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ABSTRACT
We consider the dynamics of pore-driven polymer translocation through a nanopore to a two-dimensional semi-infinite space when the
chain is initially confined and equilibrated in a narrow channel. To this end, we use Langevin dynamics (LD) simulations and iso-flux tension
propagation (IFTP) theory to characterize local and global dynamics of the translocating chain. The dynamics of the process can be described
by the IFTP theory in very good agreement with the LD simulations for all values of confinement in the channel. The theory reveals that for
channels with a size comparable to or less than the end-to-end distance of the unconfined chain, in which the blob theory works, the scaling
form of the translocation time depends on both the chain contour length and the channel width. Conversely, for a very narrow channel, the
translocation time only depends on the chain contour length and is similar to that of a rod due to the absence of spatial chain fluctuations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0269884

I. INTRODUCTION

Since the seminal experimental studies by Bezrukov et al.1
and Kasianowicz et al.2 and the theoretical work by Sung and
Park,3 a huge body of theoretical3–53 and experimental54–64 works
has appeared to explain the underlying physical mechanisms dur-
ing the process of polymer translocation (PT) through a nanopore.
In addition to being of great theoretical interest as a dynamical
nonequilibrium process, PT has a wide range of applications, such as
RNA transport through nuclear membrane pores,65 transfer of genes
between bacteria,66 using ratchets for filtration of polyelectrolytes,10

and drug delivery and DNA sequencing.67–69

There are many variations of the PT process that have
been studied to date. The translocation process can be either
unbiased9,15,19,25 or driven.6,16,26 For the driven case, several differ-
ent scenarios exist; for example, in the end-pulled case, an external
driving force can be applied to the polymer head monomer41 by
an atomic force microscope (AFM)70 or by magnetic or optical

tweezers.58,60,64,71,72 The driving force can be localized inside the pore
(pore-driven PT),16,26,35 or it can be an effective force due to the
interaction of the trans-side subchain with ambient active rods50

or chaperones.12,13 In the pore-driven case where the driving force
acts on the monomers inside the nanopore, the driving force can be
alternating and the nanopore can be flickering.27,38 Both the pore-
driven and end-pulled cases can be described by the iso-flux tension
propagation (IFTP) theory.6,16,26,35 In the unbiased or weakly driven
PT, the entropic force resulting from fluctuations in the spatial con-
figurations of the chain (entropy) plays an important role in the
dynamics of the process, and a full theoretical understanding of PT
in this limit is still missing.3

An interesting special case of PT is when there is a significant
entropic force due to geometric confinement either on the cis or the
trans side. In the latter case of polymer trapping, an external driving
force is needed to overcome entropic repulsion due to confinement.
In Refs. 28 and 51, the driven PT of a polymer from a semi-infinite cis
side into a trans side channel was investigated. In the case where the
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polymer is initially trapped, it can spontaneously escape the confine-
ment or a confining potential well.20,73,74 This process can be further
facilitated by external driving. In Ref. 75, a pore-driven PT pro-
cess was considered, where the polymer was confined in a channel
on the cis side and then translocated to a semi-infinite compart-
ment through a pore in the middle of the channel. Using Langevin
Dynamics (LD) simulations and tension propagation arguments, the
authors were able to characterize the dependence of PT on the chan-
nel diameter and obtain an analytic scaling form for the average
translocation time τ.

In this paper, we expand on the work in Ref. 75 by performing a
detailed analysis of the local and global dynamics of the pore-driven
PT process in two-dimensional (2D) space. We use the same setup
according to which we drive a flexible self-avoiding polymer through
a nanopore, and the polymer starts in a long confining channel on
the cis side. It is forced through the nanopore by an external force
that affects the monomers inside the pore (cf. Fig. 1). We character-
ize the dynamics of this process by performing a full analysis within
the IFTP theory and derive the corresponding scaling forms for
driven PT, including an analytic expression for τ as a function of the
chain length, driving force, confinement dimension, and effective
channel friction. In addition, we present numerical results for the
local chain dynamics using the waiting-time distribution, monomer
number density, and other quantities, including monomer velocity
distributions. These results significantly extend and generalize those
in Ref. 75. Numerical data from the LD simulations are then com-
pared with theory for the relevant physical quantities. The main
focus here is the influence of the channel width D and the driving
force f on the PT dynamics.

In the high-force limit in which the entropic force can be
ignored, regardless of the width of the channel, the IFTP theory

predicts that τ scales with the force as τ ∝ fβ with β = −1. How-
ever, the results of the LD simulations for a fixed large f show
that ∣β∣ < 1, and it depends on D. It increases with increasing chan-
nel width due to the growth of fluctuations from −0.925 ± 0.008 to
−0.900 ± 0.003. For D > Re, where Re is the end-to-end distance of
the unconfined chain, the force exponent settles to −0.900 ± 0.003
as the polymer is very weakly confined and fluctuations in the spa-
tial polymer configurations do not increase. There are experimental
results that have visualized the spatial conformations of DNA inside
a confining micro- or nanochannel,76–80 so we expect that compar-
ing our results with the experimental observations will lead to a
better understanding of this translocation process.

The structure of this paper is as follows: In Sec. II, the sim-
ulation model is explained in detail. Then, the IFTP theory is
introduced in Sec. III. Results that include waiting time, translo-
cation time, mean squared displacement, and monomer number
density are presented in Sec. IV. Section V contains our summary
and conclusions.

II. SIMULATION MODEL
For the numerical LD simulations, we have used the LAMMPS

software package.81 The system under consideration is two-
dimensional, composed of a linear, self-avoiding, fully flexible poly-
mer initially on the cis side channel of width D, as depicted in
Fig. 1(a). At the end of the channel, there is a membrane with
a pore in the middle of the channel through which driven PT
takes place. The membrane and channel walls are made up of fixed
particles, each of size σ, that are located next to each other at a
distance of σ (green beads in Fig. 1). The pore diameter is 2σ,
and the channel length is much larger than the polymer contour

