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A common scenario in a variety of biological systems is that multiple particles are searching in parallel for an
immobile target located in a bounded domain, and the fastest among them that arrives to the target first triggers
a given desirable or detrimental process. The statistics of such extreme events—the fastest first-passage to the
target—is well-understood by now through a series of theoretical analyses, but exclusively under the assumption
that all N particles start simultaneously, i.e., all are introduced into the domain instantly, by δ-function-like
pulses. However, in many practically important situations this is not the case: to start their search, the particles
often have to enter first into a bounded domain, e.g., a cell or its nucleus, penetrating through gated channels or
nuclear pores. This entrance process has a random duration so that the particles appear in the domain sequentially
and with a time delay. Here we focus on the effect of such an extended-in-time injection of multiple particles
on the fastest first-passage time (fFPT) and its statistics. We derive the full probability density function HN (t ) of
the fFPT with an arbitrary time-dependent injection intensity of N particles. Under rather general assumptions
on the survival probability of a single particle and on the injection intensity, we derive the large-N asymptotic
formula for the mean fFPT, which is quite different from that obtained for the instantaneous δ-pulse injection. The
extended injection is also shown to considerably slow down the convergence of HN (t ) to its large-N limit—the
Gumbel distribution—so that the latter may be inapplicable in the most relevant settings with few tens to few
thousands of particles.
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I. INTRODUCTION

“The winner takes it all” situation, in which the fastest
of many actors produces a required action, is realized in
diverse processes in physiology, neuroscience, and cellular
biology. For instance, 300 million motile sperms search for
the egg cell, and the first among them joins an ovum to
form a zygote [1]. Many thousands of cells (e.g., bacteria)
in a colony compete with each other to first respond to a
common environmental challenge [2,3]. In cellular processes,
a large amount of messengers speedup and control signal
transduction and cell communication; e.g., the fastest among
several hundreds of calcium ions injected into a dendritic
spine triggers a transduction, while several thousands of neu-
rotransmitters diffusing in the presynaptic terminal search for
receptors on the post-synaptic membrane [4,5]. In the cell
nucleus, many transcription factors seek in parallel a specific
binding site on the cellular DNA [6]. Further examples can be
found in a recent monograph [7].
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In the mathematical modeling of these processes (see, e.g.,
Refs. [8–18]), a common theme is to suppose that all particles
are injected into the domain simultaneously, by δ-function-
like pulses. This is tantamount to the tacit assumption that
the duration of the injection process is much shorter than
the typical timescales of the subsequent search processes—
certainly a plausible scenario in the case of the sperm cells,
but not in general. In particular, transcription factors in cells
typically do not start at the same time instant but are produced
in intermittent bursts and/or at different locations [6,19,20] as
well as do not spread evenly over the cell [21,22]. In the case
of viral infections, the viruses may keep on entering a single
living cell, or injecting their RNA/DNA into it, within signif-
icantly extended periods of time [23]. Similarly, the injection
of ions into a cell through gated channels is typically spread
over time [24,25]. Such channels—molecular machines (see
Fig. 1) [5], which transport ions through the cell membrane
with high efficiency of 106–108 ions/s—are typically open
for a few milliseconds. As the diffusion coefficient of an ion
in the cytoplasm is typically of the order of a few tens of
µm2/s, the first ion entering the cell may diffuse away from
the point of injection on quite noticeable distances of a few
hundreds of nanometers, before the last ion in the pulse even
enters the cell. Since the typical reaction times themselves
are often of order of milliseconds, or even much shorter—as
in case of diffusion-controlled reaction of a single calcium
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FIG. 1. Illustration of a sequential influx of calcium ions into a
cell through an ion channel. In panel (a) the channel is closed while
panel (b) depicts a channel, which opens due to the arrival of a ligand
to a special binding site [5].

ion to a calcium-sensor protein [26–30]—the reaction event
may take place well before the last ion enters the cell. In
consequence, only some portion of the injected ions will ef-
fectively contribute to the search process such that the fastest
first-passage time (fFPT) to the reaction event and other char-
acteristic timescales, calculated using the assumption of an
injection via a δ pulse, may considerably underestimate the
actual characteristics of these properties and therefore present
an inadequate picture of the kinetic behavior. Moreover, one
can even aim at optimizing the search process by adjusting the
injection rate or injecting individual searchers at prescribed
time instances [31,32].

Here, we combine analytical and numerical tools to ad-
dress the conceptually important question on how the duration
of the injection stage or, more specifically, the time depen-
dence of the injection intensity ψ (t ) affects the statistics of
the fFPT to the reaction event—and how different it can
be from the one corresponding to the situation when all
N particles are simultaneously injected to the reaction bath
by a δ-pulse. We derive exact expressions for the prob-
ability density function (PDF) of the fFPT for a general
time-dependent injection profile ψ (t ). Next, we analyze how
the form of ψ (t ) affects the asymptotic large-N behavior
of the mean fFPT and of the full fFPT-PDF. In particular,
we demonstrate that an extended-in-time injection drastically
slows down the convergence of the fFPT-PDF to the Gumbel
distribution, which is the fingerprint feature of the δ-pulse
injection [12–17].

The paper is outlined as follows. In Sec. II we for-
mulate our model and introduce general notations as well
as define two basic injection scenarios. Section III con-
tains our theoretical results. In particular, Sec. III D presents
the large-N asymptotic behavior of the mean fFPT for an
extended-in-time particle injection and discusses three pos-
sible regimes according to the injection profile. Section IV
is dedicated to a numerical validation of our predictions
for a particular case of one-dimensional diffusion. Finally,
in Sec. VI we conclude with a brief summary of our re-
sults. Details of intermediate calculations are relegated to
Appendixes.

II. MODEL AND NOTATIONS

Consider a bounded domain in which N particles are se-
quentially injected at some fixed time instants δ1, δ2, . . . , δN .
Note that all particles may appear in the domain at the same
location, e.g., corresponding to the passage through a single
ion channel (see Fig. 1), as it was assumed in Refs. [12–18].
Alternatively, the starting points can be drawn from a given
spatial distribution, e.g., it can be uniformly distributed on the
plasma membrane as it happens when viruses are penetrating
into the cell [23,33]. All derivations below remain valid for
both cases, but we stress that the behavior of the fFPT may
strongly depend on the precise spatial distribution of the start-
ing points.

We assume that the domain contains a target site which
the N particles are searching for independently of each other.
Let τk + δk denote the random time instant when the kth
particle reaches the target for the first time and let S(t − δk )
(with the convention S(t � 0) ≡ 1) denote the corresponding
“survival” probability, i.e., the probability that the kth particle
did not arrive to the target within the time interval t − δk . Note
that since the domain is bounded, one evidently has S(t ) → 0
as t → ∞, such that any particle is certain to find the target.
Then, denoting the fFPT as

TN = min{τ1 + δ1, . . . , τN + δN }, (1)

one writes the probability that none of the N particles has
reached the target up to time t as

P {TN > t} =
N∏

k=1

S(t − δk ), (2)

for a given set of time instants δ1, δ2, . . . , δN . In what follows,
we consider two possible scenarios with respect to the vari-
ables δk:

(A) Deterministic injection. In this scenario we assume that
a fraction Nψ (t )dt of particles enters the domain within the
time interval (t, t + dt ), with a given flux profile ψ (t ) per
particle.

(B) Random injection. Here, we suppose that δk are
independent, identically distributed random variables with
common probability density ψ (t ).

