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Abstract
We consider a general one-dimensional overdamped diffusion model described by the Itô
stochastic differential equation (SDE) dXt = µ(Xt, t)dt+σ(Xt, t)dWt, whereWt is the standard
Wiener process. We obtain a specific condition that µ and σ must fulfil in order to be able to solve
the SDE via mapping the generic process, using a suitable space-time transformation, onto the
simpler Wiener process. By taking advantage of this transformation, we obtain the propagator in
the case of open, reflecting, and absorbing time-dependent boundary conditions for a large class of
diffusion processes. In particular, this allows us to derive the first-passage time statistics of such a
large class of models, some of which were so far unknown. While our results are valid for a wide
range of non-autonomous, non-linear and non-homogeneous processes, we illustrate applications
in stochastic thermodynamics by focusing on the propagator and the first-passage-time statistics of
isoentropic processes that were previously realised in the laboratory by Brownian particles trapped
with optical tweezers.

1. Introduction

The effort to understand the fundamental nature of reality is a timeless pursuit that has fascinated humanity
for centuries. One of the first proofs in support of the atomistic theory of matter is the famous paper by
Einstein on Brownian motion [1]. Contemporarily, Sutherland [2], Smoluchowski [3], and Langevin [4] all
contributed towards the physical theory of Brownian motion. The successive formalisation by Wiener [5]
established the foundations of non-equilibrium statistical mechanics. The partial differential equations
describing stochastic motion were developed independently by Fokker and Planck [6, 7] and by Kolmogorov
[8] (see also [9, 10]). Indeed, in modern literature they either go under the name of forward and backward
Fokker–Planck equations, or first and second Kolmogorov equations. An alternative mathematical formulation
of diffusion processes is via stochastic differential equations (SDEs), firstly developed by Itô [11].
Nevertheless, stochastic processes have been applied not only to the Brownian motion but have found
numerous applications in various fields. For instance, to study the motion of passive molecules [12–15] and
actively transported particles [16, 17] in biological cells, lipids in membranes [18, 19], animal motion [20],
active matter [21], geophysics [22], condensed matter [23], financial markets [24], or disease spreading [25].
One of the most significant random variables for stochastic models is the first-passage time (FPT), a positive
random variable defined as the first time at which a stochastic walker reaches a threshold or exits from a
certain region of space [26, 27]. To calculate the full distribution of FPTs even in simple geometries is a
formidable task, that can be solved by, e.g methods such as Newton series, spectral methods or self-consistent
approaches [28–30]. One of the most prominent examples is the Kramers problem [31, 32], widely used to
model the activation rate in chemical reactions. Applications of the FPT are extensive and a complete
literature report would be a formidable task. As a few examples, we mention applications to animal foraging
[33], to model the disease spreading of infections [34, 35], or in finance [36, 37] where information
regarding the FPT is fundamental to determine actions such as buying or selling. The FPT also provides
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valuable information regarding the extreme values of random processes [38] and on observables in
non-equilibrium statistical physics [39]. A recent survey on applications is available here [40].

In this paper, we address the problem of solving stochastic differential equations (SDEs) (or
Fokker–Planck equations (FPEs)) and FPT problems via a space-time coordinate transformation. Further
details on the physical interpretation of this transformation are presented in section 3. Nevertheless, as a
similar idea is roughly outlined in some old works, we first provide a literature overview of these references.
Probably the first author to have the idea of space-time transformation was Kolmogorov [8]. In section 17 of
his seminal work, Kolmogorov discussed a couple of examples of FPEs that can be solved by a change of
variables, i.e. transforming x→ x ′ and t→ t ′. Some 25 years later, Cherkasov [41], another Russian
mathematician, following the same idea of variable change, discovered a sufficient and necessary condition
to map a generic FPE onto the FPE of the Wiener process. Nevertheless, Cherkasov’s work showed an error in
the proof, which was later corrected by Shirokov [42]. Interestingly, the paper [41] was nearly forgotten. As
Ricciardi, an Italian mathematician, wrote in his paper [43] ‘apparently Cherkasov’s work did not receive much
attention in the Western world’. In [43] the author basically reproduces the results of [41], yet with a clearer
notation. Later on, Ricciardi and collaborators [44] mentioned, without proof, that a similar mapping
technique could be adapted to solve FPT problems. A similar idea can be found in [45]. We credit the authors
of [44] for their intuition, although, to the authors’ knowledge, this idea has never been used by any author
to solve FPT problems.

The aim of our paper is to both present some of the results of the aforementioned papers in a simpler way
and both to further develop some of the ideas and to obtain the FPT density (FPTD) analytically for a large
class of diffusion models. Therefore, throughout the text, we will expose a mixture of known and novel
results. We hope that this paper will serve as a key reference to the physics community for these valuable yet
arguably forgotten transformation techniques. As a particular example of application, we discuss (i) the
isoentropic protocol, an important diffusion process for stochastic thermodynamics and related
experiments [46, 47]; and (ii) the stochastic Gompertz model, used in population dynamics (see [48] for a
review). The paper is organised as follows: in section 2 we outline, in four different subsections, the main
results of the paper. In sections 3 and 4 we provide an intuitive explanation of our technique, respectively for
the propagator and the FPT. In section 5 we focus on specific applications of our theory, and section 6 details
some connections with existing results. Our conclusions are drawn in section 7.

2. Summary of the main results

2.1. Solution of the SDE and propagator
We start by defining the problem and the most important quantities needed for presenting the results. We
consider generic diffusion processes described by the one-dimensional Itô SDE [49]

dXt = µ(Xt, t)dt+σ (Xt, t)dWt, (1)

with initial condition Xt0 = x0, whereWt is the standard Wiener process.
Let us introduce the following function, which will be crucial later on,

C (x, t)≡ 1

σ (x, t)

∂σ (x, t)

∂t
+σ (x, t)

∂

∂x

(
1

2

∂σ (x, t)

∂x
− µ(x, t)

σ (x, t)

)
. (2)

Here and below, we call C(x, t) the Cherkasov function. Notice that C(t) has physical dimensions of inverse
time. Although the function C never appears in the works of Cherkasov, we decided to use the notion
‘Cherkasov function’ in Cherkasov’s honour. As we show later in appendix A, if C(x, t)≡ C(t) is solely a
function of time, i.e.

∂C (x, t)
∂x

= 0, (3)

then it is possible to obtain an exact analytical solution of the SDE (1) and an exact expression for the
propagator of the process. More precisely, when equation (3) holds, then it is possible to find two real
deterministic functions ψ(x, t) (equation (8)) and τ(t) (equation (9)), both invertible, that enable one to
solve explicitly the SDE (1) as

Xt = ψ−1
(
Wτ(t), t

)
; (4)

in other words,Wτ(t) = ψ(Xt, t), i.e. the time reparametrisation of the Wiener process equals the function ψ
evaluated along the process Xt. Note that the time change t→ τ is not a random-time transformation but a
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deterministic one-to-one mapping, yetWτ(t) is a martingale [50]. Equivalently to (1), we can say that the
propagator of the process, P(x, t|x0, t0)dx≡ Prob{x< Xt = x+ dx|Xt0 = x0} fulfils the FPE

∂P(x, t|x0, t0)
∂t

=
1

2

∂2

∂x2
(
σ2 (x, t)P(x, t|x0, t0)