FIG. 1. (a) Polymer configuration inside the channel on the cis side just after equilibration at time t = 0. The contour length of the polymer is N0 = 100, and D = 16 is the
channel width. Re is the end-to-end distance of the polymer at t = 0, which is a function of D and N0. The orange dashed circles show the blobs whose diameters are equal to
the channel width here. The channel walls and the membrane are parallel to the x and y directions, respectively. The center of the pore is located in the middle of the channel
at the origin (0, 0). (b) Configuration of the polymer during the tension propagation (TP) stage when s monomers have already translocated to the trans side. f is the external
driving force (denoted by the horizontal cyan vector) acting on the monomer(s) inside the pore in the positive x direction toward the trans side. R (denoted by the violet vector)
is the location of the tension front at time t, and l is the number of red monomers under the tension on the cis side. Here, R is smaller than D for t < τ∗, where τ∗ is the time
at which R = D. N is the number of monomers that have been influenced by the tension so far, i.e., N = l + s < N0. (c) Polymer configuration during the TP stage when the
tension front has not yet reached the last monomer of the polymer while R > D, i.e., for τ∗ < t < τTP. Here, the chain in gray color shows the polymer configuration at t = 0,
just to compare with the chain configuration at time t. Panel (d) is the same as (c), but the tension front has just reached the last monomer of the polymer at t = τTP when
R = Re, and as all monomers are under tension, N = l + s = N0. (e) The post-propagation stage of the translocation process at t > τTP, where all monomers of the cis side
are moving toward the pore. (f) The final configuration of the polymer just at the end of the translocation process at t = τ, in which s = N0.
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length. The simulation box dimensions in the x and y directions
are Lx = Ly = 210σ. The polymer is composed of N0 monomers
[black beads in Fig. 1(a)] and is modeled by a bead–spring chain.82

The consecutive bonded monomers interact with each other via a
sum of Weeks–Chandler–Anderson (WCA)83 and finitely extensible
nonlinear elastic (FENE) potentials. The repulsive WCA potential is

UWCA(r) =
⎧⎪⎪⎨⎪⎪⎩

ULJ(r) −ULJ(rc) if r ≤ rc,

0 if r > rc,
(1)

where r is the monomer–monomer distance, rc = 21/6σ is the cutoff
radius, and ULJ(r) is the Lennard-Jones (LJ) potential,

ULJ(r) = 4ε[(σ
r
)

12
− (σ

r
)

6
], (2)

with ε and σ as the depth of the potential and the monomer
size, respectively. The FENE potential that connects the consecutive
monomers is given by

UFENE(r) = −
1
2

kR2
0 ln [1 − ( r

R0
)

2
], (3)

where k and R0 are the effective spring constant and the maximum
extent of the bond between the neighboring monomers, respec-
tively. All interactions between the non-bonded monomers of the
polymer, monomers, and the membrane wall particles, and between
monomers and the channel particles are governed by the repulsive
WCA potential.

Using the LD simulation method, the equation of motion for
the position vector of the ith monomer, r⃗i, is given by

M¨⃗ri = −η˙⃗ri − ∇⃗Ui + ξ⃗i(t), (4)

where M, η, and U i are the monomer mass, the friction coeffi-
cient, and the sum of all interaction potentials experienced by the
ith monomer, respectively. ξ⃗i(t) is the thermal white noise vector
at time t with zero mean ⟨ξ⃗i(t)⟩ = 0⃗ and correlation ⟨ξ⃗i(t) ⋅ ξ⃗ j(t′)⟩
= 4ηkBTδijδ(t − t′). kB and T are the Boltzmann constant and the
temperature, respectively, and δij and δ(t − t′) are the Kronecker
and Dirac delta functions, respectively.

M, σ, and ε are chosen to be the units of mass, length, and
energy, respectively. σ = 1 is the diameter, and M = 1 is the mass
of each particle (monomers of the polymer or particles of the
membrane and the channel walls). The values of the energy unit,
solvent friction coefficient, and temperature are ε = 1, η = 0.7, and
kBT = 1.2, respectively. The simulation time step is dt = 0.001τ0, in

which τ0 =
√

Mσ2/ε is the simulation time unit. In addition, the
maximum allowed distance between each two connected monomers
is R0 = 1.5, and k = 100 (unless otherwise mentioned) is the spring
constant in the FENE potential. The contour length of the polymer
in LJ units is N0 = 100.

The size of each bead in our model corresponds to the Kuhn
length of a single-stranded DNA and is ∼1.5 nm, which is about
the size of three nucleotides. As the mass of a nucleotide is
about 312 amu, then the mass of each bead in our simulations is
about 936 amu with the interaction strength of 3.39 × 10−21 J at
room temperature (T = 295 K). Consequently, the time and the force

units are obtained as 32.1 ps and 2.3 pN, respectively. Given the pore
thickness 1σ = 1.5 nm (see Fig. 1) and the fact that the electric charge
of each bead is equivalent to that of three single nucleotides (each
with an effective charge of 0.094e55,84), an external driving force of
f = 4 corresponds to a voltage of 306 mV across the pore.85

Before the PT process starts, one head bead of the polymer is
fixed in the pore while the rest of the chain is carefully equilibrated
within the channel over times much longer than the relaxation time
of the end-to-end distance of the polymer. In addition, at this stage,
a low value of the solvent friction γ = 0.1 is used with a time step of
dt = 0.005. After that, the integrator is run for the same time interval
as with low friction, but for γ = 0.7 with a time step of dt = 0.001.
This procedure ensures that the chain has been fully equilibrated.
After equilibration, the fixed head monomer is released, the pore
driving force f is switched on, and the translocation process starts. It
ends when the last tail bead has moved to the trans side, and the time
taken defines the PT time τi for each attempt i. To obtain sufficient
statistics, data are averaged over 1000 independent PT events.

III. THEORY
In Fig. 1(a), we show a typical equilibrium state of the sys-

tem just before the translocation process (t = 0) for a channel width
D = 16. The end-to-end distance of the polymer at time t = 0 is
denoted by Re, and it is a function of D and N0. More details
about the scaling form of Re at t = 0 can be found in Appendix A.
Moreover, the orange dashed circles represent the blobs86 whose
diameters are equal to the channel width here.

As panel (b) in Fig. 1 shows, the external driving force f acts on
the monomer(s) inside the pore. Here, s is the number of beads (in
blue color) that have translocated to the trans side. The subchain on
the cis side consists of two parts, a part with l monomers under ten-
sion (in red color) and an equilibrium part with the monomers that
have not yet been affected by tension and have zero average veloc-
ity (in black color). The boundary between the two parts, denoted
by N, defines the tension front position in the chain at a distance
of R (violet arrow) from the nanopore. Figure 1(b) presents the sys-
tem configuration for R < D at t < τ∗, where t = τ∗ is the time at
which R = D. As time passes with the propagation of tension along
the backbone of the subchain on the cis side, R grows such that R > D
for t > τ∗ [see Fig. 1(c)]. The stage where tension still propagates
along the backbone of the polymer and has not reached the chain
end on the cis side is called the tension propagation (TP) stage. Pan-
els (b) and (c) in Fig. 1 present the TP stage of the translocation
process. The TP time τTP is the time at which the tension reaches
the end of the polymer chain on the cis side. As shown in panel (d)
of Fig. 1, tension has just reached the last monomer of the subchain
on the cis side at time t = τTP, and R = Re applies. After that, in the
post-propagation (PP) stage for t > τTP, all monomers of the sub-
chain on the cis side move toward the pore as shown in Fig. 1(e).
Finally, panel (f) in Fig. 1 shows the final configuration of the system
at the end of the translocation process at t = τ, where τ is the average
translocation time and s = N0.

