
J. Phys. Photonics 6 (2024) 045025 https://doi.org/10.1088/2515-7647/ad884c

Journal of Physics: Photonics

OPEN ACCESS

RECEIVED

5 September 2024

REVISED

10 October 2024

ACCEPTED FOR PUBLICATION

17 October 2024

PUBLISHED

30 October 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Change-point detection in anomalous-diffusion trajectories
utilising machine-learning-based uncertainty estimates
Henrik Seckler1 and Ralf Metzler1,2,∗
1 Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
2 Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
∗ Author to whom any correspondence should be addressed.

E-mail: rmetzler@uni-potsdam.de

Keywords: diffusion, anomalous diffusion, change-point analysis, AnDi 2 challenge, Bayesian-deep learning analysis

Abstract
When recording the movement of individual animals, cells or molecules one will often observe
changes in their diffusive behaviour at certain points in time along their trajectory. In order to
capture the different diffusive modes assembled in such heterogeneous trajectories it becomes
necessary to segment them by determining these change-points. Such a change-point detection can
be challenging for conventional statistical methods, especially when the changes are subtle. We here
apply Bayesian Deep Learning to obtain point-wise estimates of not only the anomalous diffusion
exponent but also the uncertainties in these predictions from a single anomalous diffusion
trajectory generated according to four theoretical models of anomalous diffusion. We show that we
are able to achieve an accuracy similar to single-mode (without change-points) predictions as well
as a well calibrated uncertainty predictions of this accuracy. Additionally, we find that the predicted
uncertainties feature interesting behaviour at the change-points leading us to examine the
capabilities of these predictions for change-point detection. While the series of predicted
uncertainties on their own are not sufficient to improve change-point detection, they do lead to a
performance boost when applied in combination with the predicted anomalous diffusion
exponents.

1. Introduction

In ancient Rome, around 60 BC, the philosopher Lucretius gives a remarkable description in his poem ‘De
rerum natura’ (‘On the Nature of Things’), observing the motion of dust particles in a ray of light in a
stairwell [1]. While what he called the ‘dancing’ of particles is predominantly caused by air currents, he
provided a surprisingly accurate explanation for the much later understood phenomenon of Brownian
motion [2, 3]. He postulated that the motion must be caused by smaller unseen particles colliding into larger
ones until cascading to the visible motion.

Mathematically such a motion is modelled as a path of successive random steps, called a random walk [4,
5]. As long as these increments∆x(t) are independently, identically distributed with finite variance, they will,
under the central limit theorem (CLT), lead to normal diffusion [6]. The prime example of this is the
aforementioned Brownian motion, as observed by Robert Brown in 1827, when tracking pollen granules
suspended in water [2, 3, 7–9]. Amongst others, normal diffusion entails a Gaussian probability density
function (PDF) of the position x(t) with a linear growth of the mean squared displacement (MSD) [10, 11]3

⟨x2 (t)⟩ ∼ 2Dt. (1)

3 We here consider the one-dimensional case. Future work will study the performance of the developed algorithm in higher dimensions.
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In reality however, many experiments show a non-linear growth of the MSD [12–29], indicating that one
or multiple conditions of the CLT are broken. Often these systems feature a power-law growth

⟨x2 (t)⟩ ∼ 2Kαt
α (2)

of the MSD, which is referred to as anomalous diffusion with anomalous diffusion exponent α and
generalised diffusion constant Kα [12, 13, 26]. A motion with slower-than-normal growth of the MSD (with
0< α < 1) is called subdiffusive, whereas for α> 1 it is referred to as superdiffusive. Mathematically,
anomalous diffusion may be achieved in many ways, all breaking at least one condition of the CLT [12, 13,
30]. Some examples of this include long-range correlated increments in fractional Brownian motion
(FBM) [31], non-identically distributed increments in scaled Brownian motion (SBM) [32, 33] or
increment-distributions with infinite variance in Lévy flights [34, 35]. Additionally, introducing waiting
times between jumps in a so called continuous time random walk (CTRW) allows for further options to
reach anomalous diffusion [36–40]. A more detailed description of these models is provided in section 2.1.

As each of these models corresponds to a different cause of anomalous diffusion, determining the model
best fitting experimental data can yield insights into the underlying diffusive mechanisms. Furthermore one
may wish to determine the associated parameters such as the anomalous diffusion exponent α or the
generalised diffusion constant Kα. The experimental data provided for these tasks usually consist of single
particle trajectories, tracking the movement of molecules in cells [20–22, 41–44], animals [45–47] or even
stock prices [48, 49].

The tools to decipher the stochastic processes underlying measured data and the associate parameters are
various, ranging from the use of several statistical observables [27, 50–61] to Bayesian inference [62–64] or
machine learning [65–79]. The latter demonstrated its potential in the Anomalous Diffusion (AnDi-)
Challenge held in 2020 [80, 81]. In this challenge participants were tasked with the determination of the
anomalous diffusion model and its anomalous diffusion exponent α from computer-generated
single-particle trajectories. Especially when data is sparse, machine-learning models tended to outperform
the conventional ones.