)
− ∂

∂x
(µ(x, t)P(x, t|x0, t0)) , (5)

with delta initial condition limt→t0 P(x, t|x0, t0) = δ(x− x0) and with some appropriate boundary conditions
(BC). We remind the reader that the probability flux associated with the FPE (5) obeying
∂tP(x, t|x0, t0) =−∂xj(x, t|x0,0) is defined as

j(x, t|x0, t0)≡ µ(x, t)P(x, t|x0, t0)−
1

2

∂

∂x

(
σ2 (x, t)P(x, t|x0, t0)

)
. (6)

Property (4) implies that the propagator of the process for natural (open) boundary conditions
(lim|x|→∞P(x, t|x0, t0) = 0) reads

P(x, t|x0, t0) =
∂ψ (x, t|x0, t0)

∂x

1√
2πτ (t|t0)

exp

(
−ψ

2 (x, t|x0, t0)
2τ (t|t0)

)
. (7)

The functions ψ(x, t|x0, t0) and τ(t|t0), which have dimensions of square root of time and time, respectively,
are given by

ψ (x, t|x0, t0)≡ exp

(ˆ t

t0

C (s)ds
)ˆ x

x0

1

σ (x ′, t)
dx ′ (8)

+

ˆ t

t0

ds

(
1

2

∂σ

∂x

∣∣∣∣
(x0,s)

− µ(x0, s)

σ (x0, s)

)
exp

(ˆ s

t0

C (s ′)ds ′
)

and

τ (t|t0)≡
ˆ t

t0

exp

(
2

ˆ s

t0

C (s ′)ds ′
)
ds. (9)

Both functions ψ and τ depend parametrically on x and t and their initial conditions x0 and t0 (through the
functions µ, σ, as well as C given by equation (2)); however, we will omit this dependence in the notation
throughout the manuscript whenever there is no risk of confusion. The proof of formulae (4), (7)–(9) is
shown in appendix A; they are the first main result of the paper. We obtained formulae (7)–(9) with a
significantly simpler proof as compared to the original work [41], while (4) is a novel result of this paper.
Condition (3) was also found in [45]. It remains unclear, to the authors’ knowledge (and an interesting
avenue for future research), whether condition (3) can be understood from intuitive physical arguments.

The class of Wiener transformable SDEs and their propagators is constrained by fulfilling equation (3).
Nonetheless, there are examples of SDEs that, despite not fulfilling (3) are solvable analytically [51–54]. We
noticed that the cases discussed in the aforementioned papers are equivalent to the so-called inhomogeneous
geometric Brownian motion (IGBM) (see also [55]), which is discussed in section 2.4. Moreover, within the
class defined by (3), not all the SDEs are amenable to analytical solution for their FPTD. In the next section
we outline for which problems we can obtain exact closed forms for the FPTD.

2.2. FPTD
Following the discussion of the previous subsection, consider a generic stochastic process described by
equation (1) starting at Xt0 = x0 and with the boundary a(t) with a(t0)> x0, we define the random variable
FPT TX as

TX (a(t) |x0, t0)≡ inf{t> 0 : Xt > a(t) |Xt0 = x0} . (10)

In simple words this represents the first time that the stochastic process Xt, which started below a(t), crosses
the boundary. We specify that the boundary a(t) may be any time-dependent yet deterministic function of
time t. To avoid problems in this definition (10) we further assume that a(t) is a continuous function. The
definition in the case a(t0)< x0 is analogous. The analytical result we obtained on the FPTD, besides
expression (3), further requires another condition, namely, that the FPT of the transformed processWτ to
reach the transformed threshold ψ(a(t), t) is analytically solvable. An example class for which this is possible
is when

ψ (a(t) , t) = vτ (t)+ a0, (11)
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with v,a0 ∈ R being constants, that is, ψ evaluated at the boundary depends linearly on τ . We denote by
℘(a(t), t|x0, t0)dt≡ Prob{t< TX(a(t)|x0, t0)< t+ dt} the FPTD. Assuming that (3) and (11) hold, it reads

℘(a(t) , t|x0, t0) =
|a0|√
2πτ (t)3

exp

(
− (a0 + vτ (t))2

2τ (t)

)(
dτ (t)

dt

)
. (12)

Formulae (11) and (12) are the second main result of the paper. We stress the fact that formula (12) is a
generalisation of several results already known in the literature, such as those reported in [56, 57]. Further
results for absorbing and reflecting boundaries are given in the next subsection.

2.3. Propagators for absorbing and reflecting boundary conditions
If the two conditions (3) and (11) are met, further results are available for the two cases with (i) absorbing
boundary condition Pa(a(t), t|x0, t0) = 0; and (ii) reflecting boundary condition (see appendix C for a proof)

jr (a(t) , t|x0, t0) = a ′ (t)Pr (a(t) , t|x0, t0) , (13)

where jr represents the probability flux at the time-dependent position a(t) of the boundary. If conditions (3)
and (11) are valid, the two propagators for absorbing and reflecting boundary, respectively Pa and Pr, are
known analytically and read

Pa (x, t|x0, t0) =
∂ψ

∂x

1√
2πτ

[
exp

(
−ψ

2

2τ

)
− exp

(
−2a0v−

(ψ− 2a0)
2

2τ

)]
(14)

and

Pr (x, t|x0, t0) =
∂ψ

∂x

{
1√
2πτ

[
exp

(
−ψ

2

2τ

)
+ exp

(
−2a0v−

(ψ− 2a0)
2

2τ

)]

−vexp(−2v(ψ− a0 − vτ))erfc

(
ψ− 2a0 − 2vτ√

2τ

)}
, (15)

where erfc is the complementary error function. To make the equations shorter, we omitted the explicit
dependencies of the functions ψ and τ . Equations (14) and (15) are the third main result of the paper. The
proof of the results for these two cases is found in appendix C. We verified that these formulae solve the FPE
with the appropriate boundary condition with Mathematica.

2.4. Solvable yet non-transformable SDEs and second Cherkasov condition
As stated at the end of section 2.1, there are some SDEs that are solvable even though they do not fulfil
condition (3). These cases are discussed in [51–55] and interestingly they are all equivalent to the so-called
IGBM [54]. The SDE for IGBM reads

dXt = (α(t)Xt +β (t))dt+ σ̄ (t)XtdWt, (16)

where α, β, and σ̄ may be any functions of time. Thus, the only difference with respect to GBM is the
presence of β(t)dt in the SDE (16). Therefore, we may argue that there is a second class of SDEs that, even
though they cannot be transformed into the Wiener process, are instead mappable onto IGBM The
coefficients of such SDEs, while not fulfilling (3), satisfy the condition

∂

∂x

[(
∂C (x, t)
∂x

)−1
∂

∂x

(
σ (x, t)

∂C (x, t)
∂x

)]
= 0, (17)

where C was defined in (2). Moreover, the transformation ψ that maps the original process onto IGBM reads

ψ (x, t) =

(
σ (x, t)

∂C (x, t)
∂x

)−1

(18)

We here do not report the solution of equation (16) as it is available in standard textbooks [93]. The proof of
these results is provided in appendix B.
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3. Interpretation of the results: mapping a stochastic process onto theWiener process

In this section we provide a more physical intuition on the meaning of the main formulae (4), (7)–(9). A
graphical representation of our discussion is shown in Figure 1. We will not expose the proof here, this is
available in appendix A. Let us start again from the SDE (1), for which the coefficients µ(x, t) and σ(x, t) go
under several names: in physics µ(x, t) represents a deterministic force acting on the particle, while
σ(x, t)dWt is the noise term due to thermal fluctuations. It is related to the diffusivity of the process via
D(x, t) = σ2(x, t)/2. Other popular names, especially in financial literature, for µ and σ are respectively the
drift and the volatility (e.g see [50]).