To model the driven PT process explained above, we use the
well-established IFTP theory.6,16,26,35 We express all quantities in
dimensionless units as identified by a tilde. They are denoted as
Z̃ ≡ Z/Zu, where the units of length, time, velocity, monomer flux,
friction, and force are indicated by the denominator, as su ≡ σ,
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tu ≡ ησ2/(kBT), vu ≡ σ/tu, ϕu ≡ kBT/(ησ2), Γu ≡ η, and fu ≡ kBT/σ,
respectively. All parameters in LJ units do not have a tilde.

From the IFTP theory, the translocation process can be
described by solving an equation of motion for the translocation
coordinate s̃. To this end, one needs to know the tension force F̃(x̃, t̃)
at distance x̃ from the pore on the cis side. The force-balance equa-
tion for a differential element of the mobile part of the polymer
chain on the cis side is dF̃(x̃ ′, t̃) = −ϕ̃(t̃)dx̃ ′. Here, ϕ̃(t̃) = ds̃/dt̃
is the monomer flux, and iso-flux means that the value of the
monomer flux in the mobile domain is constant. Integrating the
above force-balance equation from the pore located at x̃ ′ = 0 to the
distance x̃ ′ = x̃, the tension force at the distance x̃ can be written as
F̃(x̃, t̃) = F̃0 − x̃ϕ̃(t̃), in which F̃0 = f̃ − η̃pϕ̃(t̃), where f̃ is the exter-
nal driving force acting on the monomer(s) inside the nanopore and
η̃p is the pore friction. Using the fact that the tension force van-
ishes at the tension front, i.e., F̃(x̃ = R̃, t̃) = 0, R̃ relates to the force
at the entrance of the pore on the cis side as F̃0 = R̃(t̃)ϕ̃(t̃). Using
the definition of the monomer flux in the above relation, the time
evolution of the translocation coordinate s̃ can be written as

[η̃p + R̃(t̃)]ds̃
dt̃
= f̃ , (5)

where the effective friction inside the brackets is the sum of pore
friction (η̃p) and friction due to the movement of the mobile part in
the solvent R̃(t̃).

To solve Eq. (5), one needs to know the time evolution of R̃(t̃).
By comparing the spatial configuration of the polymer chain at times
zero and t̃, the equation of motion for R̃(t̃) in the TP stage can be
written as explained below. As shown in Fig. 1(c), the sum of the
number of mobile monomers on the cis side l̃ and the number of
monomers on the trans side s̃ is denoted by N (N = l̃ + s̃), which
is less than the contour length of the polymer (N < N0) in the TP
stage. Initially, at t = 0, there is no tension front yet, and thus at time
t̃ we can write R̃ as the end-to-end distance of the polymer subchain
with contour length N as schematically shown in Fig. 1(c).

If the channel is wide enough such that D̃ > R̃(N0) = R̃e or
we consider early stages of the translocation process during t̃ < τ̃ ∗
[panel (b) in Fig. 1], where D̃ > R̃(N), then R̃ is given by the standard
Flory scaling form R̃ = ANν. Here, ν = 3/4 is the Flory exponent in
two dimensions, and A is a constant of order unity. In the high-force
limit when the mobile subchain on the cis side is fully straightened,
l̃ is replaced by the distance of the tension front location from the
pore, i.e., l̃ = R̃, and using the definition of N, the following equation
of motion for R̃ must be solved:

R̃ = A(R̃ + s̃)ν. (6)

In the opposite case of narrow channels, in which D̃ < R̃(N0), dur-
ing τ̃ ∗ < t̃ < τ̃TP [panel (c) in Fig. 1] R̃ depends on both D̃ and N. For
this case, employing the blob theory, one can write R̃ as a function of
D̃ and N. In Fig. 1(a), the end-to-end distance of the polymer sub-
chain inside each orange blob is written as D̃ = Agν, where g is the
number of monomers inside each blob. The number of blobs inside
the channel is nb = N0/g. Then, at t̃ = 0, the end-to-end distance of
the chain inside the channel is given by R̃e = nbD̃ = A1/νN0D̃ 1−1/ν,
which is in agreement with the results of the LD simulations (for
more details, see Appendix A). Performing the same procedure at
time t̃ in panel (c) in Fig. 1, R̃(t̃) can be obtained as R̃ = A1/νND̃ 1−1/ν,

where N = l̃ + s̃ and in the high force limit, in which l̃ = R̃, it can be
cast to

R̃ = A1/ν(R̃ + s̃)D̃ 1−1/ν. (7)

Thus, in the TP stage, the time evolution of R̃ is given by solving
either Eq. (6) or (7) in the relevant time regime.

In the PP stage, as the tail monomer (chain end) experiences the
tension force, the whole cis-side subchain moves toward the pore.
Performing a time derivative of the closure relation in the PP stage,
which is N = l̃ + s̃ = N0, in the high force limit (l̃ = R̃), the time
evolution of R̃ can be written as

˙̃R = −ϕ̃, (8)

where ϕ̃ = ds̃/dt̃ is the monomer flux. To describe the whole translo-
cation process in the regime where the blob theory works, in the TP
stage, Eqs. (5)–(7) must be solved, while in the PP stage, Eqs. (5) and
(8) must be considered.