In a recent paper we showed that using Bayesian Deep Learning, one can expand the machine learning
solutions to the AnDi-Challenge to include an uncertainty estimate [65, 66]. This estimate allows for an easier
assessment whether predictions are reliable and improves the interpretability of the algorithm.

We here aim to explore the applicability of this machine-learning model to diffusion trajectories in which
the walker may change between diffusive modes. Such a behaviour may occur, for instance, when the tracked
animal or cell switches between a searching and feeding state, as an effective behaviour in an heterogeneous
environment or due to transient interactions with other objects [46, 82–87]. If one desires to differentiate
between these diffusive modes it is imperative to be able to segment the trajectory by identifying the points at
which the changes occur [88–92].

Applications of machine-learning techniques to this problem are explored in the second
AnDi-Challenge [93], whose results are expected to be published in the near future; note however that the
setup differs strongly from the one described herein and can thereby not be compared directly. Already
published works suggest that a point-wise prediction, in which one provides a prediction of the diffusion
parameters at each point in time, using machine learning may be a promising solution [94, 95].

In this work we expand on previous works by training a Bayesian Deep Learning model to provide a
point-wise prediction of not only the anomalous diffusion exponent but also its uncertainty in this
prediction for a given single-particle trajectory, see figure 1 for a schematic representation. We subsequently
aim to extract the change-points between the diffusive modes from the sequences of predicted anomalous
diffusion exponents and their uncertainties, that exhibit a peak around the change-point. Apart from the
obvious advantage from using an additional time series, we also expect this to improve change-point
detection in cases when the anomalous diffusion exponent itself does not change significantly, which could
lead to a failed change-point detection if only the point-predictions for α were used. However, even for such a
small change in α the uncertainty will typically show a more pronounced signal and thus improve detection.

The paper is structured as follows. We begin with an explanation of the utilised anomalous diffusion data
set (section 2.1), machine learning procedures (section 2.2) as well as evaluation metrics (section 2.3).
Subsequently we present the obtained results in section 3—this includes the performance of the point-wise
prediction (section 3.1) as well as a detailed evaluation of change-point extraction methods (section 3.2),
followed by a short consideration of parameter predictions for the diffusive modes (section 3.3). We finish
with a discussion of the results in section 4.
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Figure 1. Visualisation of the machine learning model. The model provides a point-wise prediction of the anomalous diffusion
exponent and its uncertainty given a single-particle diffusion trajectory. The output sequence in the upper right panel indicates
the predicted error as a shaded area of±σ around the mean. After the trajectory is converted to increments and normalised, it is
fed into a stacked bidirectional long-short-term-memory (bi-LSTM) [96] neural network consisting of 3 layers of size 128. This
network returns a time series of vectors of size 128, each of which is again passed through a single-layer fully connected network to
produce the time series of estimates for the mean of the anomalous diffusion exponent αt and its variance σ2

t . The final predicted
output time-series is obtained by combining the output of multiple such networks, sampled from aMulti-SWAG estimate [97].

2. Methods

2.1. Anomalous diffusion data set
The data set is generated utilising 4 different diffusion models, all yielding anomalous diffusion with
⟨x2(t)⟩ ∼ 2Kαtα. Namely, we use FBM, SBM, CTRW and Lévy Walk (LW).

FBM is the paradigmatic model for breaking the independence condition of the CLT. It is characterised
by the covariance function

⟨x(t)x(t+ τ)⟩= Kα (|t|α + |t+ τ |α − |τ |α) , (3)

which constitutes a long-time correlation of the increments in the power-law form

⟨∆x(t)∆x(t+ τ)⟩ ∼ α(α− 1)Kατ
α−2 (4)

for sufficiently large τ , where α is the anomalous diffusion exponent and Kα is the generalised diffusion
constant [31]. This correlation entails a persistent or anti-persistent motion for α> 1 (superdiffusion) or
α< 1 (subdiffusion) respectively.

SBM breaks the identity condition of the CLT. This is achieved by introducing a time dependent
diffusivity K(t) = αKαtα−1 in the Langevin equation

dx(t)

dt
=
√
2K(t)ξ (t) , (5)

where ξ(t) is white, zero-mean Gaussian noise [32].
In a CTRW both the jumps and the waiting times between those jumps are stochastic variables [36–38].

We here consider a CTRW with a heavy-tailed waiting time PDF ψ(τ), such that ψ(τ)∝ τ−1−α for large τ
with scaling exponent 0< α < 1. The resulting diverging mean waiting time

´∞
0 τψ(τ)dτ =∞ leads to a

subdiffusive behaviour. The spatial displacements are drawn from a zero-mean Gaussian PDF.
LWs can be considered as a special case of a CTRW [39, 40]. As before it features a power-law waiting

time PDF ψ(τ)∝ τ−1−κ, but, instead of only jumping after a waiting time, the walker travels with a constant
speed v in one direction for the duration of one waiting time. After this time a new random direction is
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chosen. As shown in [40] this leads to superdiffusion with anomalous diffusion exponent

α=

{
2 if 0< κ < 1 (ballistic diffusion)
3−κ if 1< κ < 2 (superdiffusion).

