernel
we have

⟨x̂(s)⟩g =
(x0 +λµs−α)sα−1

sα +λ
, (27)

7
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⟨x̂2 (s)⟩g =
(
x20 +σ2s−α

)
sα−1

sα + 2λ
+

2λµ(x0 +λµs−α)sα−1

(sα + 2λ)(sα +λ)
, (28)

which by inverse Laplace transform become

⟨x2 (t)⟩g = x20Eα (−2λtα)+σ2tαEα,α+1 (−2λtα)+ 2λµx0t
αE(α,2α),α+1

(
−3λtα,−2λ2t2α

)
+ 2λ2µ2t2αE(α,2α),2α+1

(
−3λtα,−2λ2t2α

)
. (29)

Here Eα(z), Eα,β(z), and E(α1,α2,...,αn),β (z1,z2, . . . ,zn) are one parameter (A.9), two para-
meter (A.8) and multinomial (A.13) Mittag–Leffler functions, respectively. By using the
Tauberian theorems, see appendix B, one can find that in the long time limit the mean value µ
is approached,

⟨x(t)⟩g ∼
x0
λ

t−α

Γ(1−α)

[
1− Γ(1−α) t−α

λΓ(1− 2α)

]
+µ

[
1− 1

λΓ(1−α)
t−α

]
, (30)

and the MSD approaches to the thermal equilibrium ⟨x2th⟩= σ2

2λ +µ2,

⟨x2 (t)⟩g ∼
x20
2λ

t−α

Γ(1−α)

[
1− Γ(1−α) t−α

2λΓ(1− 2α)

]
+
σ2

2λ

[
1− t−α

2λΓ(1−α)

]
+
µx0
λ

t−α

Γ(1−α)

[
1− 3Γ(1−α) t−α

λΓ(1− 2α)

]
+µ2

[
1− 3

2λ
t−α

Γ(1−α)

]
. (31)

For the special case with µ= 0, we recover the following result for the mean [8, 9]

⟨x(t)⟩g = x0Eα (−λtα) , (32)

and for the MSD [8, 9]

⟨x2 (t)⟩g = x20Eα (−2λtα)+σ2tαEα,α+1 (−2λtα) . (33)

In the long time limit the MSD relaxes to the thermal equilibrium ⟨x2th⟩= σ2

2λ [9] exponentially
for α= 1 and as a power-law for 0< α < 1. This power-law approach is expected due to the
long-tailed waiting time PDF ψ(t)∼ t−α−1, 0< α < 1, which results in the emergence of a
Mittag–Leffler relaxation9 instead of the exponential relaxation in the standard O–U process.
For λ= 0 the MSD becomes ⟨x2(t)⟩g = x20 +σ2 tα

Γ(1+α) , as it should be, since it is the MSD
for anomalous diffusive process, obtained from CTRW theory for long-tailed waiting time
PDF ψ(t)∼ t−α−1, 0< α < 1. We note that the case with α= 1/2 corresponds to the O–U
process along the backbone of the two dimensional comb, which consists of a main channel
in x-direction (so-called backbone) and side branches in y-direction (so-called fingers of the
comb) in which the particle can be stacked with a power-law waiting time ψ(t)∼ t−3/2 [28],
while the case with α= 1/4 to the O–U process along the backbone of the three dimensional
comb, which consist of a main channel along the x-direction, side branches in y-direction and
secondary branches in z-direction [29].

9 In the long time limit the Mittag–Leffler function asymptotically behaves as a power-law, see (A.12).

8
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3.2. Langevin equation approach

The method for Monte Carlo simulations for this particular problem, when we have a gener-
alised power law exponent α is not the same as the method used for simulating anomalous
diffusion of a particle on a comb structure investigated in [28, 29, 56–59], even though as pre-
viously mentioned, certain values of the exponent (α= 1/2,1/4) recreate the same results as
the anomalous diffusion on two dimensional and three dimensional comb structures, respect-
ively. The procedure used for simulating the problem of interest in this paper, namely, the
O–U process with a memory kernel is given in detail in [45]. The equations used to simulate
the processes are

x(s) = x(0)+
ˆ s

0
F(x(s ′)) ds ′ +

ˆ s

0
dW(x(s ′)) , (34)

and

t(s) = t(0)+
ˆ s

0
dLα (s

′) , (35)

where dW and dLα are the infinitesimal increments of Wiener and one-sided α-stable Lévy
processes, respectively. For the purpose of simulating the process these equations have to be
discretised with suitable discrete increment∆s. The discretised equations are given as

x(s+∆s) = x(s)+∆sF(x(s))+ η (s,∆s) , (36)

and

t(s+∆s) = t(s)+ τα (s+∆s) . (37)