In the case of very narrow channels, in the TP stage, the
monomers of the mobile part of the chain interact with the par-
ticles of the channel walls. However, in the PP stage, the cis-side
mobile part moves like a rod and does not have significant interac-
tion with the particles of the channel walls as long as D≫ rc. Thus,
the channel width should not influence the PP stage. However, in
the TP stage, the chain-channel interactions induce an additional
force −η̃chϕ̃(t̃)dx̃ ′ on a differential element of the mobile part of
the polymer chain on the cis side, where ηch is an effective fric-
tion from the walls. We have numerically evaluated ηch ≈ 0.2 by
fitting the waiting time from the IFTP theory to the LD simula-
tion data. Thus, the effective force acting on dx̃ ′ can be written as
dF̃(x̃ ′, t̃) = −ϕ̃(t̃)dx̃ ′ − η̃chϕ̃(t̃)Θ(τ̃TP − t̃)dx̃ ′, where Θ is the Heav-
iside step function. Then, the force balance equation for narrow
channels is given by

{η̃p + R̃(t̃)[1 + η̃chΘ(τ̃TP − t̃)]}ds̃
dt̃
= f̃ . (9)

To solve the above equation, R̃(t̃)must be known. To find an equa-
tion for the time evolution of R̃ for narrow channels, in which the
blob theory breaks down, the initial configuration of the chain inside
the narrow channel and its closure relation must be considered. The
end-to-end distance of the polymer chain at t̃ = 0 is R̃e = BN0, where
B ≈ 0.77. Therefore, incorporating the mass conservation N = l̃ + s̃
in the TP stage in the high force limit, in which l̃ = R̃, into R̃ = BN,
and performing its time derivative, the time evolution of R̃ can be
obtained as

˙̃R = Bϕ̃
1 − B

. (10)

In the PP stage, similar to the wider channels, the equation of motion
for R̃ is simply ˙̃R = −ϕ̃. Therefore, to describe the translocation pro-
cess for narrow channels in the TP stage, Eqs. (9) and (10) must be
solved, while in the PP stage, Eq. (9) and ˙̃R = −ϕ̃ must be considered.

As mentioned above, the present study is devoted to investigat-
ing the IFTP theory of the translocation process in the high force
limit. Similar systems can be investigated in the moderate (trumpet
regime) and intermediate (stem-flower regime) force limits. For the
trumpet and stem-flower regimes in the limit of D≫ Re, where Re is
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the end-to-end distance of the polymer chain, driven translocation
has been studied by employing the IFTP theory, and more details
can be found in Ref. 35.

IV. RESULTS
In the present work, we have systematically studied the influ-

ence of the channel width and driving force on the pore-driven PT
process in 2D. The values of the channel width are D = 2, 4, 8, 16,
24, 32, 40, 48, 56, 64, 72, and 128. While the mean and the distribu-
tion of the translocation times are investigated for different values of
the driving force f = 2, 4, 8, 16, 20, 40, 60, 80, and 100, other results
such as the waiting time (WT) distribution w, mean squared dis-
placement (MSD) of monomers, monomer number density ρ, and
the monomer velocity distributions are investigated in the high force
(strong stretching) limit in which the driving force is fixed at f = 100.

A. Waiting time distribution
The distribution of waiting times w(s) as a function of the

translocation coordinate s is an important quantity that reveals the
translocation dynamics of a polymer at the monomer level and is
defined as the average time that each monomer spends at the pore
during the translocation process. The waiting time w(s) obtained
from the LD simulations is shown in Fig. 2 as a function of the
translocation coordinate s for a fixed value of the driving force
f = 100 and different values of the channel width D = 2 . . . 128.
Results from the IFTP theory for D = 2 . . . 16 and D > 32 are in
good agreement with the LD simulations. As expected, the pore fric-
tion varies with the channel width. The values of pore friction are
ηp = 8, 8.5, 9, 9.5, and 10, corresponding to the values of the chan-
nel width of D = 2, 4, 8, 16, and D > 32, respectively. Therefore, the
IFTP theory presented in Sec. III can successfully explain the local
dynamics of the translocation process at the monomer level. We note
that both the influence of the drag force due to the crowding of the
translocated monomers in the vicinity of the pore on the trans side
and the spatial fluctuations of the chain configurations inside the
channel are incorporated in the tension propagation theory through
the effective pore friction coefficient ηp.

FIG. 2. Average waiting times w(s) extracted from the LD simulations for
N0 = 100 as a function of the translocation coordinate s, for a fixed value of the
driving force f = 100 and different values of the channel width D = 2 (black cir-
cles), 4 (red squares), 8 (green diamonds), 16 (blue triangles up), 32 (orange
triangles down), 64 (violet triangles right), and 128 (magenta triangles left). The
waiting times obtained numerically from the IFTP theory are denoted by the lines
for D = 2 (black line), 4 (red line), 8 (green line), 16 (cyan line), and D > 32
(maroon line).

Figure 2 shows that for each D, w(s) is nonmonotonic. It first
increases and then decreases, which is typical for driven PT. In
the TP stage (t < τTP), as time passes, more monomers join the
mobile subchain on the cis side, and the friction experienced by the
chain due to the solvent increases. Consequently, the dynamics slows
down and w(s) grows. In the PP stage (t ⩾ τTP), when the whole cis-
side subchain (influenced by the tension) moves toward the pore,
the number of mobile monomers on the cis side and, therefore, the
solvent friction decrease. Thus, w(s) decreases, too.

Moreover, Fig. 2 shows how confinement affects tension prop-
agation. For the smallest value of D = 2≪ R∞e , where R∞e ≈ 30.3 is
the end-to-end distance for a polymer with N0 = 100 monomers in
the semi-infinite free space, the chain fluctuations are strongly sup-
pressed, and tension propagation terminates for the smallest value
of s at which the WT maximizes. Increasing D increases the value of
s for the maximum of w(s), and finally for D ≥ R∞e , the location of
the maximum value of w(s) is not affected by further increase in D.

B. Mean translocation time from LD simulations
The mean translocation time τ, which identifies the global

dynamics of the translocation process, is the average time that it
takes for the whole polymer chain to traverse the pore and move
to the trans side. Figure 3(a) shows the ensemble averaged τ from
LD simulations as a function of the driving force f for different val-
ues of the channel width D = 2 . . . 128. As expected, τ decreases
monotonically with increasing f for all values of D.

The inset in panel (a) shows the force exponent β from the
scaling form τ ∝ fβ as a function of D. For the narrowest chan-
nel, D = 2, the force exponent is β = −0.925 ± 0.008, and it increases

FIG. 3. (a) The average translocation time τ from the LD simulations as a function
of the driving force f for different values of the channel width D = 2 (black circles),
4 (red squares), 8 (green diamonds), 16 (blue triangles up), 24 (orange triangles
down), 32 (violet triangles right), 40 (cyan triangles left), 48 (magenta crosses), 56
(brown stars), 64 (red dashed circles), 72 (green dashed circles), and 128 (blue
dashed circles). The inset shows the force exponent β (defined as τ ∝ fβ) as a
function of D. The numerically obtained average exponents fall between −0.925
and −0.900, as indicated in the figure with dashed lines. (b) The average translo-
cation time τ as a function of the channel width D for different values of the driving
force f = 2 (black circles), 4 (red squares), 8 (green diamonds), 16 (blue triangles
up), 20 (orange triangles down), 40 (violet triangles right), 60 (cyan triangles left),
80 (magenta crosses), and 100 (brown stars). The top inset shows the normalized
average translocation time τ/ fβ as a function of D for all values of f as in the main
panel. For the sake of better visibility, the bottom inset shows τ as a function of
D for a fixed value of f = 2. The error bars in the top inset in panel (b) are of the
order of the symbol sizes or smaller.
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with increasing D up to D ≈ R∞e . Then, for D > R∞e , β saturates
to −0.900 ± 0.003. The black and orange dashed lines in the main
panel in Fig. 3(a) correspond to f−0.925 (for D = 2) and f−0.900 (for
D = 128), respectively.