(6)

We use the andi-data sets Python package for the implementation of these models [98].
We generate multiple data sets consisting of different numbers N of trajectories. Each trajectory consists

of T= 500 data points and will randomly switch between two diffusive modes, each following one of the four
diffusion models described above. For each mode, we choose the anomalous diffusion exponent α from a
uniform random distribution α ∈ {0.05,0.1, . . . ,2.0}, with restrictions based on the underlying diffusion
model. Note that LWs may only be superdiffusive α⩾ 1, CTRWs only subdiffusive α⩽ 1, and ballistic
(α= 2) FBMs are not considered here. Thus, in each simulated trajectory we simulate sequences of two
individual anomalous diffusion models, each with a given α and Kα. Each of the two diffusive modes is
generated with an increment standard deviation of 1 and subsequently multiplied by a factor taken from a
Gaussian distribution with mean 0 and variance 1, the square value of which is thereby equivalent to twice
the (short-time) diffusion constant. As trajectories will be normalised later on, only the ratio of the diffusion
constants of the two modes is of importance here. Note that the same diffusion model and/or parameters
may be chosen for both modes.

To generate the change-points between the modes we draw dwell times from an exponential distribution

Ψ(t) =
1

β
× exp

(
− t

β

)
. (7)

The scale parameter β is itself a random variable drawn for each trajectory from a reciprocal distribution
p(β)∝ 1/β, but limited within 50< β < 250. This choice corresponds to the non-informative prior
(Jeffrey’s prior) for the exponential distribution [99, 100], the limits were chosen to generate trajectories that
feature a few but not too many change-points within the total trajectory length T= 500.

All data are corrupted by white Gaussian noise with a signal to noise strength ratio randomly chosen
from snr ∈ {1,2,10}. Given the trajectory x(t), we obtain the noisy trajectory x̃(t) = x(t)+ ξ(t) with the
superimposed noise

ξ (t)∼ σ∆x

snr
N (0,1) , (8)

where σ∆x is the standard deviation of the increment process∆x(t) = x(t+ 1)− x(t). Note that if the
diffusion constants of the two modes differ strongly, one will be much more affected by noise than the other,
as would also be the case in real tracking experiments.

We generate a total of 4 data sets. A training data set consisting of N= 5× 106 trajectories used to train
the neural network (NN), a validation data set of N= 1× 105 for fine-tuning of the machine learning
hyper-parameters, as well as two test data sets consisting of N= 5× 105 trajectories each. The first is utilised
to fine-tune the methods for change-point extraction, which are then applied to the second test data set to
generate the results herein.

To allow for general applicability independent of scale as well as in order to stabilise the training process,
trajectories undergo a minimal amount of preprocessing. Concretely, each trajectory is converted into its
increment series and normalised to a uniform standard deviation before being fed into the NN.

2.2. Machine-learning procedure
In recent years many NN architectures for the analysis of anomalous diffusion trajectories have been
proposed [66, 81]. These range from fully connected [67] to convolutional [68–71], recurrent [72–76] or
even graph NNs [77]. After some initial probing we here decided on a recurrent NN as depicted in figure 1.
The network consists of three stacked bi-LSTM [96] layers of size 128, which return a time series of
128-dimensional vectors. At each time step t, these are passed through a fully connected layer, outputting
estimates for mean αt and variance σ2

t of the anomalous diffusion exponent.
We choose the recurrent LSTM-architecture due to its design for time-series prediction as well as its

immediately accessible output of a time-series of the same length as the input. Additionally, this architecture
has been successfully applied to anomalous diffusion trajectories before [65, 74]. We added bidirectionality
as the point-wise predictions pursued here should heavily depend on future data points, which is not the
case in a unidirectional LSTM. The three layers of size 128 were chosen via trial-and-error, testing larger
networks until no further improvement was perceived. Note that we also tested a multi-headed attention
architecture [101] but found that this did not improve results noticeably for our setup, especially considering
its significantly increased computational cost.
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To find the optimal weights of the NN we minimise a loss function on the training data set. As the
outputs include uncertainty estimates, the network cannot be trained by using an—otherwise standard for
regression tasks—squared error loss. Instead we minimise the Gaussian negative log-likelihood loss

Lgnll =
∑
n,t

1

2

(
log

(
σ2
n,t

)
+

|αpred,n,t −αtrue,n,t|2

σ2
n,t

)
, (9)

where αpred,n,t and σ2
n,t are the mean and variance outputs of the NN for the nth input trajectory at

time t [102].
We train the network for 90 epochs, where each epoch constitutes a full parse through the training data

set. For each epoch the training data set is randomly divided into batches of size 480, updating the network
weights after each batch is passed through the network. Weight updates are typically achieved using some
variant of a stochastic-gradient-descent algorithm [103]. We here use Adam-descent [104] with a cyclic
learning rate between 1× 10−3–2× 10−5. During the last 10 training epochs, we build a so-called
SWAG-estimate [105] of the neural-network weights. These assign a Gaussian probability distribution to the
NN weights by tracking their change over the training process. The algorithm was implemented by means of
pytorch [106] using the NVIDIA T4 GPU with CUDA 12.0. A full training run took roughly 50–60 h. The run
time depends on the load of the cluster, which consisted of four such GPUs and two AMD EPYC 7453 CPUs,
allowing for up to four simultaneous runs.