For both scenarios, the survival probability SN (t ) of the
target in the presence of N particles with a time-extended
injection is obtained by averaging the probability P {TN > t}
with respect to the distribution of the variables δk . Corre-
spondingly, the PDF HN (t ) of the fFPT is the time-derivative
of SN (t ), taken with the negative sign,

HN (t ) = −dSN (t )

dt
, (3)

while the mean fFPT obeys

〈TN 〉 =
∫ ∞

0
dt t HN (t ) =

∫ ∞

0
dt SN (t ). (4)

Note, as well, that for situations in which the particles start
from random positions, the survival probability S(t ) is sup-
posed to already include this spatial average.
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III. ANALYTICAL RESULTS

A. Deterministic injection

For the deterministic injection scenario, the formal ex-
pression (2) is neither suitable for the asymptotic analysis
for large N , nor for the analytical inspection of the role of
the entrance delays. To overcome this limitation, we describe
the noninstantaneous injection of particles by introducing a
piecewise-constant function N (t ) that increases by unity at
each injection event and counts the number of particles that
have entered up to time t . When N is large, it is more conve-
nient to “smooth” the rescaled profile η(t ) = N (t )/N , i.e., to
consider it as a smooth function of time which increases from
zero at t = 0 to unity in the limit t → ∞. We can therefore
define the influx of particles at time t as ψ (t ) = dη(t )/dt , so
that Nψ (t )δ is the “number” of particles having entered the
domain during a short time period from t to t + δ. In doing
so, one finds

〈P {TN > t}〉δk ≈ [S(t )]Nψ (0)δ [S(t − δ)]Nψ (δ)δ . . . [S(0)]Nψ (t )δ,

(5)

where the brackets denote averaging over the entrance times
δ1, . . . , δN . In the continuous limit δ → 0, the product on the
right-hand side converges to the expression

〈P {TN > t}〉δk −−→
δ→0

S̄N (t ) = [S̄ψ (t )]N , (6)

where S̄N (t ) denotes the survival probability of the target in
the presence of N particles injected into the domain with the
smooth time-dependent injection profile ψ (t ), and

S̄ψ (t ) = exp

(∫ t

0
dt ′ ψ (t ′) ln S(t − t ′)

)
. (7)

As a consequence, we find for the deterministic injection that

S̄N (t ) = exp

(
N

∫ t

0
dt ′ ψ (t ′) ln S(t − t ′)

)
. (8)

Respectively, in virtue of Eq. (3), the fFPT-PDF obeys

H̄N (t ) = − d

dt
[S̄ψ (t )]N , (9)

while the mean fFPT, by virtue of Eq. (4), is determined by
the integral

〈T̄N 〉 =
∫ ∞

0
dt [S̄ψ (t )]N . (10)

Note that in the limit N → ∞ the integral in the latter ex-
pression is evidently dominated by the behavior of S̄ψ (t ) and,
hence, of ψ (t ) in the vicinity of t = 0.

Two remarks are in order:
(i) One can easily show that S̄ψ (t ) is a positive function that

monotonously decreases from unity at t = 0 to zero as t → ∞
(see Appendix A). As a consequence, one can interpret S̄ψ (t )
as the survival probability of an effective particle whose dif-
fusive search for the target already incorporates the delayed
entrance. In other words, one can introduce an effective FPT
τ̄k via S̄ψ (t ) = P {τ̄k > t} that accounts for the extended injec-
tion. In this way, the search by the particles that were injected
progressively via the profile ψ (t ), is equivalent to the search

by the effective particles injected instantaneously, i.e., the dis-
tribution of the fFPT TN is getting close to P {T̄N > t} = S̄N (t )
of the minimum T̄N = min{τ̄1, . . . , τ̄N } for large N .

(ii) For an instantaneous injection of N particles with a
δ-pulse, one has ψ (t ) ≡ δ(t ), so that S̄ψ (t ) ≡ S(t ), i.e., the
survival probability of the target in the presence of just a
single searcher. This gives straightforwardly S̄N (t ) = [S(t )]N ,
i.e., the standard starting point of the analyses of the fFPTs in
systems with instantaneously generated N particles [8,12–18].
We will comment on the results of these analyses in what
follows, comparing them with our theoretical findings for an
extended-in-time injection.

B. Random injection

In this scenario, we consider the entrance times δk as inde-
pendent and identically distributed random variables governed
by the PDF ψ (t ), which is determined by a given injection
profile. Due to the factorized form of Eq. (2), the averaging
of this expression over the variables δk can be performed
straightforwardly, yielding

〈P {TN > t}〉δk = SN (t ) = [Sψ (t )]N , (11)

where

Sψ (t ) =
∫ ∞

0
dt ′ψ (t ′)S(t − t ′)

=
∫ ∞

0
dt ′ψ (t ′) −

∫ ∞

0
dt ′ψ (t ′)[1 − S(t − t ′)]

= 1 −
∫ t

0
dt ′ψ (t ′)[1 − S(t − t ′)], (12)

where we took advantage of the fact that S(t < 0) = 1. This
relation also implies

Hψ (t ) =
∫ t

0
dt ′ ψ (t ′) H (t − t ′), (13)

as expected for the sum τk + δk of two independent random
variables. Consequently, in virtue of Eq. (3), the fFPT-PDF in
this scenario obeys

HN (t ) = − d

dt
[Sψ (t )]N , (14)

while the mean fFPT is determined by the integral

〈TN 〉 =
∫ ∞

0
dt [Sψ (t )]N . (15)

Consequently, in the limit N → ∞ the integral in Eq. (15) is
also dominated by the behavior of Sψ (t ) and, hence, of ψ (t )
in the vicinity of t = 0. This is the reason why, although the
random injection is formally different from the deterministic
injection, the results of both injection scenarios will appear
very similar in the limit of large N , as we proceed to show in
the following.

C. Asymptotic behavior for instantaneous injection

To set the scene, we first briefly recall the main results
corresponding to the situation in which all particles are
simultaneously injected into the domain and then move in-
dependently of each other, searching in parallel for a given
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immobile target. Note that the notations and the main equa-
tions presented in Sec. II are valid in this case and correspond
to the choice ψ (t ) = δ(t ). To avoid confusion, we add the su-
perscript “0” when referring to the characteristic properties in
this case, such as the mean fFPT T 0

N , the survival probability
S0

N (t ) and the fFPT-PDF H0
N (t ).

In the context of the diffusive motion of particles in a
one-dimensional system, the statistics of the mean fFPT for
simultaneous injection of N particles was first addressed by
Weiss et al. [8], who revealed the extremely slow dependence
of the mean fFPT on the number of particles,

〈
T 0

N

〉 	 C

ln N
(N → ∞), (16)

where C = �2/(4D) is the natural timescale of the search pro-
cess, expressed in terms of the diffusion coefficient D and the
distance � between the starting point and the target. Therefore,
the speedup of the search process due to multiple independent
particles starting simultaneously from the same point turns out
to be minor, an observation which provoked speculations why
the numbers of searchers employed in diverse processes in
biology and physiology are typically so high (the so-called
“redundancy principle”) [10].

Many other aspects of this challenging problem were
also discussed in this seminal paper [8]. Several extensions
and more elaborate descriptions were presented in subse-
quent works [11–16], including, e.g., the analysis of the
statistics of the kth fastest FPT and its higher-order and
joint moments, as well as a generalisation of the asymp-
totic result (16) for diffusion in higher-dimensional spaces.
Moreover, it was demonstrated that in the large N limit, the
fFPT-PDF converges to the universal Gumbel distribution,
with nonuniversal, dynamic-specific scale and location pa-
rameters aN and bN [12]. The large-N asymptotic behavior of
these parameters, as well as that of the fFPT moments, appears
to be quite elaborate and completely dominated by the short-
time behavior of the survival probability S(t ). In particular,
Lawley derived the asymptotic expressions for aN and bN and
thus for the mean and the variance of the fFPT under the rather
general assumption on the short-time asymptotic behavior of
the survival probability,

1 − S(t ) ∼ A tα e−C/t (t → 0), (17)

with the constants A > 0 and C > 0, and α ∈ R [12]. We
note parenthetically that the expression for the mean fFPT in
Eq. (16) stems from the exponentially fast decay of 1 − S(t )
above, while the precise value of the exponent α in the pre-
exponential factor is less important. In turn, it was shown that
if the initial particle distribution is uniform, the mean fFPT
scales as 1/N2 for perfect reactions upon the first arrival to
the target, and as 1/N for the case of finite reactivity [15,16],
entailing a much more significant speedup of the search
process—as compared to the 1/ ln N law, which occurs when
all particles start from the same location. We finally note that
interactions between particles or correlations between their
first-passage times may totally change the statistics of the
fFPT (see [34,35] and references therein).