In Fig. 3(b), we plot τ as a function of the channel width D
for different values of the driving force f = 2 . . . 100. The top inset
shows the normalized τ/ fβ as a function of D for all values of the
driving force in the main panel. The data for f = 2 are shown in the
bottom inset for better visibility. The plot shows that for fixed f , τ
decreases as D increases up to D ≈ R∞e (vertical black dashed-line
in the main plot). This is due to the fact that for small D, the chain
configuration is more extended along the channel axis and tension
propagates faster, leading to increased drag from the cis-side sub-
chain. For D > R∞e , τ remains almost constant for fixed f . The top
right inset in Fig. 3(b) shows data collapse for the normalized τ/ fβ

as a function of D, where we have used the corresponding effective
values of β(D).

More details on the influence of driving force and channel
width on the distribution of the translocation times are given in
Appendix B.

C. Analytic scaling form of translocation time
To analytically obtain the scaling form of the translocation time

τ̃ as a function of the chain contour length N0 and channel width D̃
from the IFTP theory, one needs to integrate N from zero to N0 in
the TP stage and R̃ from R̃(N0) to zero in the PP stage. Tilde indi-
cates the dimensionless units, as mentioned in Sec. III. For the cases
when the blob theory works, combining the force balance Eq. (5)
with the mass conservation laws N = l̃ + s̃ and N = l̃ + s̃ = N0 in the
TP and PP stages, respectively, and then summing up the TP and PP
times gives

∫
τ̃

0
f̃ dt̃ = ∫

N=N0

N=0
(R̃ + η̃p) dN. (11)

For the case D̃ < R̃∞e , the right hand side (RHS) of the above equa-
tion is split into different time regimes by comparing D̃ and R̃, and
the translocation time can be written as

τ̃ = 1
f̃ ∫

N=N∗

N=0
R̃ dN + 1

f̃ ∫
N=N0

N=N∗
R̃ dN + η̃pN0/f̃ , (12)

where N ∗ is obtained as N ∗ = (D̃/A)1/ν by using its definition
R̃(N ∗ ) = ANν∗ = D̃. In the first term in the RHS of Eq. (12), since
R̃ < D̃, the integral should be taken over R̃(N) = ANν, while in the
second term R̃ > D̃ and the channel walls suppress polymer fluctu-
ations, one must use R̃(N) = A1/νD̃ 1−1/νN. Using the definitions of
N ∗ and the proper closure relation for R̃ in Eq. (12), the scaling form
of the translocation time is obtained as

τ̃ = D̃
1+ν

ν

f̃ A1/ν (
1

1 + ν
− 1

2
) + N2

0

2f̃
A1/νD̃ 1−1/ν + η̃p

N0

f̃
. (13)

According to this result, for the present case where ν = 3/4, τ
decreases with increasing D, which is in agreement with our LD data
in Fig. 3(b). A similar equation with the same N0-dependence has
already been derived in Ref. 75.

For channels with D̃ > R̃∞e , Eq. (11) does not need to be
split. Using R̃(N) = ANν, the scaling form of the translocation time
becomes

τ̃ = 1
f̃

A
1 + ν

N1+ν
0 + η̃p

N0

f̃
, (14)

which is identical to that of unconfined pore-driven translocation.35

For a very narrow channel (D = 2), the blob theory does not
work, as mentioned in Sec. III. The result of the IFTP theory (WT),
which is confirmed by the results of the LD simulations, is shown
for D = 2 in Fig. 2 (black line and black circles in Fig. 2). In this case,
in the TP stage, the mobile monomers on the cis side experience a
dynamical frictional force due to the channel walls, as mentioned
in Sec. III to obtain Eq. (9). On the other hand, in the PP stage,
the chain is almost unaffected by the channel walls, as all mobile
monomers of the chain on the cis side move together like a rod
toward the pore. Therefore, combining the force balance equation
[η̃p + (1 + η̃ch)R̃](ds̃/dt̃) = f̃ with mass conservation N = l̃ + s̃ in
the TP stage, and equation (η̃p + R̃) ds̃

dt̃ = f̃ with N = l̃ + s̃ = N0 in the
PP stage, and summing up the TP and PP times yields

∫
τ̃

0
f̃ dt̃ = ∫

N=N0

N=0
[(1 + η̃ch)R̃ + η̃p] dN − ∫

R̃=R̃(N0)

R̃=0
η̃chR̃ dR̃.

(15)
Here, the effective channel friction ηch = 0.2, and R̃(N) = BN with
B ≈ 0.77 is the closure relation for the end-to-end distance of a
mobile subchain with N monomers inside a narrow channel. Using
the above closure relation inside Eq. (15), the scaling form of the
translocation time is written as

τ̃ = 1
f̃
[(1 + η̃ch)B

2
− η̃chB2

2
]N2

0 +
1
f̃

η̃pN0, (16)

where the prefactor (1 + η̃ch)B/2 − η̃chB2/2 ≈ 0.4 for the present
model.

D. Mean squared displacement
Next, we study PT by investigating the dynamics of the chain

in more detail. To this end, we consider the time-dependence of the
mean squared fluctuation of the position x(t) defined by

MSD = ⟨[x(t) − x(0)]2⟩. (17)

This quantity is computed for the end monomer (tail) of the chain,
the center of mass (CM) of the chain, and the CM of the cis-side
subchain (CMc). In addition, we have computed the time-averaged
MSD, MSDt-ave, defined as

MSDt−ave( jΔT) = 1
n − j

n−1−j

∑
i=0
{x[(i + j)Δt] − x(iΔt)}2, (18)

where j = 1, 2, 3, . . ., n − 1. In this equation, the x component of the
position is saved at times with time lags Δt as x(0), x(Δt), x(2Δt),
. . ., x[(n − 1)Δt]. For a non-ergodic system, MSDt-ave will be differ-
ent from the ensemble-averaged MSD.87–91 In an ergodic process,
the ensemble and the long-time averages are similar.