This training process was repeated multiple times resulting in a total of 6 such SWAG-estimates, which
constitute aMulti-SWAG estimate, as proposed in [97]. The final predictions on a test data set are then
obtained by sampling 10 networks from each SWAG-estimate for a total of 60 Monte-Carlo-samples, which
are then combined into a single prediction. Note that the variance between Monte-Carlo-samples is used as
an additional, so-called epistemic, contribution to the uncertainty estimate [107, 108]. For details on the
Multi-SWAG procedure see [97, 105] as well as [65, 66, 78] for example applications to anomalous diffusion.
A flowchart of the described procedure is depicted in figure 2.

2.3. Evaluationmetrics
To evaluate the performance of the network on the prediction of the full time series of α, we define themean
absolute error

MAEα =
1

N

N∑
n=1

1

T

T−1∑
t=0

|αpred,n,t −αtrue,n,t|, (10)

as well as the root mean squared error

RMSEα =

√√√√ 1

N

N∑
n=1

1

T

T−1∑
t=0

(
αpred,n,t −αtrue,n,t

)2
. (11)

To visualise the performance of the error prediction we use reliability diagrams [109, 110], which illustrate
the observed errors as a function of the predicted uncertainties. To achieve this performance quantification,
we sort the outputs of the NN into sets based on a binning of the predicted standard deviation into intervals
Im =

(
(m− 1)∆σ,m∆σ

]
. We define Bm as the set of output indices with a predicted standard deviation

within the interval Im,

Bm =
{
(i, τ)|σi,τ ∈ Im =

(
(m− 1)∆σ,m∆σ

]}
, (12)

where σi,τ is the output standard deviation for trajectory i at time index τ . For each interval Im we calculate
the (observed) root mean squared error

RMSEα (Bm) =

√√√√ 1

|Bm|
∑

(i,τ)∈Bm

(
αpred,i,τ −αtrue,i,τ

)2
(13)

and compare it to the (predicted) root mean variance

RMVα (Bm) =

√√√√ 1

|Bm|
∑

(i,τ)∈Bm

(σi,τ )
2
, (14)
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Figure 2. Flowchart of themulti-SWAG procedure used for training and evaluation. Themulti-SWAG [97] model consist of
6 SWAGmodels, which estimate a Gaussian posterior on the neural network (NN) weights during the last 10 epochs of the
training loop. During data evaluation we sample 10 networks from each SWAG estimate for a total of 60 Monte-Carlo-samples
(MC-samples). These samples are combined into a single output prediction of means and uncertainties. Note that the final
predicted uncertainties are the sum of the mean predicted variances and the variances of predicted means [65, 108].

where |Bm| is the cardinality of Bm. Plotting RMSE in dependence of RMV for allm constitutes the reliability
diagram. Coinciding RMSE and RMV in all bins represent a perfectly calibrated model. Deviations from the
ideal error prediction can be summarised by the expected normalised calibration error (ENCE) [111]

ENCE =
∑
Bm

|Bm|
NT

|RMV(Bm)− RMSE(Bm) |
RMV(Bm)

. (15)

For change-point detection we will be given a set of predicted and true change-points for each trajectory.
We define the gated absolute distance between the ith true change-point at time tcp,true,i and the jth predicted
change-point at tcp,pred,j as [112]

di,j =min
(
|tcp,true,i − tcp,pred,j|,dmax

)
, (16)

where dmax is the maximum penalty for change-points too far apart. The choice of this threshold will
significantly impact the performance metric. Here we choose dmax = 10, aligning with the choice made in
other works on this subject [81, 93–95] and thereby allowing for better comparability. To find the optimal
pairing of true and predicted change-points, we need to minimise the sum of distances

dtot =
∑
pairs i,j

di,j. (17)

Such an assignment problem can easily be solved via, for example, the Hungarian Algorithm [113]. Utilising
this optimal assignment we count the number of true positives (TP) as those pairs with a distance less than
dmax. Predicted change-points without any associated true change-point are counted as false positives (FP),
while true change-points without any paired predicted change-point are false negatives (FN). Paired
change-points with distance larger than dmax contribute to the count of both FP predicted and FN true
change-points. We calculate the total number of TP,FP and FN over all N trajectories in the test data set.
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From these we can calculate the Jaccard Similarity Coefficient [114]

J=
TP

TP+ FP+ FN
, (18)

which corresponds to the intersection of the true and predicted set of change-points divided by their union.
Additionally one may compute precision and recall as

PREC =
TP

TP+ FP
(19)

REC =
TP

TP+ FN
. (20)

Here the first indicates how many detected change-points were correct, while the latter measures the share of
true change-points that were detected. The harmonic mean of precision and recall is called the F1 score,

F1 =
2

PREC−1 + REC−1 . (21)

Finally, for those predictions that were detected as TP, we also calculate the root mean squared error

RMSECP =

√√√√√ 1

TP
∑

pairs i,j
di,j<dmax

(
tcp,true,i − tcp,pred,j

)2
. (22)

3. Results

After training theMulti-SWAGmodel, we here report the obtained results. First we examine the performance
of the network on the sequence prediction of the anomalous diffusion exponent and its uncertainty as a
whole in section 3.1. This is followed by the change-points extraction in section 3.2, where we first analyse
the performance when extracting change-points from only the series of anomalous diffusion exponent values
or the predicted variances, and later we explore the possibility to improve the results by a combined
change-point determination from both. This will include a comparison of different variants of extraction
methods. Finally, we use the sequence-predictions, now segmented via the change-points, to determine
single-valued predictions for the two motion modes and report on the obtained results in section 3.3.