The random variables η(si,∆si) have to be drawn from a Gaussian PDF with variance σ2 =
∆s, and the variables τα(si,∆si) have to comply with a distribution of the form 1

∆sα Lα
(

τα
∆sα

)
defined as [45],

Lα (x) =
1
π
ℜ
{ˆ ∞

0
exp

(
−ikz− zα exp

(
−i
απ

2

))
dz

}
(38)

The generation of the random numbers τα(si,∆si) for the case of 0< α≤ 1 can efficiently
can be done by taking the form [45]

τα (si,∆si) = (∆s)
1
α
sin(α [Vi +π/2])

[cos(Vi)]
1/α

×
{
cos(Vi−α [Vi+π/2])

Wi

} 1−α
α

, (39)

where Vi = π (u1i − 1/2) is a random variable uniformly distributed on [−π/2,+π/2], and
Wi =− log(u2i ) is a random variable with mean 1, and u1,2i are independent variables that
are uniformly distributed on the interval [0,1]. In the case when α= 1, τ1(si,∆si) = ∆s is
retrieved.

Figure 1 shows trajectories of the O–U process with power-lawmemory kernel for different
exponents α. The solid lines correspond to the process x(t), while the dashed lines correspond
to s(t), namely the inverse process of t(s), for details see [45]. As is clearly visible from the
trajectories, the scaling exponent α of the waiting time PDF plays a crucial role in the particle
dynamics. While for all 0< α < 1 the characteristic waiting time diverges, smaller values of

9
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Figure 1. Typical trajectories of the subordinated O–U process for differentα. The solid
blue lines correspond to the process x(t), while the dashed black lines to the process s(t).
We set dt= 0.001, ds= 0.0001, µ= 5, λ= 1 and σ= 1.

α mean that the waiting time PDF has an even shallower tail and thus allows, typically, for
even longer waiting times. The progress in space for a particle with smaller α is thus slower,
as already anticipated by the α-dependence of the MSD. Namely, by lowering the exponent
below unity, the process experiences scale-free waiting times, in doing so delaying the particle
from reaching the long-term mean value µ. The smaller the value of the exponent, the longer
these waiting times become, and the relaxation to the long-term mean value is a power-law.
The same can be concluded from the calculation of the MSDs of the process for different
exponents as shown in figure 2. Given that the O–U process is stationary, we see an early

10
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Figure 2. MSD (29) (solid lines) andMSD obtained by simulations (36) and (37) (mark-
ers) for the O–U process with power-law memory kernel η(t) = tα−1

Γ(α)
, η̂(s) = s−α. We

set x0 = 0, σ= 1, λ= 1, µ= 2, dt= 0.01, ds= 0.001, T = 1000 and N= 1000.

and rapid saturation of the process when we have the standard process and normal diffusion,
which occurs when the value of the exponent α= 1, due to the exponential relaxation. This
is not the case when anomalous diffusion (α< 1) is present, where in order for the process to
reach the characteristic saturation of the O–U process a long time has to pass. In other words,
as the exponent value decreases, the speed of reaching the long-term mean value µ decreases
as well.

In figure 2 we see a good agreement between the analytical results for the MSDs (29) and
the simulations of the process, even though simulating the time fractional O–U process is not a
trivial task. From the simulations of theMSDs, see figure 2, we can conclude that the results are
more robust and precise for larger exponent values α and longer times t. To plot the analytical
results for the MSD as function of time t, we apply the numerical inverse Laplace transform
package in Wolfram Mathematica [60–62] to the MSD (28) in Laplace space.