Figures 4(a)–4(c) present ensemble averages of the horizontal
position ⟨x⟩ of the tail (end monomer) (black line), the CM of the
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FIG. 4. (a) The ensemble average of the horizontal position ⟨x⟩ of the tail (black
line), center of mass of the whole chain (CM) (red line), and center of mass of
the subchain in the cis side (CMc) (green line) as a function of the normalized
time t/τ for fixed values of the driving force f = 100 and the channel width D = 2.
Panels (b) and (c) are the same as (a), but for D = 8 and 64, respectively. Panels
(d)–(f) are the ensemble averages of the slopes d⟨x⟩/d(t/τ) corresponding to the
curves in panels (a)–(c). (g) Ensemble-averaged MSD as a function of normalized
time t/τ for the tail (black line), CM (red line), and CMc (green line) for f = 100 and
D = 2. Panels (h) and (i) are the same as (g), but for D = 8 and 64, respectively.
(j) Time-averaged MSD, MSDt-ave, as a function of t/τ for the tail (black line), CM
(red line), and CMc (green line) for f = 100 and D = 2. Panels (k) and (l) are the
same as panel (j) but for D = 8 and 64, respectively. All slopes of the dashed lines
in (g)–(i) and (j)–(l) are guides to the eye.

whole chain (red line), and the CM of the cis-side subchain CMc
(green line) as a function of the normalized time t/τ for fixed values
of the driving force f = 100 and for different channel widths D = 2, 8,
and 64. The value of ⟨x⟩ starts to increase when the tension reaches
the tail monomer, which, for smaller D, happens at smaller values
of the normalized time. For all values of D, ⟨x⟩ of CM (red line)
increases as the monomers of the chain are translocated to the trans
side and eventually becomes positive as the number of translocated
monomers on the trans side becomes sufficiently large. Moreover,
the green lines in panels (a)–(c) correspond to the position of the
cis-side subchain CM, CMc. They show that CMc first moves away
from the pore (as the number of monomers in the mobile domain
decreases compared to the number of monomers in the same spatial
domain in the equilibrium state at t = 0), and then it approaches the
pore. Finally, at the end of the translocation process at t/τ = 1, the
value of ⟨x⟩ for CMc becomes zero.

Panels (d)–(f) present the slopes d⟨x⟩/d(t/τ) corresponding
to the curves in panels (a)–(c). As can be seen, the slope for the

position of the tail monomer (in black color) starts to increase
when the tension reaches the tail monomer, which for smaller D
happens at smaller values of the normalized time. The slope for
the position of CMc (in green color) at short times is zero and
then becomes negative as the location of CMc moves toward the
pore. As time passes and the CMc approaches the pore, the slopes
become positive. The slope for the position of CM (in red color) is
zero at early times and positive at the intermediate and long time
regions.

In Fig. 4(g), the ensemble-averaged MSD is shown as a function
of t/τ for the tail (black line), CM (red line), and CMc (green line)
for f = 100 and D = 2. Panels (h) and (i) are the same as panel (g)
but for D = 8 and 64, respectively. In all time regimes, the behavior
of MSDs for the tail (and also for the CM) is similar for different
values of D. The MSDs for the tail monomer [black lines in panels
(g)–(i)] scale as t2 at early times and then show more complicated
behavior when the PP stage starts. In contrast, MSDs for CM [red
lines in panels (g)–(i)] show smoother behavior, scaling initially also
as t2. In addition, the MSDs for CMc [green lines in panels (g)–(i)]
scale again as t2 at early times but then follow the black curves at late
times. The sharp valleys in the green curves represent the transition
from TP to PP.

In Fig. 4(j), MSDt-ave (averaged over 75 independent trajecto-
ries) is shown as a function of the normalized time t/τ for the tail
(black line), CM (red line), and CMc (green line) for fixed values of
the driving force f = 100 and the channel width D = 2. Panels (k)
and (l) are the same as panel (j) but for D = 8 and 64, respectively.
As panels (j)–(l) clearly show, MSDt-ave for the tail and CM scales as
t2 for almost the entire translocation process for all values of D. On
the other hand, the slope of MSDt-ave of the CMc (green line) crosses
over from linear dependence to t2. At very late times for D = 8 and
64, there is a slight bend in the tail curve indicating a transition from
TP to PP.

E. Monomer density
Finally, we study the time evolution of the monomer number

density ρ(x, y) (the number of monomers per unit area), where the
average spatial configuration of the polymer is investigated as a func-
tion of time during the translocation process. To calculate ρ, the 2D
simulation box is divided into square unit cells of size 1 × 1 each. The
number of monomers in each unit cell is counted at a given moment
for each trajectory and divided by the contour length of the polymer.
In the end, the averaging is done over 1000 independent trajectories.
Figure 5(a) shows the monomer number density at different nor-
malized times t/τ = 0 . . . 1.0 for fixed values of the driving force
f = 100 and channel width D = 2. Panels (b) and (c) are the same as
panel (a), but for different values of D = 8 and 64, respectively. For
the sake of better visibility, the monomer number density of the cis
side (inside the channel) is magnified and separately shown below
the actual channel in panels (a) and (b).

As shown in panel (a) of Fig. 5, in this case, the polymer translo-
cates in a rodlike manner in the channel, forming a coil at the trans
side. Figure 5(b) shows that increasing the channel width to D = 8
causes the chain to extend in the y direction until the tension front
reaches the end. Finally, panel (c) shows that for D = 64, there is
no contact between the chain and the particles on the channel walls
since D > R∞e .
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FIG. 5. (a) Monomer number density
ρ(x, y) for fixed values of the driving
force f = 100 and the channel width
D = 2 at different times t/τ = 0, 0.2, 0.4,
0.6, 0.8, and at the last snapshot. Pan-
els (b) and (c) are the same as panel (a),
but for other values of the channel width,
D = 8 and 64, respectively. For the sake
of better visibility, ρ(x, y) of the cis
side (channel) is magnified and shown
below each actual channel in panels
(a) and (b).

V. SUMMARY AND CONCLUSIONS
In this work, we have revisited the problem of pore-driven PT

from a confining channel into semi-infinite free space. To this end,
we have employed the IFTP theory to analytically calculate the scal-
ing form for the average translocation time as a function of chain
length, driving force, confinement, and channel friction. The IFTP
theory can quantitatively explain the local waiting times as well as
global dynamics, as given by the translocation time for the PT pro-
cess for different values of channel width. The theory includes all
cases from a highly confining channel where the blob theory breaks
down, to intermediate channel widths where the blob theory applies,
and finally to wide channels where spatial confinement becomes
irrelevant.