D. Asymptotic behavior for extended injection

Returning to the case of an extended-in-time injection, we
focus on the limit N → ∞, for which the behavior of the mean
fFPT is entirely dominated by the short-time behavior of the
survival probabilities S̄ψ (t ) and Sψ (t ) and, hence, by the form
of the injection profile ψ (t ) in the vicinity of t = 0. Assuming
that ψ (t ) originates from a random transport process, e.g., the
random motion of particles within a nuclear pore or an ion
channel, we stipulate here that it has the quite generic form

ψ (t ) ≈ a tν−1 e−(c/t )μ (t → 0), (18)

with strictly positive constants a and c and exponents ν and
µ� 0. In Appendix B, we show the equivalence of S̄ψ (t )
and Sψ (t ) to leading order for the large-N limit, such that it
suffices to consider either of these quantities. This implies
that the mean fFPTs in both scenarios, defined in Eqs. (10)
and (15), are equal to each other to leading order: 〈T̄N 〉 =
〈TN 〉, as N → ∞. Moreover, we find the following asymptotic
behavior (see Appendix B for more details)

1 − Sψ (t ) ≈ Ā t ᾱ e−(C̄/t )μ̄ (t → 0), (19)

where the coefficients Ā, C̄, ᾱ, and μ̄ are determined by the
parameters in Eqs. (17) and (18), as will be discussed below.
Note that the crucial parameter μ̄ is given by the value of the
exponent that characterizes the more singular behavior of the
search dynamics: either the time-extended injection process
ψ (t ) ∼ exp(−1/tμ), or the diffusive transport of particles to
the target, 1 − S(t ) ∼ exp(−1/tη ) (with η = 1); in fact, it
controls the overall behavior of the survival probability Sψ (t )
in the limit t → 0. We also note parenthetically that η = 1 is a
fingerprint feature of Brownian motion but η may differ from
unity for anomalous diffusion dynamics. In particular, for any
Gaussian process the exponent η characterizing the singularity
in the short-t asymptotic of the FPT-PDF and, hence, of the
survival probability, coincides with the so-called anomalous
diffusion exponent [36]. Clearly, in the challenging and some-
times more physically realistic case of anomalous diffusion,
which takes place at least at sufficiently short times, one
will encounter a much richer scenario than in the case of a
Brownian motion. Below we restrict our analysis to the case
of Brownian motion, showing that even in this simpler case
three different scenarios may be distinguished.

The asymptotic behavior (19) determines the large-N limit
of the mean fFPT and related quantities. We sketch here
simple arguments for the mean fFPT 〈TN 〉 that can be made
more rigorous and further extended by the asymptotic tools
discussed in Refs. [8,12]. The function SN (t ) = [Sψ (t )]N is a
monotonically decreasing function of t such that the integral
in Eq. (15) is dominated by the region in the vicinity of t = 0.
This function is also a monotonically decreasing function of
N , which implies that the region around t = 0 shrinks upon
increase of N . In a first approximation, one can evaluate the
integral in Eq. (15) by replacing [Sψ (t )]N by a Heaviside
step function, 	(T − t ), which is equal to unity for t < T
and zero otherwise. The mean fFPT is thus approximately
equal to the cutoff value T delimiting the range (0, T ) of
the contributing times which can be set by the condition
[Sψ (T )]N = 1 − q0, where q0 is an auxiliary parameter de-
termining a “sufficient” drop of [Sψ (t )]N . Substituting into
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Eq. (19), one finds ĀT ᾱ exp(−(C̄/T )μ̄) ≈ 1 − (1 − q0)1/N ≈
q/N , for sufficiently large N ; here, q = − ln(1 − q0). An
approximate solution of this transcendental equation can be
found perturbatively by taking the logarithm such that

〈TN 〉 ≈ T ≈ C̄

[ln(N ) + α ln(T ) + ln(Ā/q)]1/μ̄

≈ C̄

(ln N )1/μ̄

(
1 +

ᾱ
μ̄

ln ln N − ln(ĀC̄ᾱ/q)

μ̄ ln N

)
,

where ln(T ) in the denominator in the top equation was
replaced by its leading-order expression ln(C̄/(ln N )1/μ̄). Im-
portantly, the leading-order term does not depend on the
somewhat arbitrary parameter q. For μ̄ = 1, we retrieve
the expression for the mean fFPT derived by Lawley for
the instantaneous injection scenario via a considerably more
elaborate and rigorous asymptotic analysis [12] (see also
Appendix C). Moreover, if we choose q = e−γ ≈ 0.5615,
where γ is the Euler constant, the correction term becomes
identical to that of Lawley’s rigorous expression, thus con-
firming that our rough approximation captures correctly the
subtle behavior of the mean fFPT. In other words, our expan-
sion

〈TN 〉 ≈ C̄

(ln N )1/μ̄

(
1 +

ᾱ
μ̄

ln ln N − ln(ĀC̄ᾱeγ )

μ̄ ln N

)
(20)

is reduced to the rigorous result by Lawley in the special case
of an instantaneous injection.

The parameters Ā, C̄, ᾱ, and μ̄ in Eq. (19) can be ex-
pressed in terms of the parameters A, C, and α of the survival
probability S(t ), and a, c, ν, and µ of the injection profile
ψ (t ). Skipping technical details (see Appendix B), we draw
the main conclusions for three different types of the injection
profile:

(i) If 0 � μ < 1, then the survival probability S(t ) is the
limiting factor such that

μ̄ = 1, C̄ = C, (21)

and the leading term C/ ln N does not depend on the shape of
the injection profile. The latter only affects the correction term
through the coefficients Ā and ᾱ given by Eqs. (B15) for µ= 0
and by Eqs. (B11) for 0 < μ < 1.

(ii) If μ = 1, then relations (17) and (18) exhibit similar
asymptotic behaviors, yielding μ̄ = 1 and C̄ = (

√
C + √

c)2

for the coefficient in front of the leading term (the correction
term also changes, see Eqs. (B9) for Ā and ᾱ).

(iii) If μ > 1, then the profile ψ (t ) decreases faster than
1 − S(t ) at short times such that the extended injection is the
limiting factor for the fastest arrival to the target. In this case,
the leading term of 〈TN 〉 exhibits the even slower decrease
of the form C̄/(ln N )1/μ̄ with C̄ = c and μ̄ = μ, which is
independent of the diffusive dynamics, that only affects the
correction term [see Eqs. (B7) for Ā and ᾱ].

In a similar way, one can analyze the higher-order moments
of the fFPT-PDF for an extended injection. We restrict our
attention to the case 0 � μ � 1, for which μ̄ = 1 and thus
the short-time asymptotic behavior of the survival probability
Sψ (t ) admits the same form as Eq. (17), upon replacing C, α,
and A by C̄, ᾱ, and Ā, respectively. As a consequence, one

can apply the original result of Lawley for the instantaneous
injection case (see Appendix C). In particular, if ᾱ > 0, the
variance of the fFPT is given by

Var{TN } ≈ π2

6

(
C̄

ᾱ2W̄ (1 + W̄ )

)2

(N 
 1), (22)

where

W̄ = W0(C̄(ĀN )1/ᾱ/ᾱ), (23)

and W0(z) is the principal branch of the Lambert W-
function [12] (see Appendix C for other cases). For suffi-
ciently large N , one can use the asymptotic behavior of this
function to get

Var{TN } ≈ VN , VN = π2

6

C2

(ln N )4
(N 
 1), (24)

i.e., the leading-order behavior of the variance is independent
of the injection profile.

IV. NUMERICAL ANALYSIS OF A PARTICULAR
EXAMPLE

To illustrate the above-discussed effects and to check the
accuracy of the derived asymptotic relations, we consider dif-
fusion in the upper half-space toward an absorbing plane (the
target). As lateral displacements do not affect the transverse
motion and thus the statistics of the first arrival onto the
plane, this first-passage problem is equivalent to diffusion on
the half-line � = (0,+∞) from a fixed starting point x0 > 0
toward an absorbing origin. In this prototypical setting, one
has S(t ) = erf (x0/

√
4Dt ), where erf (z) is the error function,

so that the asymptotic relation (17) holds, with

C = x2
0

4D
, α = 1

2
, A = 1√

πC
. (25)

Despite the simplicity of this example, the underlying
Lévy-Smirnov PDF H (t ) = − d

dt S(t ) = x0e−x2
0/(4Dt )/

√
4πDt3

captures well the short-time behavior of the FPT-PDF in var-
ious geometric settings, as well as in higher dimensions, and
is thus a representative example for the large-N asymptotic
behavior of the fFPT statistics.