As we show in appendix A, if and only if condition (3) holds, i.e. if and only if C(t) is solely a function of
time, then it is possible to define a new process Yt = ψ(Xt, t) (for simplicity we do not state the dependencies
on x0 and t0, as it is obvious) that the simpler SDE describes

dYt = σY (t)dWt, (19)

where the volatility σY(t) of the new process is a function of time, only, and with ψ(x, t) being strictly
increasing, thus invertible, with respect to the first variable. For simplicity, without loss of generality, we
assume that the initial condition of the new process is zero, Yt0 = ψ(x0, t0)≡ 0. The explicit form of ψ(x, t)
based on these features is given in (8) and derived in appendix A. This means that Yt is a time-transformed
version of a Wiener process. Therefore, we can define the new time variable

τ ≡
ˆ t

t0

σ2
Y (s)ds, (20)

such that the reindexed process Yτ is just a Wiener process,

Yτ =Wτ , (21)

with initial condition Yτ=0 = 0. In other words, if and only if condition (3) holds, there exists a special
framework of coordinates, in which the stochastic motion is perceived as a simple Brownian motion. Thus,
the connection between Xt and the Brownian motionWt is

Wτ(t) = ψ (Xt, t) , (22)

as stated in equation (4). Moreover, since the function ψ(x, t) is invertible (see appendix A) it is possible
to write

Xt = ψ−1
(
Wτ(t), t

)
, (23)

from which it is possible to obtain the correlations of the process as shown for the specific example discussed
in section 5.1.

We now consider the propagator PW(y, τ |0,0)≡ PY(y, τ) of the processWτ . It is connected to the
sought-after propagator P(x, t|x0, t0) via the following change of measure (for consistency between the left
and right hand sides we explicitly include the dependencies on x0, t0)

P(x, t|x0, t0) =
∂ψ (x, t|x0, t0)

∂x
PW (y, τ) , (24)

where we note that this formula relies on the fact that ∂ψ/∂x> 0. Using the fact that PW(y, τ) is the
propagator of a Brownian motion and rewriting the right hand side of equation (24) in terms of the original
variables (x, t), we find

P(x, t|x0, t0) =
∂ψ (x, t|x0, t0)

∂x

1√
2πτ

exp

(
− y2

2τ

)
(25)

=
∂ψ (x, t|x0, t0)

∂x

1√
2πτ (t|t0)

exp

(
−ψ

2 (x, t|x0, t0)
2τ (t|t0)

)
.

The explicit forms of ψ(x, t|x0, t0) and τ(t|t0) are shown in equations (8) and (9).
A graphical representation of our discussion is provided in figure 1 where we also highlight how the FPT

for a specific boundary varies after the space-time transformations. We conclude this section with the
following observation: the idea of using space-time transformations is in fact reminiscent of the
Cameron–Martin–Girsanov theorem [58]. This theorem describes how an SDE can be simplified via a
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Figure 1. Examples of spatio-temporal transformations of stochastic processes (top) that enable an analytical treatment of their
propagator and FPT statisticsusing the method of the current pape, along with illustrations for two examples: (a)
Ornstein–Uhlenbeck (OU) process (dXt =−µXtdt+σdWt, blue line) and FPT to reach a time-dependent boundary (red line).
(b) Geometric Brownian motion (GBM) (dXt = µXtdt+σXtdWt, blue line) and FPT to reach a constant boundary. In the left
panels we show the original processes Xt, in the central panels the space-transformed processes Yt = ψ(Xt, t), while in the right
panels the space-time-transformed processesWτ (Wiener) are shown. In (a) we considered a time-dependent boundary that
grows exponentially with time a(t) = a(0)eµt, while in (b) we have a constant boundary. In both cases, after the transformation,
the boundary becomes linear in time. Note that for GBM, the time transformation is trivially τ = t (cf (9)). The moment of the
first passage is highlighted by the red circle in all panels.

change of measure, after which the transformed process becomes a martingale. While the
Cameron–Martin–Girsanov theorem has found prominent applications in diverse fields such as finance (e.g
the celebrated Black–Scholes formalism [59]), it does not provide a clear-cut criterion on which an SDE is
amenable to exact analytical expressions for their propagators and FPTDs.

4. Which FPT problems are solvable?

We now turn our attention to the FPT problem. The question we are trying to address is: supposing that
condition (3) is fulfilled, is it possible to obtain the FPTD? Why do we also require condition (11)? First of
all, supposing that (3) is fulfilled, we could transform the stochastic process Xt into the Wiener process, and
then consider the FPT problem for a Wiener process. In mathematical terms the idea is the following,

inf{t> 0 : Xt > a|Xt0 = x0}= inf{t> 0 : Yt > ψ (a, t) |Yt0 = 0} (26)

= inf
{
t(τ)> 0 : Yt(τ) > ψ (a, t(τ)) |Yt(0) = 0

}
= τ−1 (inf{τ > 0 :Wτ > ψ (a, τ) |W0 = 0}) ,

where in the first equality we used that the space-transformation ψ is monotonically increasing, in the
second we expressed everything in terms of t≡ τ−1 since the function τ is invertible (see appendix A), and in
the third one we expressed everything in terms of τ . We also used the fact that Yτ =Wτ . By denoting the
FPT of a Wiener process with TW, we thus proved that

TW (ψ (a, t)) = τ (TX (a|x0, t0)) , (27)

6
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where on the right hand side we dropped the dependence on initial position and time as both are 0.
Therefore the FPT problem of the original process Xt for the barrier a(t) is mapped onto the FPT of the

Wiener process for the barrier ψ(a(t), t) (refer to figure 1 for a geometric intuition). An explicit pedagogical
explanation of this transformation is available in appendix D for the case of the Ornstein–Uhlenbeck process
(OUP). We remind the reader that the function τ(t|t0) defined in (9) is strictly increasing. In terms of
probability distributions, equation (27) reads

℘X (a(t) , t|x0, t0) = ℘W (ψ (a(t) , t) , τ (t))
dτ (t|t0)

dt
, (28)

where ℘W is the FPTD of the Wiener process. Analytical results for ℘ are available only for a few limited cases.
The first-passage or first-crossing problem for the Wiener process to a time-dependent yet deterministic

boundary is a long-standing open question in mathematics, several authors tried approached this problem
with different analytical and computational methods [44, 45, 60–63]. Nevertheless, complete analytical
results are available only for certain types of boundaries, such as those with linear dependencies [64], as
stated in equation (11). Either way, even though the transformed boundary is non-linear, transforming the
original stochastic process into the Wiener process is advantageous to find the FPTD, since in this case
approximation schemes are available [45, 65]. Due to technical difficulties, we here do not report the case of
boundaries with a nonlinear relation between ψ and τ , which we reserve for a future publication.
Substituting into equation (28) the explicit form of the FPTD of the Wiener process (Wald or Lévy–Smirnov
distribution) for this transformed linear boundary ψ(a(t), t), we finally complete the proof of equation (12)
(see [66, 67] for the derivation of the FPTD of the Wiener process).