Note that we use two test data sets for this purpose, both containing N= 5× 105 trajectories. The first is
used to determine and fine tune the best method to extract change-points, which is then applied to a second
test data set in order to avoid any possible bias.

3.1. Sequence performance
We start by examining the network performance for the sequence prediction as a whole. Figure 3 shows an
example of an anomalous-diffusion trajectory and the predictions of anomalous diffusion exponent α and
uncertainty σ2 at each point in time. The panels on the right show the changes in each of these quantities. The
figure shows that the anomalous diffusion exponent switches between two predictions with sharp changes at
the change-points. Similarly the predicted variance appears to switch between two predictions, we here
however see a peak-like behaviour at the change-points, which is mirrored in the change in the uncertainty
(on the right of panel (c)) as a double-peak. This is caused by the uncertainty in the change-point location,
which requires the predicted variance to account for the possibility of still being in either of the two modes.
As such, the presence and severity of this peak will depend on the difference in α between the two motion
modes in comparison to the base uncertainty levels in each mode. Nevertheless, the series of uncertainties
may help detect change-points, where the predicted exponent α changes little while the variance σ2 does.

In general, when evaluating the sequence performance on the second test data set, we were able to achieve
a mean absolute error of MAEα = 0.178 and a root mean squared error of RMSEα = 0.259. The magnitude of
this error fits well within a previous study, in which the trajectories consisted of only one motion mode,
where we were able to achieve a mean absolute error between 0.21–0.12 for trajectories consisting of 100–500
data points [65]. The large difference between MAE and RMSE is due to the increased importance placed on
larger deviations in the RMSE. The Gaussian negative log likelihood loss, on which the model was trained, is
Lgnll =−1.13. As this number is hard to interpret, we rely on a more explicit measure, gained by examining
the predicted root mean variance. Figure 4 shows the observed RMSE as a function of the predicted RMV in a
reliability diagram. This is achieved by introducing a binning of the RMV as described in equations (14)
and (13). In the figure, we observe a slightly overestimated error for high predicted variances. This is likely

7
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Figure 3. Sample trajectory (a) and prediction of the anomalous diffusion exponent (b) and uncertainty (c) given by the neural
network. In this sample the trajectory changes between an LW with α= 1.6 and an SBM with α= 0.7. The changes were
generated with mean dwell time β≈ 184. The panels on the right show the changes for each of the time series (a)–(c). In (b) the
blue line corresponds to the true and the orange line to the predicted anomalous diffusion exponent. The change-points,
indicated by gray lines, appear to coincide with maximum changes in the predicted exponent α or uncertainty σ2. Note that the
change in uncertainty in (c) features a double-peak-like behaviour; this is caused by a lack of confidence in the position of the
change-point leading to a high predicted uncertainty. As such the presence and severity of the double peak mainly depends on the
corresponding change in α compared to the base uncertainty levels outside of the change-point region.

Figure 4. Reliability diagram for predictions of the whole sequence. The diagram shows the observed root mean squared error
(RMSE) for given predicted root mean variance (RMV). Ideally predicted and observed errors would coincide as indicated by the
grey line. As we see here the network slightly overestimates the error, this is especially prevalent for the upper end of the predicted
RMV and likely caused by the high errors typically assigned to the change-point regions.

caused by the high error predictions associated with the change-point regions. The mean deviation between
true and predicted errors, as defined by the expected normalised calibration error in equation (15), was
determined as ENCE = 5.3%. This slight overestimation of the uncertainty is also mirrored when comparing
the mean predicted variance on all data samples without binning, which yields RMVα = 0.269, to the
observed RMSEα = 0.259.
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Algorithm 1.Change-point extraction from α(t).

Input: series of predicted anomalous diffusion exponents α0, . . .αT−1, relative threshold rα, minimum
threshold rmin,α, minimum distance between change-point regions lmin

Output: vector of predicted change-points tcp,0, . . ., tcp,K−2

1: Let∆α0, . . .,∆αT−2 be the series of changes in α:
∆αt = αt+1 −αt.

2: Let∆thres be the threshold:
∆thres =max(rα ×maxt(|∆αt|), rmin,α).