In turn, the entrance times δk are modeled via the gamma
distribution that corresponds to the injection profile

ψ (t ) = tν−1e−t/b

bν
(ν)
, (26)

with the shape parameter ν > 0 and the scale parameter b > 0.
This model obeys the short-time behavior (18) with μ = 0 and
a = b−ν/
(ν) so that this injection profile is supposed to have
the weakest impact onto the fFPT [case (i)]; indeed, according
to Eq. (21), the leading-order behavior of the mean fFPT re-
mains unchanged. We have chosen this model to illustrate that
even such a mild modification in the short-time asymptotic
behavior of the survival probability Sψ (t ) can produce signifi-
cant alterations in the behavior of the fFPT. Figure 2 illustrates
three injection profiles modeled by Eq. (26). Note that ψ (t )
formally converges to δ(t ) in the limit ν → 0, corresponding
to instantaneous injection. In the following, we mostly focus
on the case b = 1 and ν = 5 as a representative example. In
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FIG. 2. Three injection profiles modeled by the gamma distri-
bution (26), with the timescale b = 1 and three scale parameters ν

indicated as in the legend.

Appendix D, we discuss another common injection profile
when the delay times δk are uniformly distributed over an
interval (0, T ). In this setting, we get exact explicit formulas
for Hψ (t ) and Sψ (t ) and reveal the role of the shape of the
injection profile.

To check the asymptotic relations, we need to compute
numerically the mean fFPT 〈TN 〉 and the PDF HN (t ). For this
purpose, we introduce a time cutoff tmax to be tenfold larger
than either of the timescales C = x2

0/(4D) and b, discretize
the time interval [0, tmax] with a small time step δ, and com-
pute Sψ (t ) at times nδ (with n = 1, 2, . . . , tmax/δ) via a fast
numerical convolution of the integral in Eq. (12). From the
knowledge of Sψ (t ), one can easily access both the PDF HN (t )
and the mean fFPT 〈TN 〉 via numerical integration in Eq. (15).
Similarly, we evaluate numerically S̄ψ (t ) from Eq. (7) and
thus access H̄N (t ) and 〈T̄N 〉. Varying both tmax and δ, we can
control the accuracy of this numerical computation. In the
following, we refer to the obtained PDF and the mean as “ex-
act” results that will be compared to explicit but approximate
asymptotic relations.

Let us first inspect the effect of an extended injection
modeled by the gamma distribution (26), with b = 1 and three
different values of ν. Figure 3(a) illustrates the PDF Hψ (t ) of
the delayed FPT τk + δk for a single particle. As the profiles
with larger ν delay the entrance, the corresponding PDFs are
shifted to longer times. In turn, the limit ν → 0 formally
corresponds to the instantaneous injection characterized by
H (t ). One sees therefore how the extended injection modi-
fies H (t ). The mean value is infinite, 〈τk + δk〉 = ∞, while
the most probable value grows with ν (note that 〈δk〉 = νb
and Tmp = (ν − 1)b). For comparison, we also show the PDF
H̄ψ (t ) of the effective FPT τ̄k . One sees that it is almost
identical with Hψ (t ) for the considered range of parameters
and times. Figure 3(b) presents the corresponding survival
probabilities Sψ (t ) and S̄ψ (t ) for a single particle.

Figure 4 compares the mean fFPTs 〈T 0
N 〉 and 〈TN 〉 for in-

stantaneous and extended injection of N particles modeled by
the gamma distribution with b = 1 and ν = 5. For the case of
an instantaneous injection, the mean fFPT 〈T 0

N 〉 is accurately
approximated by the asymptotic relation (20), even for N as
small as 100; moreover, the latter is close to the leading term

FIG. 3. (a) PDF Hψ (t ) and (b) the survival probability Sψ (t ) of
the delayed FPT τk + δk for diffusion on the half-line, with x0 = 2,
D = 1, and the injection profile given by the gamma model (26), with
b = 1 and three values of ν. The solid line represents H (t ) and S(t )
of an instantaneous injection (ν = 0). The symbols show H̄ψ (t ) and
S̄ψ (t ) for the deterministic injection with the same set of parameters.

C/ ln N . The good quality of this asymptotic approximation
for diffusion on the half-line was reported earlier in Ref. [12].
In contrast, the quality of this approximation is considerably
worse for an extended injection with ν = 5. On the one hand,
we showed above that the survival probability Sψ (t ) satisfies
the asymptotic behavior (19) with μ̄ = 1, allowing one to
apply Lawley’s asymptotic results. In particular, the asymp-
totic relation (20) holds with the unchanged leading order
C/ ln N and the correction term with modified parameters
ᾱ = α + 2ν and Ā = A(Cb)−ν . One sees that this asymptotic
relation indeed approaches the exact mean fFPT in the limit
N → ∞. On the other hand, the approach to this limiting
behavior is extremely slow, and very large N are needed to get
an accurate approximation (e.g., deviations are still noticeable
even at N = 1010).

Figure 5(a) presents the variance of the fFPT as a func-
tion of the overall number N of injected particles for the
cases of instantaneous and extended-in-time injections. We
observe that for an extended injection the variance is nearly
two orders of magnitude larger than its counterpart for the
instantaneous injection, meaning that the fFPT exhibits much
stronger fluctuations in the former case than in the latter one.
This emphasizes that, apparently, the knowledge of the mean
fFPT alone is insufficient to gain a full understanding of the
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FIG. 4. Mean fFPTs 〈T 0
N 〉 and 〈TN 〉, rescaled by C/ ln N , as func-

tions of N for diffusion on the half-line, with x0 = 2, D = 1 (and
thus C = 1 and A = 1/

√
π ), for an instantaneous injection (circles)

and an extended injection of N particles modeled by the gamma
distribution (26) with b = 1 and ν = 5 (triangles). The symbols show
the mean fFPTs obtained by computing numerically the convolution
in Eq. (12) and then evaluating the integral in Eq. (15), used as bench-
marks. The lines present the asymptotic relation (20), with μ̄ = 1,
C̄ = 1, and two settings: ᾱ = α + 2ν = 10.5 and Ā = A(Cb)−ν for
the extended injection (dashed line), and ᾱ = α = 0.5 and Ā = A
for the instantaneous injection (solid line). Overall, a considerable
increase of the mean fFPT, by an order of magnitude, is observed for
the case of the time-extended injection in this setting.

behavior in such a system and the analysis of the PDF is highly
desirable. Figure 5(b) presents the coefficient of variation,
defined as the ratio of the standard deviation of TN and its
mean value,

√
Var{TN }/〈TN 〉. For the case of an extended

injection, the coefficient of variation is somewhat larger than
for the case of an instantaneous injection, but this difference
is quite modest.

Figure 5(c) presents the variance, rescaled by its limit-
ing behavior VN = π2

6 C2/(ln N )4 at very large N . For the
case of instantaneous injection, this ratio is close to unity
for both the exact variance and its asymptotic form (22),
as expected. In turn, for the extended injection, the ratio
Var{TN }/VN exceeds unity significantly, by a factor of hun-
dred, whereas the asymptotic relation (22) does not appear
to work either. What is going wrong here? To answer this
question, we recall that Eq. (22) relies on the large-x behav-
ior of the Lambert function, W0(x) ≈ ln x − ln(ln x) + o(1) as
x → ∞. In this example, the argument of this function is x =
(N/

√
π )1/10.5/10.5 � 0.81 for the whole considered range of

N up to 1010. In other words, even though the injection profile
does not affect the leading-order behavior (i.e., C̄ = C), the
change of α to ᾱ = α + 2ν considerably reduces the range of
applicability of the above asymptotic formulas. Moreover, the
asymptotic formula (22), which represents only the leading
term, is not accurate here because the subleading terms may
provide significant contributions for the considered range of
N . Even though the leading term becomes dominant in the
limit N → ∞, it is not sufficient for estimating the variance
at intermediate values of N .