Analogously, the same argument applies to propagators with absorbing and reflecting boundaries. As the
FPTD, they are well known analytically only for certain boundaries. Further details on the proof of
formulae (14) and (15) can be found in appendix C. In appendix D it is shown how the FPTD of an OUP for
a constant boundary can be mapped onto the FPTD of the Wiener process for a square-root boundary. We
refer to [68] for analytical results on square-root boundaries.

5. A few examples of application

The main results of this paper, equations (4), (7)–(9), (12), (14), and (15) can provide several results for
many stochastic processes that so far were believed to be impossible to tackle analytically. As specific simple
examples, we selected the (i) OUP with time-dependent stiffness and temperature, and (ii) the isoentropic
protocol. We proceed with a discussion of these examples.

5.1. Non-autonomous OUP
Recent experiments explored heat engines, in which colloidal particles subject to a time-dependent
temperature are confined by optical tweezers with time-dependent stiffness [69, 70]. The overdamped
Langevin equation describing the fluctuating motion of the position of the particle is

dXt =−κ(t)
γ

Xtdt+

√
2kBT(t)

γ
dWt, (29)

where γ is the friction coefficient, κ(t) is the trap stiffness, and T(t) is the temperature. Both κ(t) and T(t)
have a specific time dependence as they change during the cycle. Despite the caveat issued in [71] for the
explicit time dependence of these parameters, we stress that the solution (7) is valid for any protocol κ(t),
T(t) driving equation (29), as we discuss below. In fact, the Cherkasov function (2) associated with this
non-autonomous process reads

C (t) = 1

2

dln(T(t))

dt
+
κ(t)

γ
, (30)

which clearly fulfils condition (3). The integral of the Cherkasov function reads

ˆ t

0
C (s)ds= ln

(√
T(t)

T(0)

)
+Ω(t) , (31)

where we introduced the time-integrated corner frequency as

Ω(t)≡
ˆ t

0

κ(s)

γ
ds, (32)

7
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which is a dimensionless quantity. We can compute the form of ψ and τ using equations (8) and (9), yielding

ψ (x, t|x0) =
√

γ

2kBT(0)

(
xeΩ(t) − x0

)
(33)

and

τ (t) =
1

T(0)

ˆ t

0
T(s)e2Ω(s)ds. (34)

Thus, using expression (7), the propagator becomes

P(x, t|x0,0) =
√

γ

2kBT(0)

1√
2π
´ t
0

T(s)
T(0) exp(−2(Ω(t)−Ω(s)))ds

× exp

− γ

2kBT(0)

(
x− x0e−Ω(t)

)2
2
´ t
0

T(s)
T(0)e

−2(Ω(t)−Ω(s))ds

 . (35)

Furthermore, as mentioned before, we can use formula (23) to compute the correlations of the process.
For this aim we need the inverse function of ψ(x, t), which, in this case, reads

ψ−1 (x, t|x0) =

(√
2kBT(0)

γ
x+ x0

)
e−Ω(t). (36)

Therefore,

Xt =

(√
2kBT(0)

γ
Wτ(t) + x0

)
e−Ω(t) (37)

and

⟨XtXt′⟩=
〈
2kBT(0)

γ
Wτ(t)Wτ(t ′) + x20

〉
e−Ω(t)−Ω(t ′), (38)

where we already removed all vanishing expectations. Keeping in mind that both τ and Ω are strictly
increasing functions, we get

⟨XtXt′⟩= x20e
−Ω(t)−Ω(t ′) +

2kBT(0)

γ
τ (min(t, t ′))e−2Ω(min(t,t ′))

= x20e
−Ω(t)−Ω(t ′) +

2kBT(0)

γ

ˆ min(t,t ′)

0

T(s)

T(0)
e−2[Ω(min(t,t ′))−Ω(s)]ds. (39)

Let us now turn to the FPTD. According to equation (11) it is possible to compute it when the
transformed boundary is linear in τ . Condition (11) can be reformulated in the equivalent form

dψ

dτ

∣∣∣∣
x=a(t)

= const. (40)

In this case, dψ/dτ reads

dψ

dτ

∣∣∣∣
x=a(t)

=
∂ψ

∂t

∣∣∣∣
x=a(t)

dt

dτ
=

√
γ

2kBT(0)

T(0)

T(t)

κ(t)

γ
e−Ω(t)a(t) . (41)

In general, this expression is not independent on time, except in the two cases

a(t)∝ T(t)

κ(t)
eΩ(t) and a(t) = 0. (42)

8



New J. Phys. 27 (2025) 074604 C Di Bello et al

Interestingly, it is always possible to compute the FPT for the origin, which is the point of symmetry of the
potential. The FPTD for a= 0 reads

℘(0, t|x0) =
√

γ

2kBT(0)

T(t)

T(0)

|x0|e2Ω(t)√
2π
(´ t

0
T(s)
T(0)e

2Ω(s)ds
)3 exp

− γ

2kBT(0)

x20

2
´ t
0

T(s)
T(0)e

2Ω(s)ds

 .
The exact FPTD for the OUP is available analytically in literature only in the case of constant parameters [72,
73] (or see [57] for a review). Thus expression (43) also constitutes a novel result of this paper. Having at
hand the explicit form of the FPTD can enhance the quantitative study of feedback-control protocols, such as
the ones in [74–78]. In these references the authors study overdamped diffusions subjected to an
information-like control feedback, i.e. whenever the particle reaches a specific threshold the stiffness of the
potential is instantaneously set to another value in order to maximise the work extraction. We illustrate
results (35) and (43) in the next subsection for the isoentropic protocol.

5.2. Isoentropic protocol
The so-called isoentropic (or pseudo-adiabatic) protocol [46, 47] was introduced in the field of stochastic
thermodynamics as a building block of Carnot-type cycles in colloidal heat engines [70]. For overdamped
Langevin dynamics in a time-dependent harmonic potential and time-dependent temperature, the protocol
consists in having both temperature and stiffness explicitly time-dependent while keeping their ratio
constant. In mathematical terms,

T(t)

κ(t)
=

T(0)

κ(0)
. (43)

Such a protocol ensures that, if the initial condition is equilibrium, the PDF associated with the particle
position (and hence also its Shannon entropy) is conserved in time. This is why such a protocol is called
adiabatic and isoentropic in the literature [46, 47]. Below we provide further insights into these features with
our analytical formalism. Imposing this relationship between T(t) and κ(t) we get a simplified formula
for τ(t),

τ (t) =
γ

2κ(0)

ˆ t

0
2Ω ′ (s)e2Ω(s)ds=

γ

2κ(0)

(
e2Ω(t) − 1

)
, (44)

hence the propagator (7) takes the simplified form

P(x, t|x0,0) =

√
κ(0)

kBT(0)

1√
2π
(
1− e−2Ω(t)

) exp
(
− κ(0)

kBT(0)

(
x− x0e−Ω(t)

)2
2
(
1− e−2Ω(t)

) ) . (45)

The FPTD (12) also has a simplified form, namely,

℘(0, t|x0) =

√
κ(0)

kBT(0)

2κ(t)

γ

|x0|e2Ω(t)√
2π
(
e2Ω(t) − 1

)3 exp
(
− κ(0)

kBT(0)

x20
2
(
e2Ω(t) − 1

)) . (46)

While the propagator (45) was known in literature [79], the FPT statistics, such as the FPTD (46) are, to our
knowledge, so far unknown for adiabatic protocols. An excellent agreement between results (45) and (46)
and numerical simulations based on realisations of the Langevin equation (29) is demonstrated in figure 2.