In figure 3 we illustrate the numerical calculations of the PDFs P(x, t) that give the solution
to the fractional differential equation (26) (solid lines) and the corresponding simulations for
different values of the exponent α in the long-time limit (t= 104). The numerical solution of
the fractional Fokker–Planck equation (26) uses the numerical package for solving fractional
partial differential equations in Wolfram Mathematica [63]. Again, it is evident here that the
exponent α is a crucial factor for determining the speed of the evolution of the system through
time. For smaller exponents α the particle has a larger probability to be found around its initial
position even as the process progresses through time, which is a consequence of the large
waiting times as is visible from the trajectories even though the O–U process is driven towards
some long-term value µ. In figure 4 we give the time evolution of the PDF for different values
of α. Here, clear cusps at the initial positions are visible. These cusps are more evident for
smaller exponents α, when the diffusion of the particles is slower, and particles stay around
the initial position longer, therefore exhibiting this cusp-like behaviour of the PDF in the initial
position. These cusps are investigated to great extent in [64, 65]. In appendix C, we investigate

11
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Figure 3. Long time behaviour of the solution P(x, t) of equation (26) with a power-law

memory kernel η(t) = tα−1

Γ(α)
, η̂(s) = s−α, for different values of α; numerical solutions

(solid lines), simulations (markers). We set x0 = 0, µ= 2, σ= 1, λ= 1, N= 105 and
t= 104.

mixed fractional O–U process, characterised by two fractional exponents. As a special case
we recover the results for a combination of fractional and standard O–U processes. The exact
analytical expressions for the mean and the MSD are given, and the graphical representation
of the MSD for different values of the fractional exponents is shown in figure C1.

In appendix D, we perform an error analysis between the numerical results for the PDFs and
the corresponding simulations, in order to investigate the agreement between them. From (D1),
we can conclude that satisfactory agreement is achieved for a statistical ensemble of N≈ 1000
trajectories. With further increase in the number of trajectories, we see improvement in the
agreement between the numerical results and simulations but not by a significant margin.

4. Generalised O–U process with resetting

Let us now consider the exponentially truncated memory kernel

ηr (t) = e−rtη (t) → η̂r (s) = η̂ (s+ r) , (40)

with truncation rate r, where η(t) is the same memory kernel as used before in the Fokker–
Planck equation (12). We can show that for such a memory kernel the corresponding Fokker–
Planck equation for the PDF

∂

∂t
Pr (x, t) =

d
dt

ˆ t

0
e−r(t−t ′)η (t− t ′)

{
λ
∂

∂x
[(x−µ)Pr (x, t

′)]+
σ2

2
∂2

∂x2
Pr (x, t

′)

}
dt ′, (41)

can be rewritten in the renewal form [56, 57, 66–69]

Pr (x, t) = e−rtP(x, t)+
ˆ t

0
re−rt ′P(x, t ′) dt ′, (42)
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Figure 4. Time evolution of the solution P(x, t) of equation (26), with a power-law

memory kernel η(t) = tα−1

Γ(α)
, 0< α< 1; numerical solutions (solid lines), simulations

(markers). We set σ= 1, λ= 1, and x0 = 0, µ= 3 (top four plots), and x0 = 3, µ= 0
(bottom four plots) for α= {1/8,1/4,1/2,1}.
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where P(x, t) is the solution of the Fokker–Planck equation (12). This means that the Fokker–
Planck equation (41) describes a generalisedO–Uprocess under uniformPoissonian (exponen-
tial) resetting, where the truncation rate r has the role of the resetting rate. From equation (42),
by Laplace transform, one finds

P̂r (x,s) =
s+ r
s

P̂(x,s+ r) . (43)

The same renewal form can be written for the MSD, i.e.

⟨x2 (t)⟩r = e−rt⟨x2 (t)⟩g +
ˆ t

0
re−rt ′⟨x2 (t ′)⟩g dt ′, (44)

and respectively

⟨x̂2 (s)⟩r =
s+ r
s

⟨x̂2 (s+ r)⟩g, (45)

where ⟨x̂2(s)⟩g is given by equation (19).
In the long time limit the system approaches a nonequilibrium stationary state (NESS)

Pstr (x) = lim
t→∞

Pr (x, t) = lim
s→0

sP̂r (x,s) = rP̂(x,r) , (46)

and the MSD saturates to

⟨x2 (t)⟩r = lim
s→0

s⟨x̂2 (s)⟩r = r⟨x̂2 (r)⟩g

=

[
x20 +σ2η̂ (r)

]
1+ 2λη̂ (r)

+
2λµ [x0 +λµη̂ (r)] η̂ (r)
[1+ 2λη̂ (r)] [1+λη̂ (r)]

. (47)