Figure 6 illustrates the PDF HN (t ) of the fastest FPT TN

for an extended random injection modeled by the gamma

FIG. 5. (a) Variance of the fFPT TN as a function of N for
diffusion on the half-line, with x0 = 2, D = 1 (and thus C = 1 and
A = 1/

√
π), with an extended injection of N particles modeled by

the gamma distribution (26) with b = 1 and ν = 5. For comparison,
the variance of the fFPT T 0

N for an instantaneous injection is shown.
The symbols show the exact variance, obtained from computing
numerically the convolution in Eq. (12) and then by evaluating the
first and second moments of TN via the integrals

∫ ∞
0 dt [Sψ (t )]N

and 2
∫ ∞

0 dt t[Sψ (t )]N . The solid and dashed lines present Lawley’s
asymptotic relation (C7), in which aN is given by Eq. (C2), either
with parameters C, α, and A for the instantaneous injection (solid
line), or with parameters C̄ = C, ᾱ = α + 2ν, and Ā = A(Cb)−ν for
extended injection (dashed line). Note that the black dotted line
indicates the lowest-order behavior VN = π2

6 C2/(ln N )4. (b) The co-
efficient of variation,

√
Var{TN }/〈TN 〉, for the same two settings of

instantaneous and extended injections, with the black dotted line
indicating the lowest-order behavior. (c) The variance rescaled by
its leading-order term VN given by Eq. (24).
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FIG. 6. PDF HN (t ) of the fastest FPT TN for diffusion on the half-line, with x0 = 2, D = 1 (and thus C = 1), and an extended injection
modeled by the gamma distribution (26) with b = 1, and four combinations of ν and N : (a) ν = 2, N = 10; (b) ν = 5, N = 10; (c) ν = 2,
N = 1000, and (d) ν = 5, N = 1000. The circles represent rescaled histograms obtained by generating TN (with 105 realizations). The solid line
represents the exact solution HN (t ) = NHψ (t )[Sψ (t )]N−1, where Hψ (t ) and Sψ (t ) are obtained via fast numerical convolutions. The dashed line
shows the exact solution H̄N (t ) = NH̄ψ (t )[S̄ψ (t )]N−1, where H̄ψ (t ) and S̄ψ (t ) are obtained via fast numerical convolutions. The dash-dotted
line represents the asymptotic Gumbel distribution, with the scale and location parameters aN and bN given by Eq. (C2) with the modified
parameters Ā = aAC−ν
(ν ) and ᾱ = α + 2ν; see Appendix B. The dotted line indicates the exact distribution for an instantaneous injection.

distribution (26) with b = 1 and two values of the scale param-
eter: ν = 2 and ν = 5. In agreement with the above analysis,
the PDF is shifted to the left (to shorter times) and narrows
with increasing N . The exact solution determined from Hψ (t )
and Sψ (t ) shows excellent agreement with Monte Carlo simu-
lations. Moreover, the PDF H̄N (t ) of T̄N for the deterministic
injection with the same profile is almost indistinguishable
from HN (t ), demonstrating the asymptotic equivalence be-
tween TN and T̄N even for moderate N . This figure highlights
two important conclusions:

(i) First, an extended injection of particles substantially
delays the arrival of the fastest particle; in particular, the
typical time of the first arrival that characterizes the maximum
of the PDF, is shifted to longer times as compared to the
instantaneous injection of the same number of particles. For
instance, in the case ν = 5 and the considered values of N , a
tenfold delay is observed. This delay is weaker for ν = 2 but
it can be much more substantial for larger ν, i.e., for a faster
decay of ψ (t ). As a consequence, neglecting an extended
injection, as done in former works on this topic, may lead to
strong misrepresentations.

(ii) Second, the Gumbel distribution as a universal large-N
limit of the fastest FPT may also yield inaccurate predictions

when applied to biologically relevant amounts of diffusing
particles. As N increases, the right tail of the Gumbel dis-
tribution becomes increasingly accurate, but an extremely
large N is needed for its applicability for extended injec-
tion. In other words, there exists an intermediate range of
N , for which the Gumbel distribution is not applicable. This
limitation originates from an extended injection because the
Gumbel distribution was seen to be quite accurate even for
moderate N in the case of an instantaneous injection (see
Fig. 7 in Appendix C). This is consistent with the above
analysis of the mean fFPT, for which the asymptotic formulas
were also much more accurate for the case of instantaneous
injection. Finding an appropriate approximation for the PDF
HN (t ) at intermediate values of N presents an interesting open
problem.

V. DISCUSSION

A. Approach to the Gumbel distribution

The distribution of the minimum of a large number N of
independent random variables is known to approach a Gumbel
distribution as N → ∞. In our setting of the fFPT, it means
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that

HN (t ) ∼
N→∞

HG
( t−bN

aN

)
aN

, HG(x) = exp(x − ex ), (27)

with appropriate scale and location parameters aN and bN

[note that exp(−x − e−x ) that is often referred to as the
Gumbel density, corresponds to HG(−x)]. For the case of
an instantaneous injection of N particles, Lawley found the
asymptotic behavior of these two parameters under the as-
sumption (17) on the short-time behavior of the survival
probability S(t ) (see [12] and a summary in Appendix C).
Despite the universal character of this law, an approach of
HN (t ) to its limiting Gumbel form as N becomes large can
be extremely slow. In this light, it is remarkable how ac-
curately the Gumbel density HG does approximate HN (t )
even for moderately large N in earlier-studied examples of
the diffusive dynamics under an instantaneous injection (see
examples in Ref. [12], as well as Fig. 7 in Appendix C).
Conversely, our numerical results from Sec. III D illustrate the
opposite—and presumably more generic—situation of a very
slow convergence. Indeed, even though the injection profile
with a power-law behavior at short times does not change the
leading-order terms of aN and bN , the Gumbel distribution
does not approximate HN (t ) for moderately large N , as shown
in Fig. 6. Moreover, the asymptotic behavior of HN (t ) turns
out to be quite sensitive to the preexponential (subleading)
factor and its exponent ᾱ = α + 2ν. In particular, a faster
power-law decay of the injection profile ψ (t ) as t → 0 effects
larger deviations from the Gumbel distribution. However, it is
instructive to mention that this empirical observation is not
valid in general. To illustrate this point, let us consider an
injection profile of the form

ψ (t ) =
√

c e−c/t

√
πt3

, (28)

with the timescale c > 0. As this profile vanishes faster than
any power-law as t → 0, one might intuitively expect that the
convergence would be even worse for this profile. However, it
is easy to check that Eq. (13) yields

Hψ (t ) =
√

c + √
C√

πt3
exp

⎛
⎝−

[√
c + √

C
]2

t

⎞
⎠, (29)

where C = x2
0/(4D), i.e., we get exactly the same probabil-

ity density as for an instantaneous injection, only with the
rescaled parameter C̄ = (

√
c + √

C)2 instead of C. As a con-
sequence, the approach of HN (t ) to the Gumbel density should
be as rapid as for the instantaneous injection. In summary, the
convergence rate to the Gumbel distribution, as well as the
approximate forms of HN (t ) for moderately large N need to
be better understood.

B. Random injection

In the case of random injection, it may be informative to
perform the asymptotic analysis of the survival probability
Sψ (t ) in the Laplace domain. In fact, the short-time behavior
of Sψ (t ) can be determined from the large-p behavior of its

Laplace transform,

S̃ψ (p) =
∫ ∞

0
dt e−pt Sψ (t ) = 1 − H̃ψ (p)

p
, (30)

where

H̃ψ (p) =
∫ ∞

0
dt e−pt Hψ (t ) = 〈e−p(τk+δk )〉 = H̃ (p)ψ̃ (p),

(31)
due to the independence of τk and δk . To proceed, it is conve-
nient to reformulate the condition (17) in the Laplace domain.
Using the identity∫ ∞

0
dz zν−1e−c/z−z/b = 2(cb)ν/2Kν (2

√
c/b), (32)

where Kν (z) is the modified Bessel function of the second
kind, we can evaluate the Laplace transform of Eq. (17) as

1

p
− S̃(p) ∼ 2A(C/p)(α+1)/2Kα+1(2

√
C p)

≈ √
πACα/2+1/4 p−α/2−3/4e−2

√
C p (p → ∞),

(33)

where we used the asymptotic behavior of the modified Bessel
function at large argument. In other words, one can use either
the condition (17) in the time domain or the condition (33) in
the Laplace domain. Note that Eq. (33) can also be written as

H̃ (p) ∼ √
πACα/2+1/4 p−α/2+1/4e−2

√
C p (p → ∞). (34)

In this way, one can further analyze the effect of the injection
profile ψ (t ) through the large-p asymptotic behavior of its
Laplace transform ψ̃ (p).