We conclude this subsection with an observation concerning the average over initial positions. Clearly, if
the system starts at equilibrium, the form of the probability distribution is preserved over time. More
explicitly, if we denote with ρ(x, t) the solution of the FPE (5) with initial condition

ρ(x,0) =

√
κ(0)

kBT(0)

1√
2π

exp

(
− κ(0)

kBT(0)

x2

2

)
, (47)

it is possible to obtain ρ(x, t) via a convolution of the initial condition with the propagator (45),

ρ(x, t) =

ˆ ∞

−∞
ρ(x0,0)P(x, t|x0)dx0, (48)

9
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Figure 2. Comparison between analytical results (solid lines) (45) for the propagator and (46) for the FPTD versus simulations
(dots). In both cases the numerical simulations were based on the Euler–Maruyama scheme of the Langevin equation (29). In
panel (a) we generated 2× 106 trajectories with parameters x0 = 2, γ= 1, κ(t) = 0.1+ t, and κ(0)/kBT(0) = 1. In panel (b) we
generated 106 trajectories with the parameters x0 = 1, γ= 1, κ(t) = 0.1+ t, and κ(0)/kBT(0) = 1. Excellent agreement is
observed.

Figure 3. (a) Comparison of the FPTD averaged over initial positions for two different choices of the stiffness protocol κ(t). For
the blue curve we used the linear function κ(t) = T(t) = 0.1+ t, while for the orange curve we used the quadratic form
κ(t) = T(t) = 0.1+ t+ t2. In both cases we use γ= 1. (b) Density ρ(x, t), which is equal for the two cases of linear and quadratic
stiffness.

which clearly shows that ρ(x, t) = ρ(x,0), hence the form of the distribution does not change with time for
any choice of the protocols κ(t) and T(t). Nevertheless, the FPTD averaged over initial positions is not
protocol-independent and reads

℘(0, t)≡
ˆ +∞

−∞
ρ(x0,0)℘(0, t|x0)dx0 =

2

π

κ(t)

γ

1√
e2Ω(t) − 1

. (49)

This is highlighted in figure 3. This example shows that knowing only the distribution of the process may not
be enough to infer any specific property of the FPTD.

5.3. Stochastic Gompertz model
An important process for population dynamics is the stochastic Gompertz model proposed in [80] and
studied further in [48, 54]. The SDE describing the process reads

dXt =−α(t)Xt ln

(
Xt

K(t)

)
dt+β (t)XtdWt. (50)

The deterministic version of the model (without noise) was introduced two centuries ago [81] to express the
law of human mortality, and it was more recently applied to the modelling of cellular growth of tumours
[82]. In the existing literature [48, 54, 80] the parameters α, K, and β were considered as constants. Here,
instead, with the help of our formalism, we consider them as arbitrary functions of time. Note that if

10
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Figure 4. (a) Propagator (54) and (b) FPTD (58) for the stochastic Gompertz model (50) with constant parameters. The
parameters are α= β = K= 1 and x0 = 0.5. The propagator is plotted for t= 0.1.

α(t)> 0, the drift term in (50) is positive for Xt < K(t) and negative for Xt > K(t), while it vanishes for
Xt = K(t). Therefore, K(t) represents a carrying capacity, which might depend on time if the resources of the
environment are not constant, while α(t) represents either a birth or a mortality rate. The stochastic motion
starts at some X0 = x0 > 0 and it is confined to be positive at all times.

Let us now have a look at the form of the propagator. First, using equation (2) the Cherkasov
function reads

C (t) = dlnβ (t)

dt
+α(t) , (51)

which, being independent of x, allows us to write the propagator without explicitly solving the FPE, thus
avoiding the calculations in [80]. The transforming function ψ(x, t) can be obtained via relation (8),
producing

ψ (x, t|x0) =
1

β (0)
exp

(ˆ t

0
α(t ′)dt ′

)
ln

(
x

x0

)
(52)

+

ˆ t

0

β (t ′)
2

+
α(t ′) ln

(
x0

K(t ′)

)
β (t ′)

 β (t ′)

β (0)
exp

(ˆ t′

0
α(s)ds

)
dt ′;

while τ(t), using (9), reads

τ (t) =
1

β2 (0)

ˆ t

0
β2 (t ′)exp

(
2

ˆ t′

0
α(s)ds

)
dt ′. (53)

Here we set t0 = 0 everywhere. The propagator is then obtained from plugging the forms of ψ and τ into
equation (7). In the simplest case of constant parameters the propagator then reads

P(x, t|x0) =
1

x
√
2π β

2

2α (1− e2αt)
exp

−

(
ln
(
x
K

)
+ β2

2α (1− e−αt)− ln
(
x0
K

)
e−αt

)2
β2

2α (1− e2αt)

 , (54)

which is plotted in figure 4(a). The stationary distribution can then be easily obtained as

P(s) (x) =
1

x
√
2π β

2

2α

exp

−

(
ln
(
x
K

)
+ β2

2α

)2
β2

2α

 . (55)

For the FPTD, we need to check when condition (11) is satisfied. We compute first the derivative

dψ

dτ

∣∣∣∣
x=a(t)

= β (0)

[
α(t)

β2 (t)
ln

(
a(t)

K(t)

)
+

1

2

]
exp

(
−
ˆ t

0
α(t ′)dt ′

)
(56)

11
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and then require that it must be independent of t. A possibility is thus when a(t) has the form

a(t) = K(t)exp

(
− β2 (t)

2α(t)

)
. (57)

For this specific choice of the boundary, considering again the case of constant parameters, the FPTD reads

℘

(
Kexp

(
− β2

2α

)
, t

∣∣∣∣ x0)=

∣∣∣ β2

2α + ln
(
x0
K

)∣∣∣√
2π β2

(2α)3
(e2αt − 1)3

exp

2αt−

(
β2

2α + ln
(
x0
K

))2
2 β

2

2α (e
2αt − 1)

 , (58)

which is displayed in figure 4(b).

6. Connections with existing results

As we already discussed, our formalism can provide solutions to many non-linear SDEs. We here illustrate a
class of such models satisfying condition (3). A particular choice of the coefficients µ and σ satisfying
condition (3) is the product form

σ (x, t)≡ σx (x)σt (t) (59)

i.e. σ can be separated into two functions, the purely x-dependent σx(x) and the purely t-dependent σt(t).
Then, for µ we have

µ(x, t) =
1

2

∂

∂x

(
σ2 (x, t)

2

)
. (60)

Interestingly, it can be shown that for this choice of the parameters, the SDE can be rewritten in the
Stratonovich formalism as dXt = σt(t)σx(Xt) ◦ dWt. The two equations (59) and (60) imply that both
conditions (3) and (11) hold, in particular (11) holds for any boundary a(t). Indeed, using expressions (59)
and (60), we get that ψ and τ take the simplified expressions

ψ (x, t|x0, t0) =
1

σt (t0)

ˆ x

x0

dx ′

σx (x ′)
(61)

and

τ (t|t0) =
1

σ2
t (t0)

ˆ t

t0

σ2
t (s)ds. (62)

Notice that ψ does not depend on time here, therefore condition (11) holds for any boundary a(t). This
prompts the following observation: for all physical systems in which µ(x, t) is a potential force, i.e.