First, for highly confining channels with D≪ R∞e compari-
son between the waiting time from LD simulations and from the
IFTP theory reveals that in the TP stage, interactions between
the mobile monomers with the channel walls induce dynamic
friction that is proportional to the size of the mobile domain
at the cis side. In the PP stage, the mobile monomers move
in a rodlike fashion inside the channel and significantly inter-
act with the channel walls. Consequently, IFTP theory shows
that the translocation time is similar to that of a rod and scales
as τ̃ ∝ N2

0 .43

Second, for a channel of an intermediate width 1≪ D < R∞e , we
have used the blob theory in conjunction with the IFTP theory. The
predictions on local and global PT dynamics are again in full agree-
ment with the LD simulations. The scaling form of the translocation
time depends on both the chain contour length and the channel
diameter and agrees with those in Ref. 75 in the appropriate limits.

Third, for wide channels with D > R∞e , both the IFTP theory
and LD simulations recover the well-known results for a system with
a semi-infinite space on the cis side, where the IFTP theory shows
that the translocation time scales as τ̃ ∝ N1+ν

0 .35

Finally, we have further characterized the details of the local
and global chain dynamics by investigating the distribution of
translocation times (cf. Appendix B) and the dependence of the
MSDs of the tail, CM, and CM of the cis-side subchain, the time
evolution of the monomer number density, and monomer veloc-
ity (cf. Appendix C) on the channel width at constant driving force
in the high force limit. Our detailed analysis of the global and local
chain dynamics as a function of the relevant parameters thus gives a
complete picture of the PT dynamics from confined channels to free
space and can be used to interpret and analyze related experiments
of PT dynamics and biopolymer sequencing with nanopores.

Although the IFTP theory is valid for the 3D case as well, there
are additional effects that need to be considered. For long chains, it

J. Chem. Phys. 162, 244903 (2025); doi: 10.1063/5.0269884 162, 244903-8

Published under an exclusive license by AIP Publishing

 25 June 2025 13:32:41

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

would be interesting to study the effect of knotting and unknotting
dynamics of the polymer chain inside the channel on the dynamics
of the polymer translocation through a nanopore and to develop the
corresponding IFTP theory.92,93
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APPENDIX A: POLYMER SCALING FROM BLOB
THEORY IN A CHANNEL

To study the scaling of the polymer chain in a channel, we con-
sider the radius of gyration (RG) Rg and end-to-end distance Re. The
ensemble averages ⟨. . .⟩ of Rg and Re for a polymer chain with a
contour length of N are given by96 R2

g = 1
N∑

N
i=1 ⟨(R⃗ i − R⃗ CM)2⟩ and

R2
e = ⟨(R⃗ N − R⃗ 1)2⟩, respectively, where R⃗i and R⃗CM are the position

vectors of the ith monomer and the center of mass of the chain,
respectively.

As mentioned in Sec. III, using the blob theory, the end-to-end
distance of a chain confined in a channel with a diameter of D is
given by Re = NA1/νD1−1/ν. Figure 6(a) compares the results of LD
simulations with those of the blob theory for Rg and Re. In panel (a)
of Fig. 6, R2

g (orange circles) and R2
e (cyan squares) of the initial con-

figuration of the polymer inside the channel at t = 0 are plotted as
a function of the channel width D. As can be seen, as D increases,
the values of both R2

g and R2
e decrease, and in the regime in which

D > Re(D = 128) ≈ 30.32, they remain almost constant. The blue
and red fitted dashed lines represent (100 ×D1−ν)2 and (29 ×D1−ν)2

with ν = 3/4, respectively. Therefore, we conclude that the results of
LD simulations are in very good agreement with the blob theory.

FIG. 6. (a) The average squared gyration radius R2
g (orange circles) and the aver-

age squared end-to-end distance R2
e (cyan squares) of the initial configuration of

the chain at t = 0 inside the channel as a function of the channel width D. The
blue and the red dashed lines represent (100 × D1−ν)2 and (29 × D1−ν)2 with
ν = 3/4, respectively. The black vertical dashed line is D = 30.32. (b) The aver-
age squared radius of gyration in the x and y directions, X2

g (orange circles) and
Y2

g (orange squares), and the average squared end-to-end distance in the x and
y directions, X2

e (cyan circles), and Y2
e (cyan squares) of the initial configuration

at t = 0, respectively, as a function of the channel width D. The blue and the
red dashed lines are the same as of panel (a). The black dashed-dotted line is
(0.2 × D)2.

Panel (b) in Fig. 6 shows the average of the square of the RG
and the end-to-end distance in the x and y directions as X2

g (orange
circles) and Y2

g (orange squares), and as X2
e (cyan circles) and Y2

e
(cyan squares), respectively, for the initial (t = 0) configuration of
the chain inside the channel as a function of D. The blue and red
dashed lines are the same as those in panel (a). The black dashed-
dotted line is (0.2 ×D)2 and is obtained by fitting to the data in the
regime of D < Re(D = 128).

It should be mentioned that in the present study, we inves-
tigate the translocation of a self-avoiding flexible chain through a
nanopore, where both the persistence length and the chain width are
of the order of unity. Therefore, we have employed the blob model
(the De Gennes regime) to obtain the scaling form of the chain con-
formation inside the channel. However, for a semiflexible polymer
translocation through a nanopore starting from a confining channel,
several length scales are involved, e.g., channel width, polymer per-
sistence length, its width, and polymer contour length, which must
be compared to each other to identify if the blob theory is valid.
Indeed, for the latter case, one can use the results of Refs. 94 and 95,
where the existence of two transition regimes between weak (the
De Gennes regime) and strong (the Odijk regime) confinements has
been demonstrated.

APPENDIX B: DISTRIBUTION
OF TRANSLOCATION TIMES

In this appendix, we present LD results for the probability den-
sity function of translocation times P(τi). In Fig. 7(a), P(τi) is shown
as a function of individual translocation times τi for a fixed value
of the channel width D = 2 and different values of the driving force
f = 2 . . . 100. Panels (b) and (c) are the same as panel (a) but for
other values of the channel width, D = 8 and 64, respectively. For
fixed D, increasing f obviously decreases the average τ, and P(τi)
becomes narrower. In fact, as f decreases, the spatial fluctuations of
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FIG. 7. (a) Probability density function of the translocation times P(τi) as a function of the translocation time τi for a fixed value of the channel width D = 2 and different
values of the driving force f = 2 (black bars), 4 (red bars), 8 (green bars), 16 (blue bars), 20 (orange bars), 40 (violet bars), 60 (cyan bars), 80 (brown bars), and 100 (maroon
bars). Panels (b) and (c) are the same as panel (a) but for other values of the channel width, D = 8 and 64, respectively. (d) P(τi) as a function of τi , for a fixed value of the
driving force f = 2 and different values of the channel width D = 2 (black bars), 4 (red bars), 8 (green bars), 16 (blue bars), 32 (orange bars), and 64 (violet bars). Panels (e)
and (f) are the same as panel (d) but for different values of the driving force, f = 20 and 100, respectively. The inset in panel (d) corresponds to the magnified main panel for
better visibility. (g) Normalized value of the standard deviation σ/τ as a function of f for different values of the channel width D = 2 (black circles), 4 (red squares), 8 (green
diamonds), 16 (blue triangles up), 32 (orange triangles down), and 64 (violet triangles right). (h) σ/τ as a function of D for different values of the driving force f = 2 (black
circles), 4 (red squares), 8 (green diamonds), 20 (blue triangles up), 60 (orange triangles down), and 100 (violet triangles right).

the configurations of the cis-side subchain increase significantly, so
the fluctuations of the translocation times also increase.