C. On the short-time limit

We emphasize the following points. In the present paper, as
well as in the previous works on the instantaneous injection of
N particles into the domain of interest [8,10–18], it is stipu-
lated that the particles perform a standard Brownian motion
from time t = 0. That implies that there is a tacit underlying
assumption that each particle, during an infinitesimally small
time interval δt → 0 moves an infinitesimally small distance
δa → 0, with the ratio D = δa2/(2δt ) kept fixed. Such an
assumption is conventional and valid for many practically
important situations. Concurrently, as it was demonstrated
here as well as in the previous works, in the limit N → ∞ the
corresponding asymptotic forms of the survival probability
and the ensuing fFPT-PDF become fully dominated by the
behavior of the process in a very short time span in the vicinity
of t = 0. In the limit N → ∞, this span becomes so small that
a particle can make, at most, a few jumps away from its initial
location, and its short-time dynamics in realistic systems may
be very different from that of a conventional (continuous)
Brownian motion. Indeed, for the latter a particle may travel
on any distance within an arbitrarily short time interval with
an exponentially small but nonzero probability, while in re-
alistic settings this probability should be identically equal to
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zero up to a certain time instant.1 This signifies, in particular,
that the logarithmic reduction of the mean first-passage time
in Eq. (16), as well as our results presented here are only valid
for sufficiently large but still bounded values of N , such that
the time-interval which dominates the behavior of the survival
probability should remain sufficiently large permitting to use
the Brownian motion picture.

The true asymptotic behavior of the characteristic proper-
ties in the mathematical limit N → ∞ may appear somewhat
different, but to determine it one would need to start with a
discrete-space approach which captures the small nuances of
the short-time behavior, especially in the case of processes
with a broad distribution of waiting times, which ultimately
results in a large-scale subdiffusive motion. Such a robust
approach is lacking at present but clearly represents a chal-
lenging and pressing issue.

VI. CONCLUSIONS

In summary, we investigated the effect of an extended,
time-dependent injection (or entrance) of particles on the
statistics of the fastest arrival TN to the target. While a formal
implementation of prescribed time delays δk is straightforward
for independently diffusing particles, the asymptotic analysis
of the PDF HN (t ) of the fastest FPT TN and its mean 〈TN 〉 at
large N required a substantial reformulation of the problem.
The first deterministic formulation was based on a smooth
approximation of the injection profile ψ (t ) and allowed us to
introduce effective first-passage times τ̄k that account for a
given profile through the modified survival probability S̄ψ (t )
given by Eq. (7). The second probabilistic formulation treated
the delay times δk as independent random variables gener-
ated from the profile ψ (t ) so that the delayed FPTs τk + δk

were determined by the survival probability Sψ (t ) given by
Eq. (12). We showed that both formulations yielded remark-
ably similar results, even for a single particle (see Fig. 3).

Next, we analyzed the impact of the injection profile ψ (t )
onto the survival probability Sψ (t ). Under rather general as-
sumptions on the short-time behaviors of S(t ) and ψ (t ), we
derived the short-time behavior of Sψ (t ) and thus the large-
N asymptotic behavior (20) of the mean fFPT. This is an
extension of former results known for an instantaneous injec-
tion. We also showed that the extended injection considerably
slows down the approach of the mean fFPT to its asymptotic
value in the limit N → ∞. Similarly, we showed that an
approach of HN (t ) to its limiting Gumbel distribution upon
an increase of N is also very slow, such that the Gumbel dis-
tribution may not be applicable for an intermediate range of N
from tens to thousands, which is the most relevant scenario in
molecular biology. This result urges for further investigations
of this fundamental problem and obtaining correction terms to
the Gumbel distribution in this setting.

1Such a finite-horizon behavior is, e.g., essential in the description
of heat conduction dynamics, for which the diffusion equation is typ-
ically replaced by the hyperbolic telegrapher’s or Cattaneo equation,
endowing the process with a finite propagation speed [37,38].
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APPENDIX A: SURVIVAL PROBABILITY S̄ψ (t )

In this Appendix, we discuss some properties of the sur-
vival probability S̄ψ (t ) defined by Eq. (7). We here assume
that the survival probability S(t ) vanishes as t → ∞ (as it
is always the case for diffusion in a bounded domain) and
aim at showing that S̄ψ (t ) monotonously decreases to 0 as t
increases. For convenience, we introduce the notation

fψ (t ) = −
∫ t

0
dt ′ ψ (t ′) ln S(t − t ′). (A1)

First, Jensen’s inequality for the concave function ln(z)
implies

1

1 − �(t )

∫ t

0
dt ′ ψ (t ′) ln S(t − t ′)

� ln

(
1

1 − �(t )

∫ t

0
dt ′ ψ (t ′) S(t − t ′)

)
, (A2)

where

�(t ) =
∫ ∞

t
dt ′ ψ (t ′). (A3)

Second, the integral on the right-hand side can be split into the
two contributions

I (t ) =
∫ t

0
dt ′ ψ (t ′) S(t − t ′)

=
∫ t/2

0
dt ′ ψ (t ′) S(t − t ′) +

∫ t/2

0
dt ′ ψ (t − t ′) S(t ′),

(A4)

where the integration variable t ′ was changed to t − t ′ in
the second integral. As the survival probability S(t ) is a
monotonously decreasing function, one can estimate the first
integral as∫ t/2

0
dt ′ ψ (t ′) S(t − t ′) � S(t/2)

∫ t/2

0
dt ′ ψ (t ′) � S(t/2),

(A5)
where the last integral was extended to +∞ and then replaced
by unity due to the normalization of ψ (t ). Since S(t ) vanishes
in the limit t → ∞, this contribution vanishes. Similarly, we
estimate the second integral as∫ t/2

0
dt ′ ψ (t − t ′) S(t ′)

�
∫ t/2

0
dt ′ ψ (t − t ′) = �(t/2) − �(t ). (A6)
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In the long-time limit, �(t ) vanishes and thus does the second
integral. We conclude that I (t ) → 0 as t → ∞ so that the
right-hand side of Eq. (A2) goes to −∞ and thus fψ (t ) from
Eq. (A1) diverges to +∞, whereas S̄ψ (t ) = e− fψ (t ) vanishes.

Note that the inequality (A2) also implies that

S̄ψ (t ) � exp

(
(1 − �(t )) ln

(∫ t
0 dt ′ ψ (t ′) S(t − t ′)

1 − �(t )

))

=
(

1 − 1 − Sψ (t )

1 − �(t )

)1−�(t )

, (A7)

where we used the definition (12) of Sψ (t ). Note that Eq. (12)
implies that Sψ (t ) � �(t ), i.e., the right-hand side is non-
negative. Re-arranging the above inequality, one gets the
equivalent form

Sψ (t ) � �(t ) + (1 − �(t ))[S̄ψ (t )]1/(1−�(t )). (A8)

Since (1 − x/a)a � 1 − x for any x ∈ (0, a) and any 0 < a
� 1, one can also deduce from the inequality (A7) the simpler
bound

S̄ψ (t ) � Sψ (t ). (A9)

The probabilistic interpretation of this inequality is that
the first-passage time τ̄k is typically smaller than τk + δk ,
i.e., the deterministic injection is faster than the random one
[for the same profile ψ (t )].

APPENDIX B: SHORT-TIME BEHAVIOR
OF THE SURVIVAL PROBABILITY

In this Appendix, we derive the short-time asymptotic be-
havior of the survival probabilities Sψ (t ) and S̄ψ (t ).