3: Let texc,0, . . ., texc,S−1 be the time-indices of∆αt exceeding the threshold: |∆αtexc,s |⩾∆thres. Additionally add texc,0 = 0
and texc,S−1 = T− 1 if not already included, as otherwise the first/last change-point will be missed.
4: Let s0, . . ., sK−1 be the indices of texc,s with minimum distance to the previous: texc,sk − texc,sk−1 ⩾ lmin, thereby marking
the beginning of change-point regions.
5: Initialise the set of change-points tcp,0, . . ., tcp,K−2.
6: for k= 0 to K− 2 do
7: tcp,k = argmaxt,texc,sk⩽t<texc,sk+1−1

(|∆αt|)
8: return tcp,0, . . ., tcp,K−2

3.2. Change-point extraction
3.2.1. Extracted from α(t) and σ2(t) independently
In the previous section, we determined that the change-points can be extracted from the sequence
predictions by detecting peaks in the changes of α or σ2. As an example, the procedure used for change-point
extraction from α is shown in algorithm 1. In short, we start by finding all changes that exceed a certain
threshold, which will result in regions of data points surpassing this threshold. We consider regions as
separate if there is a minimum number of non-exceeding data points between them. Here we found a
minimum of lmin = 6 data points between change-point regions to yield the best results. From each
exceeding region we extract a single change-point. For α this is the point of the maximum (absolute) change
in the region. To accommodate the often-occurring double-peak behaviour in the uncertainty sequence σ2,
we differentiate between two cases. If there is a positive and negative peak exceeding the threshold in a
region, we take the midpoint between the two as change-point, otherwise we proceed as for α.

The choice of the threshold heavily depends on the desired metric. A high threshold will usually result in
a high precision but at the cost of recall (see equations (19) and (20)), while a lower threshold will increase
recall at the cost of precision. We chose a threshold such that the best Jaccard similarity (see equation (18)) is
achieved. Figure 5 shows the change in the Jaccard index depending on the chosen thresholds. Here we find
best results when choosing a threshold relative to the maximum (absolute) change in the trajectory rα/σ ,
which is however limited by a minimum cutoff threshold rmin,α/σ2 . The optimal thresholds, with respect to
the Jaccard index, were determined as rmin,α = 0.015, rα = 24% and rmin,σ2 = 0.0025, rσ2 = 28%. Note that
we also tried using the sequence of predicted standard deviations σ instead of variances σ2, but found this to
diminish performance.

We then apply these thresholds, determined utilising the first test data set, to extract change-points on the
second test data set. For the α-sequence we thus achieved J= 58.4%, RMSECP = 2.57, PREC = 81.1%,
REC = 67.7%, while for the uncertainty sequence we obtained J= 56.6%, RMSECP = 2.63, PREC = 75.2% and
REC = 69.6%. While extracting change-points from the sequence of means α does achieve higher similarity
than from the variances σ2, we do see an improved recall when using the variance sequence. This indicates
that while more of the change-points are found, this does however appear to come with a significant cost of
predicted non-existent change-points, reducing precision and ultimately resulting in a lower Jaccard index J.

3.2.2. Combined performance
In this section we determine whether a combined change-point prediction from both series can improve the
performance. To achieve this we tested a multitude of methods. We found that approaches to extract
change-points from a combined series, for instance via defining exceeding data points as those for which the
change in α and/or the change in σ2 exceed a threshold, were inferior to an approach for which one first
extracts change-points from the two series individually and then combines the two change-point sets. The
combination of the two change-point sets is achieved using the Hungarian algorithm with gated absolute
distance as in equation (16), equivalent to the one used for the calculation for the Jaccard index. Paired
change-points with distance less than the maximum are combined into their mean, while for others both are
added into the combined set of predicted change-points.

Note that we cannot use the same thresholds as in the previous section, as this results in a Jaccard index
between those obtained for the two individual series. Instead we again need to determine optimal thresholds,
this time by varying all four (rα, rσ2 , rmin,α, rmin,σ2) at the same time. We show a projection of this parameter
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Figure 5. Individual change-point performance as characterised by the Jaccard Index in dependence of relative and minimum
thresholds. Change-points are extracted from only the series of anomalous diffusion exponents α (a) or the series of predicted
uncertainties σ2 (b). Change-points are determined via peak-detection in the increment series, the optimal thresholds for this
detection may be inferred here. As is evident from the figure, the best performance is achieved when using both a threshold
relative to the maximum observed change as well as a minimum cutoff threshold (rα/σ2 and rmin,α/σ2 ). For α we find the best
score of J= 0.585 at a minimum threshold of rmin,α = 0.015 and relative threshold rα = 0.24. For the uncertainty the
change-point detection appears to be more difficult, here we find a best score of J= 0.566 at minimum threshold
rmin,σ2 = 0.0025 and relative threshold rσ2 = 0.28.

Figure 6. Combined change-point performance as characterised by the Jaccard index for different relative thresholds. Using the
test data set we extracted change-points for different values of thresholds for both the series of anomalous diffusion exponents α
and the series of predicted errors σ2. The sets of change-points were subsequently combined into a single set, which was used for
the calculation of the Jaccard index. Note that we here only show a projection from the true parameter space with set minimum
thresholds of rmin,α = 0.02 and rmin,σ2 = 0.0015. The best performance of J= 0.595, indicated by the black dot in the figure, was
found for relative thresholds at rα, rσ2 = 0.21,0.45 (and rmin,α, rmin,σ2 = 0.02,0.0015).

space in figure 6. The maximum Jaccard similarity is achieved when using thresholds similar to the previous
ones for the α-series (rα = 21%, rmin,α = 0.02), while using a high relative threshold for the series of
uncertainties σ2 (rσ2 = 45%, rmin,σ2 = 0.0015), indicating that only the more certain change-points of the
latter are used to supplement the—mostly similar to the independently extracted—set of change-points from
the former.