In Fig. 7(d), P(τi) is shown as a function of translocation time τi
for a fixed value of the driving force f = 2 and different values of the
channel width D = 2 . . . 64. Panels (e) and (f) are the same as panel
(d) but for other values of the driving force, f = 20 and 100, respec-
tively. For better visibility, the inset in panel (d) shows the magnified
main panel. As can be seen for smaller values of D, increasing the
value of f leads to an increase in the separation of P(τi)’s, while this
is not the case for larger values of D, in which, for different values of
f , the probability density functions show an overlap.

In Fig. 7(g), the normalized standard deviation of translocation
times σ/τ is shown as a function of f for different values of the chan-
nel width D = 2 . . . 64. It is clear that σ/τ decreases monotonically as
f increases for all values of D, and the reduction of σ/τ with respect
to f is more pronounced for smaller values of D.

Moreover, σ/τ is displayed in panel (h) as a function of D for
different values of the driving force f = 2 . . . 100. As can be seen, for
each value of f , σ/τ increases as D increases. At constant D, the devi-
ation of σ/τ with respect to f is more pronounced for larger values
of D than for smaller ones.

APPENDIX C: MONOMER VELOCITIES
FOR THE TRANSLOCATION COORDINATE

Here, the dynamics of the cis-side subchain and the tension
front are investigated by studying the velocity distribution of each

individual monomer at different moments during the translocation
process. In Fig. 8(a), the x component of the monomer velocity vx
is plotted as a function of the translocation coordinate s for fixed
values of D = 2 and f = 100 at different times t/τ = 0.05 . . . 0.80.
Panels (b) and (c) are the same as panel (a), but for other values of
the channel width, D = 8 and 64, respectively. In each curve, the left
side of the open circle corresponds to the velocity of the translocated
monomers to the trans side, and its right side shows the velocity of
the monomers on the cis side at the corresponding time.

After equilibration at t = 0, all monomers have zero mean
velocity, as monomers have not experienced any tension yet. As
shown in Fig. 8, for each value of D, the number of monomers with
non-zero velocity increases as time passes, i.e., more monomers join
the mobile part of the chain on the cis side. Moreover, for smaller val-
ues of D, the last monomer feels the tension (joins to the mobile part)
at smaller values of t/τ. Therefore, for smaller values of D, the PP
stage has a more significant contribution to the mean translocation
time than the TP stage. Conversely, in the case where the channel
width has larger values, i.e., D > R∞e , it takes longer for the tension
to reach the last monomer, and therefore the TP stage has a larger
contribution to the mean translocation time than the PP stage. In
addition, panels (a)–(c) show that in the TP stage (t < τTP) the veloc-
ity of the mobile part of the chain on the cis side decreases with time,
originating from the fact that as time passes more monomers join
the mobile part and the effective friction increases, slowing down
the dynamics. Conversely, in the PP stage (t > τTP), the velocity of
the mobile monomers on the cis side increases with time due to the
reduction in friction.
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FIG. 8. (a) The x component of the monomer average velocity vx as a function of the translocation coordinate s for fixed values of D = 2 and f = 100 at different times
t/τ = 0.05 (black line), 0.10 (red line), 0.15 (green line), 0.20 (blue line), 0.40 (orange line), 0.60 (violet line), 0.70 (cyan line), and 0.80 (magenta line). Panels (b) and (c)
are the same as panel (a), but for other values of the channel width, D = 8 and 64, respectively. The open circle on each curve shows the mean value of the index of the
monomer inside the pore at the corresponding time. (d) The x component of the monomer average velocity vx as a function of x in the cis side, for fixed values of D = 2 and
f = 100 at different times t/τ = 0.05 (black line), 0.10 (red line), 0.15 (green line), 0.20 (blue line), 0.40 (orange line), 0.60 (violet line), 0.70 (cyan line), and 0.80 (magenta
line). Here, x = 0 is the location of the pore. Panels (e) and (f) are the same as panel (d), but for other values of the channel width, D = 8 and 64, respectively. Here, ∣x∣ is
the distance from the pore on the cis side. (g) The average velocity of monomer(s) inside the pore vx(x = 0) as a function of t/τ for a fixed value of driving force f = 100
and different values of the channel width D = 2 (black circles), 4 (red squares), 8 (green diamonds), 16 (blue triangles up), and 64 (orange triangles down).

Furthermore, in Fig. 8(d), the mean value of the x component
of the monomer velocity vx is shown as a function of the x coordi-
nate on the cis side for fixed values of D = 2 and f = 100 at different
times t/τ = 0.05 . . . 0.80. Panels (e) and (f) are the same as panel (d),
but for other values of the channel width, D = 8 and 64, respectively.
To find vx as a function of x, the cis-side channel is divided into par-
allel bins, and x denotes the location of the bins. x = 0 indicates the
location of the pore. The absolute value of x identifies the distance of
the corresponding bin on the cis side from the pore.

In panel (g), the average velocity of monomer(s) inside the
pore vx(x = 0) is plotted as a function of the normalized time t/τ
for a fixed value of driving force f = 100 and various values of
D = 2 . . . 64. For each D, as time passes, vx(x = 0) first decreases (in
the TP stage where t < τTP), attains a minimum (transition from TP
to the PP stage), and then increases (in the PP stage where t > τTP).
As can be seen, in the TP stage and at a constant time, increasing D
increases the velocity of monomers at the pore. In contrast, in the
PP stage, as time passes, the velocity increases due to the reduction
in the number of mobile monomers on the cis side. Moreover, in
the PP stage, as time passes, the velocities eventually collapse onto
a master curve. The results in panel (g) are in agreement with the
waiting times presented in Fig. 2.
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