Rewriting Eq. (12) as

1 − Sψ (t ) =
∫ t

0
dt ′ ψ (t − t ′)(1 − S(t ′)) (B1)

and substituting the asymptotic relations (17) and (18), we get

1 − Sψ (t ) ≈
∫ t

0
dt ′ a(t − t ′)ν−1e−cμ/(t−t ′ )μ A(t ′)αe−C/t ′

= aAtν+α

∫ 1

0
dz zα (1 − z)ν−1

× e−(c/t )μ(1−z)−μ−(C/t )/z, (B2)

where we changed the integration variable to t ′ = tz. To es-
timate the asymptotic behavior of this integral in the limit
t → 0, we write the exponential function as e−(c/t )μ f (z), with

f (z) = 1

(1 − z)μ
+ μB

z
, B = Ctμ−1

μcμ
(B3)

and apply the Laplace method. For this purpose, one deter-
mines z0 as the minimum of the function f (z), given by the
equation

f ′(z0) = μ

(1 − z0)μ+1
− μB

z2
0

= 0. (B4)

As a consequence, the integral reads

1 − Sψ (t ) ≈ aAtν+αe−(c/t )μ f (z0 )zα
0 (1 − z0)ν−1

×
√

2πtμ

cμ f ′′(z0)
. (B5)

We consider the following four cases:
(i) For μ > 1, the factor (c/t )μ is dominant. At very short

times t , one has B � 1, so that z0 is small and the above
equation can be solved as z0 ≈ √

B � 1, and thus f (z0) ≈
1 + 2μ

√
B and f ′′(z0) ≈ μ(μ + 1) + 2μ/

√
B. To leading or-

der, we get

1 − Sψ (t ) ≈ aAtν+μ(2α+3)/4−1/4 e−(c/t )μ

× (C/(μcμ))α/2+1/4
√

π

cμμ
. (B6)

We therefore find the asymptotic behavior (19) with

C̄ = c, μ̄ = μ, (B7a)

ᾱ = ν + μ(2α + 3)/4 − 1/4, (B7b)

Ā = aA(C/(μcμ))α/2+3/4
√

π/C. (B7c)

(ii) For μ = 1, one can solve Eq. (B4) to get z0 = √
B/(1 +√

B), where B = C/c is independent of t . One then finds
f (z0) = (1 + √

B)2 and f ′′(z0) = 2(1 + 1/
√

B), from which

1 − Sψ (t ) ≈ aAtν+α+1/2e−(
√

c+√
C)2/t

× Bα/2+1/4

(1 + √
B)α+ν+1/2

√
π/c. (B8)

In other words, we retrieve the asymptotic behavior (19) with
the parameters

C̄ =
(√

c +
√

C
)2

, μ̄ = 1, (B9a)

ᾱ = α + ν + 1/2, (B9b)

Ā = aA
(C/c)α/2+1/4

(1 + √
C/c)α+ν+1/2

√
π/c. (B9c)

(iii) For 0 < μ < 1, one has B 
 1 in the short-time limit,
so that the solution of Eq. (B4) is approximately z0 ≈ 1 −
B−1/(1+μ) and thus f (z0) ≈ tμ−1C/cμ and f ′′(z0) = μ(μ +
1)B(μ+2)/(μ+1) + 2μB, such that

1 − Sψ (t ) ≈ aAtα+(2ν+μ)/(μ+1)e−C/t

× (C/(μcμ))−(ν+μ/2)/(μ+1)

√
2π

cμμ(μ + 1)
.

(B10)

Once again, we find Eq. (19), with

C̄ = C, μ̄ = 1, (B11a)

ᾱ = α + (2ν + μ)/(μ + 1), (B11b)

Ā = aA(C/(μcμ))−(ν+μ/2)/(μ+1)

√
2π

cμμ(μ + 1)
. (B11c)

(iv) The case μ = 0 requires a separate analysis because
Eq. (B11c) either vanishes or diverges as μ → 0. Here one
has to distinguish the cases ν > 1 and ν � 1. We discuss only
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the former case when the injection profile vanishes at t = 0,
for which

1 − Sψ (t ) ≈ aAtα+ν

∫ 1

0
dz exp(− f (z)), (B12)

with f (z) = C/(tz) − α ln z − (ν − 1) ln(1 − z). The mini-
mum z0 of this function via

f ′(z0) = − C

tz2
0

− α

z0
+ ν − 1

1 − z0
= 0. (B13)

As C/t is large, the first term should be compensated by the
third term, such that z0 should be close to 1. Substituting z0 =
1 − ε into this equation and expanding up to linear order in ε,
we get ε ≈ (ν − 1)/(C/t + α + 2(ν − 1)). To leading order,
we also get

f ′′(z0) = 2C

tz3
0

+ α

z2
0

+ ν − 1

(1 − z0)2
≈ (t/C)2

ν − 1
. (B14)

The Laplace method yields again Eq. (19) to leading order,
with

C̄ = C, μ̄ = 1, (B15a)

ᾱ = α + 2ν, (B15b)

Ā = aAC−ν [e1−ν (ν − 1)ν
√

2π/(ν − 1)] (B15c)

≈ aAC−ν
(ν). (B15d)

For the last relation, we identified the factor in the square
brackets as the Stirling expansion of the gamma function 
(ν)
for ν 
 1. Note that the above estimation gets more accurate
for large ν.

While we focused on the analysis of the survival proba-
bility Sψ (t ), the above results are also applicable to S̄ψ (t ). In
fact, one has

1 − S̄ψ (t ) = 1 − exp

(∫ t

0
dt ′ψ (t − t ′) ln(1 − (1 − S(t ′)))

)

≈
∫ t

0
dt ′ ψ (t − t ′)(1 − S(t ′))

= 1 − Sψ (t ) (t → 0), (B16)

where the logarithm was expanded into a Taylor series in
powers of (1 − S(t ′)), which is small at short times. Note
that the correction term includes (1 − Sψ (t ))2 and an integral
involving (1 − S(t ′))2, which are both exponentially small as
compared to 1 − Sψ (t ).

APPENDIX C: PRIMER ON THE ASYMPTOTIC RESULTS
FOR INSTANTANEOUS INJECTION

In the large N limit, the fastest FPT T 0
N = min{τ1, . . . , τN }

for the case of instantaneous injection converges to the
Gumbel distribution with the scale and location parameters
aN and bN , i.e., (T 0

N − bN )/aN converges in distribution to
a random variable X obeying the standard Gumbel distribu-
tion P {X > x} = exp(−ex ) on R. Under the assumption (17)
on the short-time behavior of the survival probability S(t ),
Lawley derived two equivalent asymptotic forms for the

parameters aN and bN [12]. The first form is more accurate
but less explicit,

aN = bN

ln(AN )
, bN = C

ln(AN )
(α = 0), (C1)

aN = bN

α(1 + W )
, bN = C

αW
(α �= 0), (C2)

and

W =
{

W0(C(AN )1/α/α) (α > 0),
W−1(C(AN )1/α/α) (α < 0),

(C3)

where W0(z) denotes the principal branch of the Lambert
W-function and W−1(z) denotes the lower branch [39]. The
second form (denoted by a prime) can be deduced from the
asymptotic behavior of the Lambert function [12],

a′
N = C

(ln N )2
, b′

N = C

ln N
+ C[α ln ln N − ln(ACα )]

(ln N )2
.

(C4)
In particular, the mean and variance of T 0

N (whenever they
exist) are 〈

T 0
N

〉 ≈ bN − aNγ + o(aN ), (C5)

≈ C

ln N
+ C

α ln ln N − ln(ACα ) − γ

(ln N )2
(C6)

and

Var
{
T 0

N

} ≈ π2

6
a2

N + o
(
a2

N

)
(C7)

≈ π2

6

C2

(ln N )4
, (C8)

where γ ≈ 0.5772 is the Euler constant. Note also that the
most probable time of the Gumbel distribution is precisely
given by bN , i.e.,

T 0
N,mp = bN ≈ C

ln N
+ O(1/(ln N )2). (C9)

Figure 7 shows the PDF HN (t ) for an instantaneous injec-
tion of N particles diffusing in the half-line. One sees how
the distribution slowly approaches the asymptotic Gumbel
distribution. We recall that both the mean fFPT 〈T 0

N 〉 	
C/ ln(N ) and the coefficient of variation, Std{T 0

N }/〈T 0
N 〉 	

(π/
√

6)/ ln(N ), slowly decrease with N . As a consequence,
the PDF shifts to the left (to shorter times) and gets narrower
as N increases. Note also that the typical value decreases, as
well.