4.1. Fractional O–U process under resetting

Now let us investigate the case when we have uniform stochastic Poissonian resetting [70] and
anomalous diffusion present in the system. The form of the memory kernel, that corresponds to
that behaviour is the truncated (or tempered ) power-law memory kernel ηr(t) = e−rt tα−1

Γ(α) , 0<

α < 1, r> 0, i.e. η̂r(s) = (s+ r)−α, where, as we showed before, r has the role of a resetting
rate. If we put the memory kernel in equation (12) we end upwith the following Fokker–Planck
equation

∂

∂t
Pr (x, t) = TRLD

α
0+

{
λ
∂

∂x
[(x−µ)Pr (x, t

′)]+
σ2

2
∂2

∂x2
Pr (x, t

′)

}
, (48)

where TRLD
µ
0+f(t) is the tempered R–L fractional derivative (A.5). We note that for α= 1 we

recover the results for the standard O–U process under stochastic resetting.
To obtain the PDF of the fractional O–U process under resetting, we use the renewal

equation in Laplace space (43), in which the PDF P̂(x,s) without resetting can be found from
the subordination approach (14) for a power-law memory kernel with η̂(s) = s−α. Therefore,
from equation (14), the PDF without resetting reads

P̂(x,s) = sα−1P̂0 (x,s
α) . (49)

14
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while for the PDF in presence of resetting, from equation (43), we obtain

P̂r (x,s) =
(s+ r)α

s
P̂0 (x,(s+ r)α) . (50)

In the same way, for the MSD in Laplace space we find

⟨x̂2 (s)⟩r =
s+ r
s

⟨x̂2 (s+ r)⟩g

=
s+ r
s


[
x20 +σ2 (s+ r)−α

]
(s+ r)α−1

(s+ r)α + 2λ
+

2λµ
[
x0 +λµ(s+ r)−α

]
(s+ r)α−1

[(s+ r)α + 2λ] [(s+ r)α +λ]

 ,

(51)

from where one can find the exact result in terms of the three parameter (A.6) and multinomial
Mittag–Leffler functions (A.13). Thus, by knowing the MSD in the absence of resetting, one
can directly analyse the MSD in the presence of resetting. By inverse Laplace transform to
equation (51), we find

⟨x2 (t)⟩r =x20
∞∑
k=0

(2λ)k tαkEαk
1,αk+1 (−rt)

+σ2
ˆ t

0

∞∑
k=0

(2λ)k t ′αkEαk
1,αk+1 (−rt ′) (t− t ′)

α−1
Eα
1−α (−r [t− t ′])

+ 2λµx0

∞∑
k=0

∞∑
l=0

(
−2λ2

)k
(3λ)l

(
k+ l
l

)
tα+2αk+αlEα+2αk+αl

1,α+1+2αk+αl (−rt)

+ 2λ2µ2
∞∑
k=0

∞∑
l=0

(
−2λ2

)k
(3λ)l

(
k+ l
l

)
t2α+2αk+αlE2α+2αk+αl

1,2α+1+2αk+αl (−rt) , (52)

where the geometric and binomial series formulas are used for calculating the last two terms.
In the long time limit the system approaches a NESS and the MSD saturates to

⟨x2 (t)⟩r = r⟨x̂2g (r)⟩ ∼
x20r

α +σ2

rα + 2λ
+

2λµ(x0rα +λµ)

(rα + 2λ)(rα +λ)
. (53)

Here, by using the exponentially truncated power-law memory kernel with certain values
for the anomalous exponent α we can recover the results for the O–U processes on two and
three dimensional comb structures under resetting. Namely the value of the exponent α= 1/2
recovers the results for the O–U process on the backbone of a two dimensional comb structure,
see [28] and the O–U process in the main fingers on a three dimensional comb structure, see
[29], and for α= 1/4 we recover the results for the O–U process in the backbone of a three
dimensional comb.