Applying the same thresholds to the second test data set, we were able to improve the Jaccard index to
J= 59.5%, 1.1 and 2.9 percentage points higher than the ones obtained for the individual series of anomalous
diffusion exponent and uncertainty respectively. Additionally we find RMSECP = 2.56, PREC = 78.8% and
REC = 70.8%. Similar to the difference between change-points from only the α- and σ2-series, we observe an
increase in recall at the cost of a decrease in precision—here however the decrease in precision is significantly
lower and the increase in recall higher, ultimately leading to an increased Jaccard similarity. A similar effect
may also be found in the harmonic mean of precision and recall (F1 score), which increases to F1 = 74.5%
for the combined prediction compared to F1 = 73.8% for change-points from the α-series (F1 = 72.3% for
σ2-series). While the increase in J or F1 is small, we see a substantial increase in recall by 3.1 percentage
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Figure 7. Performance as characterised by the Jaccard index in dependence of the data set generating parameters, consisting of (a)
the signal to noise strength ratios, (b) the absolute difference in anomalous diffusion exponent∆α between the two diffusive
modes, (c) the parameter β (equal to mean and inverse of rate) used for the generation of dwell times (see equation (7)) and (d)
the ratio of diffusion constants between the two modes. The figure shows the performance for extracted change-points from the
predicted series of anomalous diffusion exponents (blue circles), variances (green diamonds) and the combined approach (red
squares). The inset in panel (c) shows precision (solid line) and recall (dashed line) for the combined approach. The
change-points extracted from the α-series consistently outperform the ones extracted from σ2-series, with the exception of small
∆α in (b). In most cases the combined approach improves on both other variants, with the exception of high dwell times between
change-points in (c).

points as compared to the extraction from only α. This can be significant, as often ensuring that
change-points are found (recall) is more import than not detecting false change-points (precision).

Figure 7 shows the obtained Jaccard score for all three extraction variants (α, σ2 and combined) in
dependence of the parameters, that were randomly chosen for the data set generation. When varying the
noise strength in panel (a) the score of the combined approach shows a strong drop to J= 59%,42% for high
noise strengths of snr= 2,1, with a significantly higher score of J= 79% for the (typically more realistic)
snr= 10. The drop is similar, regardless of which series was used, though the combined approach
outperforms the change-points extracted from α and σ2 individually.

In panel (b) we see the only point where the series of predicted variances can outperform the
change-points extracted from the series of predicted means of α, which occurs when the change in α
between the two motion modes is small. This is the area where we also expected the inclusion of
uncertainties to yield improvements. In the combined approach this improvement is even stronger,
increasing J by 3.5 percentage points when∆α= 0 and also persisting for longer, up to∆α= 0.5, closely
following the score of the α-series afterwards.

Interestingly in panel (c), wee see that the score generally drops with lower change-rates (higher mean
dwell time β). This is likely caused by the high cost in accuracy that occurs when a single wrong
change-point is predicted for low change-rates, which will have a significantly less impact for high rates. This
can be further understood by examining the inset of panel (c), which shows a decreasing precision (ratio of
retrieved change-points that were correct) and an increasing recall (ratio of true change-points that were
retrieved) for the combined extraction. The increase in J for low change-rates (high β) is especially severe for
the series of uncertainties, which also appears to drag the performance of the combined approach below the
the one using only the α-series for high β. As this is the only case in which the combined approach shows a
significantly reduced performance, it might indicate a possible improvement avenue for future research.

The final panel (d) reveals a to-be-expected decreased performance when the two diffusion coefficients of
the diffusive modes are closer to each other, dropping from J= 67% to J= 49% in the combined case. Here
again we see the typical pattern of the combined approach outperforming the change-points extracted from
the α-series, which again outperforms the σ2-series.
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As a point of reference, during the second AnDi-Challenge the top participants reached similarity scores
from J= 65% up to J= 70% (and errors from RMSECP = 1.63 up to RMSECP = 1.7) when identifying
change-points in a more phenomenological trajectory setup [93]. Requena et al were able to obtain a
similarity of J= 51.5% when detecting change-points using the anomalous diffusion exponent in FBM
trajectories of length 200 [94]. In a similar setup, Qu et al achieved an F1 score of F1 = 88% for FBM
trajectories of length 500, here however all diffusive modes featured the same diffusion coefficient Kα = 1
and noise standard deviation σn = 0.125 and were limited to a maximum of five change-points per
trajectory [95]. While none of these can be compared directly to the results obtained in this work, they may
be used as an indication of the magnitude to be expected for J or F1.

3.3. Parameter prediction for the twomodes
We conclude by extracting the parameter values of the two motion modes and evaluating the results. Note
that simply training a NN to directly output single-valued predictions for the two modes is likely to yield
better results, such a method however would not allow for change-point extraction and would not be easily
transferable to an arbitrary number of motion modes. Instead we will here extract single-valued predictions
(α1,σ

2
1 ,α2,σ

2
2) for the two modes from the predicted time series of α(t) and σ2(t).