µ(x, t) =− 1

γ

∂

∂x
U(x, t), and σ2 is related to the temperature as σ2(x, t) = 2kBT(x, t)/γ, equation (60) implies

that

U(x, t)

kBT(x, t)
= const. (63)

equation (63) implies that the process is purely diffusive; indeed, as stated before, the SDE reads
dXt = σ(x, t) ◦ dWt, thus the stationary distribution of the process is independent of space and time for the
case of closed or periodic boundary conditions. Notably, our results show that the FPTD can be expressed
analytically for rather generic boundary conditions for all processes for which (63) holds. Such processes
were thoroughly studied by, e.g. Hänggi, Talkner and Borkovec in [32]; there the authors outline explicit
results to obtain all moments of the FPT for processes with U/kBT= const, yet the full FPTD has not been
investigated. Our formalism allows the determination of this entire FPTD. Moreover, processes with
U/kBT= const are a subclass of the wider class described by equations (3) and (11).

12
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7. Conclusions

We discussed a method to obtain exact solutions of a class of time-inhomogeneous SDEs and their associated
FPT problems. This method represents a valid and simpler alternative to other approaches. The technique
discussed in this paper for FPTDs, while mentioned in [44], to the best of our knowledge, has been unused
and largely unknown to the statistical physics community for a long time. The explicit form of FPTDs can
highly enhance the quantitative study of feedback-control protocols, such as the ones in [74–78], and can
provide useful insights in experiments with optical tweezers beyond those exemplified in section 5.1. To this
end we identified a class of one-dimensional problems with time-dependent parameters that are amenable to
exact solutions, yet extensions to higher dimensions and more complex scenarios (e.g with nonlinear time
dependencies in the boundaries) are possible and will be the topic of future work. Moreover, having at hand
analytical results for multidimensional models could provide interesting insights into non-Markovian
processes via Markovian embedding [83]. With our method, we were able to generalise well-known results
and to obtain new solutions to non-autonomous problems. We were able to find the propagators (14)
and (15) in the constrained domain that could be useful for further studies in constrained random
walks [84]. We only considered models with deterministic parameters, but further generalisations to models
such as diffusing diffusivity [85–87, 94] or the so-called OU2 process [88] should be rather straightforward.
Within statistical physics, we believe that our results could find prominent applications, inter alia, within
control theory [89], non-equilibrium calorimetry [90], or computing [91]. We believe that our work will
serve as a reference also beyond the statistical physics community in other areas, in which stochastic
processes and FPTs are important.
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Appendix A. Cherkasov condition and explicit form of transforming functions

Here we will prove equations (3), (4), (7)–(9). The dynamic of the position Xt is governed by the SDE (1),
which we here repeat for the convenience of the reader:

dXt = µ(Xt, t)dt+σ (Xt, t)dWt, (A.1)

whereWt is the standard Wiener process. Consider now the transformation Yt = ψ(Xt, t); according to the
Itô rule, the SDE for Yt reads

dYt =

(
∂ψ

∂t

∣∣∣∣
x=Xt

+µ(Xt, t)
∂ψ

∂x

∣∣∣∣
x=Xt

+
σ2 (Xt, t)

2

∂2ψ

∂x2

∣∣∣∣
x=Xt

)
dt+σ (Xt, t)

∂ψ

∂x

∣∣∣∣
x=Xt

dWt. (A.2)

In order to be mappable onto the Wiener process, both drift and volatility of the new process should be
independent of the position. Therefore

∂ψ (x, t)

∂t
+µ(x, t)

∂ψ (x, t)

∂x
+
σ2 (x, t)

2

∂2ψ (x, t)

∂x2
= µY (t) ,

σ (x, t)
∂ψ (x, t)

∂x
= σY (t) ,

(A.3)

where µY(t) and σY(t) are, respectively, the new drift and variance, both solely time-dependent. We
anticipate that in the derivation below it will be possible to set µY(t) = 0. From equation (A.3) we obtain

∂ψ (x, t)

∂x
=

σY (t)

σ (x, t)
> 0, (A.4)
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which proves that ψ(x, t) is strictly increasing in the first variable x. Substituting this result into the first
equation of (A.3) we get

∂ψ (x, t)

∂t
= σY (t)

(
1

2

∂σ (x, t)

∂x
− µ(x, t)

σ (x, t)

)
+µY (t) . (A.5)

If the second partial derivatives of ψ are continuous, we know from Schwarz’s theorem that
∂2ψ/∂x∂t= ∂2ψ/∂t∂x, and therefore

dσY
dt

1

σ
− σY
σ2

∂σ

∂t
= σY

∂

∂x

(
1

2

∂σ

∂x
− µ

σ

)
. (A.6)

Since there is no risk of confusion, we here drop the arguments of σ, σY , and µ. From some simple
manipulations we get

1

σY (t)

dσY (t)

dt
=

1

σ

∂σ

∂t
+σ

∂

∂x

(
1

2

∂σ

∂x
− µ

σ

)
≡ C (t) , (A.7)

where the left hand side does not depend on x—thus by taking the partial derivative ∂/∂x we immediately
see that the condition (3) on the Cherkasov function is indeed fulfilled. In other words, if the drift and the
volatility of the new process are space-independent then the Cherkasov function fulfils condition (3), and the
inverse is also true. This formally proves that condition (3) is necessary and sufficient.

Moreover, by solving the previous differential equation, we get the form

σY (t) = exp

(ˆ t

t0

C (s)ds
)

(A.8)

of σY(t), where, since it is arbitrary, for simplicity we set σY(t0) = 1. Substituting (A.8) into (A.4) and
integrating over x we obtain the explicit formula of the transformation

ψ (x, t) = exp

(ˆ t

t0

C (s)ds
)ˆ x

x0

1

σ (x ′, t)
dx ′ +ψ (x0, t) . (A.9)

So far we have not specified the boundary condition ψ(x0, t), which is arbitrary.
Let us show that ψ(x0, t) and µY(t) are related one-to-one. To see this we substitute expression (A.9) back

into the first equation of the system (A.3),

µY (t) =
dψ (x0, t)

dt
+

[
C (t)
ˆ x

x0

1

σ (x ′, t)
dx ′ −

ˆ x

x0

1

σ2 (x ′, t)

∂σ

∂t
dx ′

+
µ(x, t)

σ (x, t)
− 1

2

∂σ

∂x

]
exp

(ˆ t

t0

C (t ′)dt ′
)
. (A.10)

We notice that the term appearing on the right hand side of this equation can be simplified by use of the
definition of the Cherkasov function (2),

ˆ x

x0

1

σ2 (x ′, t)

∂σ

∂t
dx ′ +

1

2

∂σ

∂x
− µ(x, t)

σ (x, t)
= C (t)

ˆ x

x0

1

σ (x ′, t)
dx ′ − µ(x0, t)

σ (x0, t)
+

1

2

∂σ

∂x

∣∣∣∣
(x0,t)

, (A.11)

which simplifies equation (A.10) for µY(t),

µY (t) =
dψ (x0, t)

dt
+

(
µ(x0, t)

σ (x0, t)
− 1

2

∂σ

∂x

∣∣∣∣
(x0,t)

)
exp

(ˆ t

t0

C (t ′)dt ′
)
. (A.12)

Thus we found a differential equation for ψ(x0, t). As ψ(x0, t) is arbitrary, a convenient choice is the one
leading to µY(t) = 0, yielding

ψ (x0, t) =

ˆ t

t0

ds

(
1

2

∂σ

∂x

∣∣∣∣
(x0,s)

− µ(x0, s)

σ (x0, s)

)
exp

(ˆ s

t0

C (s ′)ds ′
)
, (A.13)

where we set ψ(x0, t0) = 0. Therefore, the final form of ψ(x, t) is

ψ (x, t) = exp

(ˆ t

t0

C (s)ds
)ˆ x

x0

1

σ (x ′, t)
dx ′ (A.14)
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+

ˆ t

t0

ds

(
1

2

∂σ

∂x

∣∣∣∣
(x0,s)

− µ(x0, s)

σ (x0, s)

)
exp

(ˆ s

t0

C (s ′)ds ′
)
.