In figure 5 we present the numerical results for the MSDs of the fractional O–U process
under resetting (52) for different exponentsα and resetting rates r (for plotting the multinomial
Mittag–Leffler functions see [71]). We can distinguish three specific cases here; namely r< λ,
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Figure 5. MSD (52) for the subdiffusive O–U process with resetting, which corresponds
to the process with η(t) = e−rt tα−1

Γ(α)
, r> 0. We set x0 = 0, µ= 2, σ= 1 and λ= 1.

r= λ and r> λ. From figure 5 we conclude that there is different behaviour for these three
cases. When r< λ the particles under normal diffusion, corresponding to α= 1 have greater
diffusivity than the ones undergoing anomalous diffusion α< 1 and so the MSD for the nor-
mal diffusion is larger than for the subdiffusive one. When the resetting rate r and the mean-
reverting rate λ have the same value, the two opposing processes with equal intensity produce
interesting effects on the diffusivity of the particles, making the subdiffusivity of the process
obsolete, meaning, the MSDs for the normal and anomalous diffusion have the same value
and the waiting times have no effect on the overall diffusivity of the particle. Conversely when
the resetting rate is greater than the mean-reverting rate we have the opposite effect, where
particles undergoing anomalous diffusion on average reach greater distances than the ones
with normal diffusion. This effect can be used in systems when intensive, frequent stochastic
resetting is present and there is the need to maximise the diffusivity of the process, applying
the same waiting times to the process, as in the case of diffusion on a comb structure. Here
the value of the long-term mean value µ does not affect the behaviour for the three cases. If
we compare the numerical results for the PDF for the fractional O–U process under resetting
in figure 6 and the PDF without resetting in figure 4, the effect of stochastic resetting on the
distribution is clearly evident (there is a clear cusp at the initial position), as it increases the
probability of the particle being located near the initial position, which at the same time is
the position where the particles are being reset to. In figure 7, the PDFs for different resetting
rates r are shown, from where it is evident that with the increase in r, the localisation of the
PDF around the long-term mean value µ is decreasing. This points at opposite effects of the
stochastic resetting and the mean reversion of the O–U process.

5. Summary

We investigated extension of the standard O–U process based on subordination. We derived
the corresponding Fokker–Planck equation starting from the one for the standard O–U process,
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Figure 6. Numerical results for time evolution of the PDFs (50) for the subdiffusive O–
U process with resetting, corresponding to process withmemory kernel η(t) = e−rt tα−1

Γ(α)
,

0< α< 1, r> 0. We set x0 = 0, µ= 3, σ= 1, λ= 1 and r= 0.1.

where we introduce long-tailed waiting times in the random walk model. It results in the pres-
ence of a memory function in the Fokker–Planck equation for the generalised O–U process.
This model as a special case contains the previously introduced models on O–U processes on
two and three dimensional comb-like structures, which are subdiffusive O–U processes with
fractional exponent 1/2 and 1/4, respectively. The present model can also describe a gener-
alised O–U process under Poissonian resetting of the particle to its initial position if in the
Fokker–Planck equation we introduce an exponentially truncated memory kernel. It is shown
that due to the resetting the particle approaches a non-equilibrium stationary state in the long
time limit. The analytically obtained results are compared with numerical evaluations and sim-
ulations and good agreement is shown. The derivation of a general O–U model under different
resetting mechanism, such as power-law or sharp resetting in which the time between two
restarts is fixed, we leave for a future research. Another interesting model for future research
could be the analysis of the corresponding first passage time problem of the generalised O–U
process in the presence of resetting and the determination of the optimal search strategy by
calculation of the mean first passage time.
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Figure 7. PDF for the time fractional O–U process with resetting, which corresponds to
the process with ηr(t) = e−rt tα−1

Γ(α)
, 0< α< 1, r> 0.We set x0 = 0, t= 10, µ= 5, σ= 1,

λ= 1, α= 0.5 for different resetting rates r.
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Appendix A. Fractional calculus and related Mittag–Leffler functions

The Riemann–Liouville fractional integral of order µ> 0 is defined by [72]

Iµ0+f(t) =
1

Γ(µ)

ˆ t

0

f(t ′)

(t− t ′)1−µ
dt ′, ℜ(µ)> 0, (A.1)

such that for µ= 0 it is

I 00+f(t) = f(t) . (A.2)

The Riemann–Liouville fractional derivative of order 0< µ < 1 is defined as a derivative
of the Riemann–Liouville fractional integral of a function [72],

RLD
µ
t f(t) =

d
dt
I1−µ
0+ f(t) =

1
Γ(1−α)

d
dt

ˆ t

0
(t− t ′)

−µ
f(t ′) dt ′, (A.3)
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while the Caputo fractional derivative of order 0< µ < 1 is defined as the Riemann–Liouville
fractional integral of the first derivative of a function [72],