APPENDIX D: UNIFORM ENTRANCE TIMES

We here briefly discuss another common setting when the
entrance times δk are uniformly distributed over a time span
from 0 to T . This injection profile,

ψ (t ) = 	(T − t )

T
, (D1)

in Laplace domain yields ψ̃ (p) = (1 − e−pT )/(pT ), that al-
lows one to evaluate the survival probability Sψ (t ) explicitly
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FIG. 7. PDF H 0
N (t ) of the fastest FPT T 0

N for diffusion on the
half-line, with x0 = 2, D = 1, and an instantaneous injection of N
particles, for four values of N (from top to bottom): N = 10, N =
100, N = 1000, and N = 10 000. The circles represent rescaled his-
tograms obtained by generating T 0

N (with 105 realizations); the solid
line gives the exact solution H0

N (t ) = NH (t )[S(t )]N−1; the dashed
line shows the asymptotic Gumbel distribution, with the parameters
aN and bN given by Eq. (C2) derived by Lawley [12].

in the case of diffusion on the half-axis, namely,

Sψ (t ) = 1 − t

T
F (x0/

√
4Dt )

− t − T

T
	(t − T )F (x0/

√
4D(t − T )), (D2)

where

F (z) = (1 + 2z2)erfc(z) − 2√
π

ze−z2
. (D3)

At short times, the last term in Eq. (D2) is zero due to the
Heaviside step function. In turn, the second term can be
simplified by using F (z) ≈ e−z2

/(
√

πz3) as z = x0/
√

4Dt →
∞, so that we retrieve the asymptotic behavior (19),
with

μ̄ = μ = 1, C̄ = C = x2
0

4D
, ᾱ = 5

2
, Ā = 1√

π T C3/2
.

(D4)

As the uniform profile (D1) exhibits the short-time asymptotic
behavior (18) with ν = 1 and μ = 0, the parameters ᾱ and Ā
agree with our general expressions (B15). Note also that

Hψ (t ) = 1

T
erfc(x0/

√
4Dt )

− 	(t − T )

T
erfc(x0/

√
4D(t − T )). (D5)

Figure 8 illustrates the main features of the fFPT TN for
the uniform injection profile: Figs. 8(a) and 8(b) present the
PDF HN (t ) for T = 10, whereas Fig. 8(c) shows the mean
fFPT as a function of N for T = 1 and T = 10. It is in-
structive to compare these results to those presented in the
main text for the injection modeled by a gamma distribution.
For a proper comparison, we impose that the mean delay
time, 〈δk〉, is the same in both cases—under this condition,
the uniform distribution with T = 10 can be compared to the
gamma distribution with b = 1 and ν = 5. Qualitatively, the
PDFs for both cases look similar [compare Figs. 8(a), 8(b)
with Figs. 6(b), 6(d)], but the density HN (t ) is shifted to
longer times for the gamma profile. This is consistent with
the observation that the mean fFPT (shown in Fig. 4) is longer
for the gamma profile, and it approaches slower to the leading-
order term C/ ln N . We emphasize that the leading-order term
C/ ln N is the same for both injection profiles such that the
actual shape of the profile influences only the sub-leading
term in Eq. (20), as well as the accuracy of this asymptotic
relation.

Figure 8(c) also highlights that the longer mean delay
time 〈δk〉 (here, T/2), expectedly, increases the mean fFPT
〈TN 〉, but its effect strongly depends on the number N of
particles. Moreover, it is in general difficult to distinguish
the relative roles of the mean delay time and the shape of
its distribution, as both affect the subleading term in Eq. (20)
via the modified parameters ᾱ and Ā. Our theoretical descrip-
tion allows one to analyze these effects for various injection
profiles.
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FIG. 8. (a), (b) PDF HN (t ) of the fastest FPT TN for diffusion
on the half-line with x0 = 2 and D = 1, and an extended injection
modeled by the uniform distribution (D1) with T = 10, for (a)
N = 10 and (b) N = 1000. The circles represent rescaled histograms
obtained by generating TN (with 105 realizations). The solid line rep-
resents the exact solution HN (t ) = NHψ (t )[Sψ (t )]N−1, where Sψ (t )
and Hψ (t ) are given by Eqs. (D2) and (D5). The dash-dotted line
represents the asymptotic Gumbel distribution, with the scale and
location parameters aN and bN given by Eq. (C2) with the parame-
ters in Eq. (D4). The dotted line indicates the exact density for an
instantaneous injection. (c) Mean fFPT 〈TN 〉, rescaled by C/ ln N , as
a function of N for diffusion on the half-line, with x0 = 2 and D = 1,
for an instantaneous injection (circles) and an extended injection of
N particles modeled by the uniform distribution (D1) with T = 1
(squares) and T = 10 (triangles). The mean fFPTs were obtained
from numerically computing the integral in Eq. (15). The dotted line
indicates the constant 1 to highlight the approach to the leading-order
term C/ ln N .

FIG. 9. PDF HN (t ) of the fastest FPT TN for diffusion on the
half-line, with x0 = 2, D = 1, and N = 100, with an extended in-
jection modeled by the gamma distribution (26) with ν = 2 and four
values of b (see the legend; note that b = 0 formally corresponds to
an instantaneous injection). (a) Full plot; (b) Zoom into the vertical
axis from 10−6 to 101.

APPENDIX E: SUPPLEMENTARY ILLUSTRATION

In this Appendix, we provide a supplementary illustration
to the numerical results presented in the main text.

Figure 9 shows how the PDF HN (t ) is affected
by the timescale b of the gamma distribution (26) of
the entrance times. In Fig. 9(a), one can see that
both the left and the right tails of the PDF are
independent of b in the limits t → 0 and t → ∞.
However, all curves start to follow the same asymptotic be-
havior at extremely small amplitudes (∼10−100), which are
totally irrelevant for applications. In turn, the relevant range
of the amplitudes can be obtained by zooming into this plot,
as shown in Fig. 9(b). Expectedly, an increase of b im-
plies longer entrance times and thus shifts the PDF to the
right.

APPENDIX F: ANALYSIS OF THE MOST PROBABLE TIME

The most probable time Tmp characterizes the maximum of
the PDF and can thus be found by solving the equation

∂t HN (t ) = N[S(t )]N−2(S(t )∂t H (t ) − (N − 1)[H (t )]2) = 0,

(F1)
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FIG. 10. Most probable time Tmp [divided by C = x2
0/(4D)] for

diffusion on the half-line with an instantaneous injection of N parti-
cles. The solid line represents the exact value obtained by solving
numerically Eq. (F4); the dashed and dash-dotted lines show two
approximate asymptotic relations, 1/ ln(N ) and 1/ ln(N ) + 0.045,
the second one being shifted for a better agreement.

which leads to

∂t ln(H (t )) = (N − 1)
H (t )

S(t )
. (F2)

For diffusion on the half-line, we substitute expressions for
H (t ) and S(t ) to find

N − 1 = f (ξ ), (F3)

where ξ = t/C, C = x2
0/(4D) and

f (ξ ) =
√

πerf (
√

1/ξ )
(
1 − 3

2ξ
)

√
ξ

e1/ξ . (F4)

One can check that f (ξ ) is a monotonously decreasing func-
tion of ξ which diverges as ξ → 0 and vanishes at ξ = 2/3.
In a first approximation, one can neglect slowly varying func-
tions (as compared to e1/ξ ) to get N − 1 ≈ √

πe1/ξ , from
which

ξ ≈ 1

ln((N − 1)/
√

π )
. (F5)

Higher-order corrections (accounting for 1/
√

ξ ) are needed to
get the correct asymptotic behavior. Nevertheless, we see that,
in our rough approximation,

Tmp ≈ C

ln N
= x2

0

4D ln N
, (F6)

i.e., the most probable time behaves similarly as the mean
FPT. This approximation can be further improved, as illus-
trated in Fig. 10.
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