This transformation maps the SDE onto dYt = σY(t)dWt and can indeed be considered as a modification of
the Lamperti transform [92].

Finally, the function reindexing time reads

τ (t) =

ˆ t

t0

σ2
Y (s)ds=

ˆ t

t0

exp

(
2

ˆ s

t0

C (r)dr
)
ds, (A.15)

as we set out to prove. We conclude with a final remark on ψ(x, t) and τ(t). Namely, there are infinitely many
transformations serving our purpose; for simplicity, we chose the specific forms (8) and (9), that vanish at
the initial points x0, t0.

Appendix B. Extension to inhomogeneous geometric Brownianmotion (IGBM)

As stated in the main text, condition (3) does not cover all SDEs that are solvable analytically. One prominent
example is the IGBM which is described by the SDE

dXt = (αXt +β (t))dt+σ (t)XtdWt, (B.1)

where the parameters α, β, and σ are generic functions of time. A complete solution to (16) is contained in
the book of Mao [93]. One may argue that there must exist a second Cherkasov condition that whenever
satisfied, it is guaranteed that the SDE is mappable onto IGBM. We now derive such a condition.

Following a procedure identical to the one described in appendix A, starting again from
dXt = µ(Xt, t)dt+σ(Xt, t)dWt and applying a generic transformation Yt = ψ(Xt, t) we end up at a new SDE
for Yt with new drift µY and a new volatility σY . We suppose that the transforming function ψ(x, t) is
sufficiently smooth, so that we can take derivatives without caring about discontinuities. We now require the
forms µY(y, t) = α(t)y+β(t) and σY(y, t) = ζ(t)y. With these requirements, the system (A.3) becomes

∂ψ (x, t)

∂t
+µ(x, t)

∂ψ (x, t)

∂x
+
σ2 (x, t)

2

∂2ψ (x, t)

∂x2
= α(t)ψ (x, t)+β (t) ,

σ (x, t)
∂ψ (x, t)

∂x
= ζ (t)ψ (x, t) ,

(B.2)

where we substituted y with ψ(x, t). From the second equation of (B.2) we get

∂ψ (x, t)

∂x
= ζ (t)

ψ (x, t)

σ (x, t)
, (B.3)

which substituted into the first equation, yields

∂ψ

∂t
+

[
µ

σ
− 1

2

∂σ

∂x
+
ζ

2

]
ζψ = αψ+β. (B.4)

Here, for convenience, we dropped the explicit dependence on x, t everywhere. Next, we divide by ψ and we
take the derivative with respect to x,

∂

∂t

(
ζ

σ

)
+
∂

∂x

(
µ

σ
− 1

2

∂σ

∂x

)
ζ = β

∂

∂x

(
1

ψ

)
, (B.5)

where we used the fact that ∂
∂x

(
1
ψ
∂ψ
∂t

)
= ∂

∂t

(
1
ψ
∂ψ
∂x

)
and that ∂ζ∂x =

∂α
∂x = ∂β

∂x = 0. After further

manipulations we arrive at

1

σ

∂ζ

∂t
− ζ

σ2

∂σ

∂t
+
∂

∂x

(
µ

σ
− 1

2

∂σ

∂x

)
ζ =−β

ψ

ζ

σ
. (B.6)

We now multiply by σ and divide by ζ ,

1

ζ

∂ζ

∂t
− 1

σ

∂σ

∂t
+σ

∂

∂x

(
µ

σ
− 1

2

∂σ

∂x

)
=−β

ψ
. (B.7)
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On the left hand side we recognise the Cherkasov function (2). Thus, the previous equation can be
rewritten as

∂ lnζ

∂t
= C − β

ψ
. (B.8)

We note that here, according to our assumption that the Cherkasov condition (3) does not hold, the function
C(x, t) will depend both on x and t. Hence, taking a derivative with respect to x the left hand side vanishes
and we get

∂

∂x

(
C − β

ψ

)
= 0. (B.9)

The previous expression appears like another Cherkasov condition, yet there is a dependence on β, which is
an unknown parameter. We now reexpress it in terms of the original parameters µ and σ of the SDE. Using
again the expression for ∂ψ/∂x we get

∂C
∂x

+
β

ψ

ζ

σ
= 0. (B.10)

Further manipulating the previous expression, recalling that, by our assumption, both β and ζ do not
depend on x, we get

∂

∂x

(
σ
∂C
∂x

)
+ ζ

∂C
∂x

= 0, (B.11)

from which we find the explicit form of the function ζ(t),

ζ (t) =−
(
∂C
∂x

)−1
∂

∂x

(
σ
∂C
∂x

)
, (B.12)

and also the second Cherkasov condition

∂

∂x

[(
∂C
∂x

)−1
∂

∂x

(
σ
∂C
∂x

)]
= 0. (B.13)

We now turn our attention to the form of the transforming function ψ. Using equation (B.3) we obtain

∂ lnψ

∂x
=
ζ

σ
⇒ ψ (x, t) = ψ (x0, t)exp

(
ζ (t)

ˆ x

x0

1

σ (x ′, t)
dx ′
)
, (B.14)

where ψ(x0, t) is an arbitrary function of time. With the explicit form of ζ the previous expression can be
conveniently rewritten as

ψ (x, t) = ψ (x0, t)

(
σ
∂C
∂x

)∣∣∣∣
(x0,t)(

σ
∂C
∂x

)∣∣∣∣
(x,t)

. (B.15)

Since the form of ψ(x0, t) is arbitrary, we can set it equal to

ψ (x0, t) =

((
σ
∂C
∂x

)∣∣∣∣
x0,t

)−1

, (B.16)

obtaining the result contained in the main text.
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Appendix C. Derivation of absorbing and reflecting propagators

We here provide a proof for equations (14) and (15). As mentioned in the main text, the functions ψ and τ
map the original stochastic process onto the Wiener process according to equation (4). Therefore, the
problem can be reduced to finding the propagator of the Wiener process with either an absorbing or
reflecting, time-dependent boundary. Interestingly, according to equation (11), after the space-time
transformation the boundary becomes

a(t)→ ψ (a(t) , t) = vτ + a0, (C.1)

which is a linear function of the new time variable τ . The propagator PW,a of the Wiener process with
absorbing linear-in-time boundary is available in standard textbooks [66, 67] and reads

PW,a (y, τ) =
1√
2πτ

[
exp

(
− y2

2τ

)
− exp

(
−2a0v−

(y− 2a0)
2

2τ

)]
. (C.2)

Moreover, the relation between the propagator of Xt and that ofWτ is given in equation (24); thus
equation (14) can be obtained by multiplication by ∂ψ/∂x and substituting y→ ψ(x, t) in equation (C.2).

For the reflecting case we reason analogously—the propagator PW,r of the Wiener process with reflecting
boundary in vτ + a0 reads (see [66, 67])

PW,r (y, τ) =

{
1√
2πτ

[
exp

(
− y2

2τ

)
+ exp

(
−2a0v−

(y− 2a0)
2

2τ

)]

−vexp(−2v(y− a0 − vτ))erfc

(
y− 2a0 − 2vτ√

2τ

)}
, (C.3)

in terms of the complementary error function erfc. The result, equation (15) in the main text, follows again
by multiplication by ∂ψ/∂x and substituting y→ ψ(x, t).