CD
µ
t f(t) = I1−µ

0+
d
dt
f(t) =

1
Γ(1−α)

ˆ t

0
(t− t ′)

−µ d
dt ′

f(t ′) dt ′. (A.4)

The tempered Riemann–Liouville fractional derivative of order 0< µ < 1 with tempering
parameter r is defined by [71, 73]

TRLD
µ
0+f(t) =

1
Γ(1−µ)

d
dt

ˆ t

0
e−r(t−t ′) (t− t ′)

−µ
f(t ′) dt ′. (A.5)

The three parameter Mittag–Leffler function (also known as a Prabhakar function) is
defined by [74]

Eγ
α,β (z) =

∞∑
k=0

(γ)k
Γ(αk+β)

zk

k!
, (A.6)

where β,γ,z ∈ C, ℜ(α)> 0, (γ)k is the Pochhammer symbol

(γ)0 = 1, (γ)k =
Γ(γ+ k)
Γ(γ)

. (A.7)

It is a generalisation of the two parameter Mittag–Leffler function (also called generalised
Mittag–Leffler function in [75])

E1
α,β (z) =

∞∑
k=0

zk

Γ(αk+β)
= Eα,β (z) , (A.8)

and the one parameter Mittag–Leffler function [75]

E1
α,1 (z) =

∞∑
k=0

zk

Γ(αk+ 1)
= Eα (z) . (A.9)

The Laplace transform of the three parameter Mittag–Leffler function is given by

L
[
tβ−1Eγ

α,β (∓λt
α)
]
=

sαγ−β

(sα ±λ)
γ , (A.10)

where |λ/sα|< 1.
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The asymptotic behaviour for large z of the three parameter Mittag–Leffler function can be
found from the following expression [76]

Eγ
α,β (−z) =

z−γ

Γ(γ)

∞∑
n=0

Γ(γ+ n)
Γ(β−α(γ+ n))

(−z)−n

n!
, z> 1, (A.11)

i.e.

Eγ
α,β (−z)∼

z−γ

Γ(β−αγ)
− γ

z−(γ+1)

Γ(β−α(γ+ 1))
, z≫ 1. (A.12)

The multinomial Mittag–Leffler function is defined by [77]

E(α1,α2,...,αn),β (z1,z2, . . . ,zn) =
∞∑
k=0

l1+l2+···+ln=k∑
l1≥0,l2≥0,...,ln≥0

(
k

l1, . . . , ln

) ∏n
i=1 z

li
i

Γ
(
β+

∑n
i=1αili

) ,
(A.13)

where (
k

l1, . . . , ln

)
=

k!
l1! l2! . . . ln!

,

are the multinomial coefficients. Its Laplace transform reads

L
[
tβ−1E(α1,α2,...,αn),β (∓λ1t

α1 ,∓λ2tα2 , . . . ,∓λntαn)
]
=

s−β

1±
∑n

j=1λjs
−αj

. (A.14)

Appendix B. Tauberian theorems

The asymptotic behaviour of a given function r(t) can be analysed by means of the Tauberian
theorems [36]. One of the theorems states that if the asymptotic behaviour of r(t) for t→∞
is given by

r(t)∼ t−α, t→∞, α > 0, (B.1)

then, the corresponding Laplace pair r̂(s) = L[r(t)] has the following behaviour for s→ 0

r̂(s)∼ Γ(1−α)sα−1, s→ 0. (B.2)

The theorem also works in the opposite direction, ensuring that r(t) is the non-negative and
monotone function at infinity.

This theorem can be formulated in the form of the so-called Hardy–Littlewood theorem.
The theorem states that, if the Laplace–Stieltjes transform of a given non-decreasing function
F with F(0) = 0, defined by Stieltjes integral

ω (s) =
ˆ ∞

0
e−st dF(t) , (B.3)
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has asymptotic behaviour

ω (s)∼ Cs−ν , s→∞ (s→ 0) , (B.4)

where ν ≥ 0 and C are real numbers, then the function F has asymptotic behaviour

F(t)∼ C
Γ(ν+ 1)

tν , t→ 0 (t→∞) . (B.5)