Each trajectory was divided into sequences based on the predicted change-points, and the means of α and
σ2 for each sequence were calculated. Subsequently these values were sorted into two sets based on proximity,
and the means of each were used as final predictions of α1/2 and σ

2
1/2 for the first and second model. This

results in an MAEα = 0.190 and RMSEα = 0.268, slightly worse than the values obtained for the whole
sequence in section 3.1. This is not surprising, as the calculations of the error here place equal importance on
both motion modes, whereas for the whole sequence the mode maintained for a longer time (and thus easier
to predict) has a larger impact on the error. Likely due to the additional uncertainty connected to the
position of the change, the predicted error extracted in this manner slightly overestimates the true observed
error, resulting in a predicted RMV = 0.298 and mirrored in the calibration error of ENCE = 7.4%.

4. Discussion

Recent years have seen an upsurge in machine learning solutions for the analysis of anomalous
diffusion [65–81, 115, 116]. The potential of these methods was displayed during the AnDi-Challenge [80,
81], which already featured a segmentation task. This task however remained with a simple problem of a
single change-point and did not see a very high participation. Since then applications of machine learning to
segmentation tasks in diffusion trajectories have developed further.

While in some cases change-points may be determined without resorting to machine learning [88–91],
this can prove difficult for more subtle changes. In such cases, recent works indicate that a point-wise
prediction of anomalous diffusion parameters using machine learning may be a promising solution [94, 95].
Detecting and specifying change-points of diffusion trajectories is also the topic of the just-completed 2nd
AnDi-Challenge [93].

In a previous paper [65] we discussed the potential of an added uncertainty prediction when determining
parameters of a single-particle anomalous-diffusion trajectory using a NN. This is expanded upon in the
current work, where we explored the applicability of these uncertainty outputs for change-point detection.
For this purpose, we generated data sets of trajectories switching between two diffusive modes. Through
Bayesian deep learning [97, 105], we were able to obtain a point-wise prediction not only of the anomalous
diffusion exponent α but also of the corresponding uncertainty, as measured by the variance σ2. In figure 3
we saw that this variance shows an interesting behaviour at the change-points, often resulting in distinct
spikes at the change-point position. We hypothesised, that the uncertainty series may help detect
change-points where the predicted exponent changes little, as those would be hidden in the α-series.

While in the present study we found that extracting the change-points from these uncertainties does
indeed lead to more true positive change-point determinations, improving recall, it struggles in precision,
adding many false positive change-points as well. Ultimately change-points extracted from only the
uncertainty-series performed worse than those extracted from the series of anomalous diffusion exponents,
when measured by the Jaccard index. However, when utilising a combined change-point extraction from
both series we were able to improve the results, significantly increasing recall with a smaller loss in precision,
which resulted in an improvement of the Jaccard index from J= 58.4% to J= 59.5%. Additionally we
showed that the parameters of the two motion modes can be recovered from the predicted sequence and
change-points, albeit with a small loss in accuracy.

An extension of the discussed methods to trajectories switching between more than two modes may be of
interest for the future, though the methods discussed here were intentionally chosen to be easily transferable
to an arbitrary number of modes. Similarly an application to different anomalous diffusion models, like, for
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instance, the more phenomenological models used in the 2nd AnDi-Challenge [93], could yield notable
results. The challenge considered predictions of not only the anomalous diffusion exponent but also the
diffusion coefficient and model. Therefore examining the impact of uncertainty predictions for change-point
detection in such cases, when more than one parameter is to be predicted, may be of interest. Similarly the
use of uncertainty predictions in a classification task could be considered. Here however the difference to
standard classification approaches would be small, as these already include class probabilities, even if those
are often not very well calibrated due to overfitting [105, 109, 117]. Another challenging point to include is
dynamical error [66, 118].

The simple peak-detection method used here for change-point detection could also be reconsidered. A
more involved method like, for example, Bayesian inference may be able to achieve better results. While
Bayesian inference has already been applied directly to diffusion trajectories [62–64, 81] and an application
to change-point detection is being worked on [119], it is known to struggle when competing with machine
learning approaches due to its high computational cost. An application to the point-wise predictions
obtained from a machine learning algorithm however should incur a significantly smaller cost.

Finally one may also wish to test the limitations of the algorithms discussed here. Previous works have
shown that a blind application of machine learning will often lead to erroneous predictions [66]. Observing
if change-points could still be extracted, even if the predicted values in the sequence are sub-optimal, will be
interesting.

Such a consideration would also shed light on the to-be-expected behaviour for experimental data. The
prediction of change-points can there be utilised to segment trajectories showing changing behaviour, such
as observed, for example, in the movement patterns of animals during foraging, a cell during feeding, as an
effective behaviour in an heterogeneous environment or due to transient interactions with other objects [46,
82–87, 120–122]. A properly adjusted algorithm may even be applied to find change-points in financial time
series, which often show changing behaviour due to corresponding real world decisions [48, 49]. Once
segmented the predictions of the machine can be easily double-checked using the more traditional methods,
such as the mean squared displacement, which can otherwise be hard to apply to heterogeneous trajectories.
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