We conclude this appendix with a short remark on the appropriate reflecting boundary condition. This
case is requires that the probability is conserved over time. Therefore, if x0 < a(t0), integrating equation (5)
in the time-dependent domain [−∞,a(t)], we get

ˆ a(t)

−∞

∂P(x, t|x0, t0)
∂t

dx=−
ˆ a(t)

−∞

∂j(x, t|x0, t0)
∂x

dx. (C.4)

The left hand side can be manipulated as follows

ˆ a(t)

−∞

∂P(x, t|x0, t0)
∂t

dx=
∂

∂t

ˆ a(t)

−∞
P(x, t|x0, t0)dx (C.5)

− da(t)

dt
P(a(t) , t|x0, t0) =−a ′ (t)P(x, t|x0, t0) ,

where we used the fact that
´ a(t)
−∞P(x, t|x0, t0)dx= 1. Therefore, the boundary condition for the flux is not

j(a(t), t|x0, t0) = 0, but rather

j(a(t) , t|x0, t0) =
da(t)

dt
P(a(t) , t|x0, t0) . (C.6)

Note that in the case of a constant boundary, i.e. a ′(t) = 0, the last equation correctly states that the flux
vanishes at the boundary. We could not find this modified boundary condition in any standard reference of
the field.

Appendix D. Didactic example: Ornstein–Uhlenbeck FPT and square-root boundaries
after space-time transformation

In this appendix, we show how to apply step-by-step the technique developed in the paper to the
Ornstein–Uhlenbeck process (OUP), and how the FPTD of the OUP for a constant boundary coincides with
the FPTD of the Wiener process for a square-root boundary. The SDE for the OUP reads

dXt =−κ
γ
Xtdt+

√
2kBT

γ
dWt, (D.1)
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where κ is the stiffness of the harmonic potential. To be specific we consider the constant parameters and
x0 = t0 = 0. From equation (2) we obtain that the Cherkasov function in this case reads

C =
κ

γ
, (D.2)

which does not depend either on x or t, and thus fulfils condition (3). We can thus apply our
transformations; using equation (8) the space transformation reads

ψ (x, t) =

√
γ

2kBT
xeκt/γ , (D.3)

while, using equation (9), the time transformation is

τ (t) =
γ

2κ

(
e2κt/γ − 1

)
. (D.4)

The propagator is immediately available substituting ψ and τ into equation (7).
Let us consider now the FPT for a constant threshold a. First, we need to understand how the boundary

changes, i.e.

a→ ψ (a, t) =

√
γ

2kBT
aeκt/γ . (D.5)

Second, we need to reparametrise the transformed boundary with respect to the new variable τ ,

ψ (a, τ) = a

√
γ

2kBT

√
2κ

γ
τ + 1, (D.6)

which is indeed a square-root function of τ . Therefore, we proved the equivalence between the FPTD we
mentioned at the beginning of this appendix.

Using all the results available for the FPTD of the OU process [57, 95], we could, in principle, extend our
results to square-root boundaries, as well.
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[90] Khodabandehlou F, Maes C, Maes I and Netočny K 2024 The vanishing of excess heat for nonequilibrium processes reaching zero

ambient temperature Ann. Henri Poincaré 25 3371–403
[91] Kolchinsky A and Wolpert D W 2021 Entropy production and thermodynamics of information under protocol constraints Phys.

Rev. X 11 041024
[92] Lamperti J 1962 Semi-stable stochastic processes Trans. Am. Math. Soc. 104 62–78
[93] Mao X 2011 Stochastic Differential Equations and Applications 2nd edn (Woodhead Publishing) pp 91–106
[94] Chechkin A V, Seno F, Metzler R and Sokolov I M 2017 Brownian yet non-gaussian diffusion: from superstatistics to subordination

of diffusing diffusivities Phys. Rev. X 7 021002
[95] Ricciardi L and Sato S 1988 First-passage-time density and moments of the Ornstein-Uhlenbeck process J. Appl. Prob. 25 43–57

20

https://doi.org/10.1016/j.crma.2004.11.008
https://doi.org/10.1016/j.crma.2004.11.008
https://doi.org/10.2307/3215174
https://doi.org/10.2307/3215174
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1103/PhysRevE.110.024613
https://doi.org/10.1103/PhysRevE.110.024613
https://doi.org/10.1103/PhysRev.81.617
https://doi.org/10.1103/PhysRev.81.617
https://doi.org/10.1103/PhysRevE.107.034101
https://doi.org/10.1103/PhysRevE.107.034101
https://doi.org/10.1103/PhysRevLett.129.130601
https://doi.org/10.1103/PhysRevLett.129.130601
https://doi.org/10.1103/w8cx-xx1z
https://doi.org/10.1103/w8cx-xx1z
https://doi.org/10.1209/0295-5075/ad8bf0
https://doi.org/10.1209/0295-5075/ad8bf0
https://arxiv.org/abs/2407.17414
https://doi.org/10.1007/BF00274586
https://doi.org/10.1007/BF00274586
https://doi.org/10.1098/rspl.1815.0271
https://doi.org/10.1098/rspl.1815.0271
https://doi.org/10.1038/bjc.1964.55
https://doi.org/10.1038/bjc.1964.55
https://doi.org/10.1007/s10955-019-02359-4
https://doi.org/10.1007/s10955-019-02359-4
https://doi.org/10.1088/1742-5468/ac3e70
https://doi.org/10.1088/1742-5468/ac3e70
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1021/acs.jpcb.6b06094
https://doi.org/10.1021/acs.jpcb.6b06094
https://doi.org/10.1088/1367-2630/ab9200
https://doi.org/10.1088/1367-2630/ab9200
https://doi.org/10.1088/1367-2630/ad7ef1
https://doi.org/10.1088/1367-2630/ad7ef1
https://doi.org/10.1007/s00023-023-01367-1
https://doi.org/10.1007/s00023-023-01367-1
https://doi.org/10.1103/PhysRevX.11.041024
https://doi.org/10.1103/PhysRevX.11.041024
https://doi.org/10.1090/S0002-9947-1962-0138128-7
https://doi.org/10.1090/S0002-9947-1962-0138128-7
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.2307/3214232
https://doi.org/10.2307/3214232

	Exactly solvable diffusions from space-time transformations
	1. Introduction
	2. Summary of the main results
	2.1. Solution of the SDE and propagator
	2.2. FPTD
	2.3. Propagators for absorbing and reflecting boundary conditions
	2.4. Solvable yet non-transformable SDEs and second Cherkasov condition

	3. Interpretation of the results: mapping a stochastic process onto the Wiener process
	4. Which FPT problems are solvable?
	5. A few examples of application
	5.1. Non-autonomous OUP
	5.2. Isoentropic protocol
	5.3. Stochastic Gompertz model

	6. Connections with existing results
	7. Conclusions
	Appendix A. Cherkasov condition and explicit form of transforming functions
	Appendix B. Extension to inhomogeneous geometric Brownian motion (IGBM)
	Appendix C. Derivation of absorbing and reflecting propagators
	Appendix D. Didactic example: Ornstein–Uhlenbeck FPT and square-root boundaries after space-time transformation
	References