Appendix C. Mixed subdiffusive O–U processes

Here we observe the mixed subdiffusive processes with different power-law memory func-
tions. This case can be represented by the memory kernel η(t) = ω1

tα1−1

Γ(α1)
+ω2

tα2−1

Γ(α2)
, where

0< α1 < α2 < 1,ω1 +ω2 = 1 and η̂(s) = ω1s−α1 +ω2s−α2 . We note that for α1 ≡ α and
α2 ≡ 1, we have a combination of standard diffusive and subdiffusive motion. The Fokker–
Planck equation for this mixed motion becomes

∂

∂t
P(x, t) =

d
dt

ˆ t

0

[
ω1

(t− t ′)α1−1

Γ(α1)
+ω2

(t− t ′)α2−1

Γ(α2)

]

×
{
λ
∂

∂x
[(x−µ)P(x, t ′)]+

σ2

2
∂2

∂x2
P(x, t ′)

}
dt ′. (C.1)

From the general results for the mean value (18), we can directly obtain the mean value for
the mixed subdiffusive O–U processes in Laplace space. Thus, we have

⟨x̂(s)⟩= x0
s−1

1+λ(ω1s−α1 +ω2s−α2)
+λµ

(ω1s−α1 +ω2s−α2)s−1

1+λ(ω1s−α1 +ω2s−α2)
, (C.2)

from which by inverse Laplace transform, we find the exact result in terms of Mittag–Leffler
functions,

⟨x(t)⟩g = x0

∞∑
k=0

(−λω2)
k tα2kEk+1

α1,α2k+1 (−λω1t
α1)

+
∞∑
k=0

{
λµω1 (−λω2)

k tα2k+α1Ek+1
α1,α2k+α1+1 (−λω1t

α1)

+λµω2 (−λω2)
k tα2k+α2Ek+1

α1,α2k+α2+1 (−λω1t
α1)

}
. (C.3)

By asymptotic analysis, employing Tauberian theorems (see appendix B), we find that the
mean value in the long time limit behaves as

⟨x(t)⟩g ∼
x0
λω2

[
t−α2

Γ(1−α2)
− ω1

ω2

t−(2α2−α1)

Γ(1− [2α2 −α1])

]
+µ

ω1

ω2

[
t−(α2−α1)

Γ(1− [α2 −α1])
− ω1

ω2

t−2(α2−α1)

Γ(1− 2 [α2 −α1])

]
+µ

[
1− ω1

ω2

t−(α2−α1)

Γ(1− [α2 −α1])

]
, (C.4)
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i.e. it reaches the mean µ. Correspondingly, for the MSD from the general results (19), we find
in Laplace space

⟨x̂2 (s)⟩= x20
s−1

1+ 2λ(ω1s−α1 +ω2s−α2)
+σ2 s−1 (ω1s−α1 +ω2s−α2)

1+ 2λ(ω1s−α1 +ω2s−α2)

+ 2λµx0
(ω1s−α1 +ω2s−α2)s−1

(1+ 2λ(ω1s−α1 +ω2s−α2))(1+λ(ω1s−α1 +ω2s−α2))

+ 2λ2µ2 (ω1s−α1 +ω2s−α2)
2 s−1

(1+ 2λ(ω1s−α1 +ω2s−α2))(1+λ(ω1s−α1 +ω2s−α2))
, (C.5)

which by inverse Laplace transform leads to

⟨x2 (t)⟩= x20

∞∑
k=0

(−2λω2)
k tα2kEk+1

α1,α2k+1 (−2λω1tα1 )

+
∞∑
k=0

{
σ2 (−2λω2)

k
[
ω1tα2k+α1Ek+1

α1,α2k+α1+1 (−2λω1tα1 )+ω2tα2k+α2Ek+1
α1,α2k+α2+1 (−2λω1tα1 )

]}
+ 2λµω2x0tE(α,1,2α,2,α+1),2

(
−3λω1tα,−3λω2t,−2λ2ω2

1 t
2α,−2λ2ω2

2 t
2,−4λ2ω1ω2tα+1)

+ 2λµω1x0tα1

×E(α1,α2,α1+α2,2α1,2α2),α2+1

(
−3λω1tα1 ,−3λω2tα2 ,−4λ2ω1ω2tα1+α2 ,−2λ2ω2

1 t
2α1 ,−2λ2ω2

2 t
2α2

)
+ 2λ2µ2ω2

1 t
2α1

×E(α1,α2,α1+α2,2α1,2α2),2α1+1

(
−3λω1tα1 ,−3λω2tα2 ,−4λ2ω1ω2tα1+α2 ,−2λ2ω2

1 t
2α1 ,−2λ2ω2

2 t
2α2

)
+ 2λ2µ2ω2

2 t
2α2

×E(α1,α2,α1+α2,2α1,2α2),2α2+1

(
−3λω1tα1 ,−3λω2tα2 ,−4λ2ω1ω2tα1+α2 ,−2λ2ω2

1 t
2α1 ,−2λ2ω2

2 t
2α2

)
+ 4λ2µ2ω1ω2tα1+α2

×E(α1,α2,α1+α2,2α1,2α2),α1+α2+1

(
−3λω1tα1 ,−3λω2tα2 ,−4λ2ω1ω2tα1+α2 ,−2λ2ω2

1 t
2α1 ,−2λ2ω2

2 t
2α2

)
.

(C.6)

By using the Tauberian theorems, we find the asymptotic behaviour of the MSD in the long
time limit,

⟨x2 (t)⟩g ∼
x20

2λω2

[
t−α2

Γ(1−α2)
+
ω1

ω2

t−(2α2−α1)

Γ(1− [2α2 −α1])

]
+
σ2

2λ

[
1− ω2

1

ω2
2

t−2(α2−α1)

Γ(1− 2 [α2 −α1])

]
+
µx0
λω2

[
t−α2

Γ(1−α2)
− ω1

ω2

t−(2α2−α1)

Γ(1− [2α2 −α1])
− 2

ω2
1

ω2
2

t−(3α2−2α1)

Γ(1− [3α2 − 2α1])

]
+µ2

[
1− 3

ω2
1

ω2
2

t−2(α2−α1)

Γ(1− 2 [α2 −α1])
− 3

ω3
1

ω3
2

t−3(α2−α1)

Γ(1− 3 [α2 −α1])

]
. (C.7)

From here we conclude that in the long time limit the MSD approaches to the thermal equi-
librium ⟨x2th⟩= σ2

2λ +µ2.
Graphical representation of the MSD (C.6) for different values of system’s parameters in

case of mixed subdiffusive and combined standard and subdiffusive processes is given in
figure C1.
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Figure C1. MSD (C.6) for mixed subdiffusive O–U process and combined standard and
subdiffusive O–U processes ()< α1 < 1, α2 = 1). We set x0 = 0, µ= 3 σ= 1 and λ= 1.

Appendix D. Error analysis of the numerical method in section 3.2

In order to analyse the precision of the method used in this paper, section 3.2, for simulating
the processes, we calculate the error between the numerical results of the PDFs acquired by
numerically solving the Fokker–Planck equation (26) and the PDFs of the simulations. Of great
interest is to see how the precision of the simulations as a function of the number of trajectories
N and the size of the time step ∆t. To do that we introduce the following expression

Rk =
|Ps,k (x, t)−Pn,k (x, t) |

Pn,k (x, t)
, (D.1)

the relative error defining the ratio of the absolute error of a measurement to the measurement
being taken, where Pn(x, t) is the numerically calculated value and, Ps(x, t) is the experimental
or the simulated value. By averaging over all of the sample points N, the average relative error
is calculated,

⟨R⟩=
∑N

k=0Rk
N

. (D.2)

A convenient equation for determining the precision or the error of the simulations is the
standard deviation, given by

S=

√∑N
k=0 dk
N− 1

, (D.3)

where

dk = (Rk−⟨R⟩)2 . (D.4)

In figure D1 we present the standard deviation (D.3) as a function of the number of tra-
jectories used for simulating the PDFs. It is clearly evident that the increase in the number
of trajectories results in more precise simulations. At first we have a very fast increase in the
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Figure D1. Standard error analysis between the numerically calculated values of the
PDFs and simulations with different number of trajectories. Parameters: x0 = 0, µ= 2,
σ= 1, λ= 1, t= 104, dt= 0.1, ds= 0.01.

precision for the first few thousands of trajectories and after that roughly a linear decrease in
the standard deviation and increase in the precision of the simulations. Further increase in the
sample of trajectories will always improve the simulations, but at the cost of time and computa-
tional power, so choosing the number of sample trajectories which will allow balance between
satisfactory precision of the results and reduced computational time and power is essential in
this case.
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