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Enhancer-Insulator Pairing Reveals Heterogeneous Dynamics in Long-Distance 3D Gene Regulation
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Cells regulate fates and complex body plans using spatiotemporal signaling cascades that alter gene ex-
pression. Short DNA sequences, known as enhancers (50–1500 base pairs), help coordinate these cascades by
attracting regulatory proteins that enhance the transcription by binding to distal gene promoters. In humans, there
are hundreds of thousands of enhancers dispersed across the genome, which poses a challenging coordination
task to prevent unintended gene activation. To mitigate this problem, the genome contains insulator elements
that block enhancer-promoter interactions. However, there is an open problem with how the insulation works,
especially as enhancer-insulator pairs may be separated by millions of base pairs. Based on recent empirical
data from Hi-C experiments, this paper proposes a new mechanism that challenges the common paradigm that
rests on specific insulator-insulator interactions. Instead, this paper introduces a stochastic looping model where
insulators bind weakly to chromatin rather than other insulators. After calibrating the model to experimental data,
we use simulations to study the broad distribution of hitting times between an enhancer and a promoter when
insulators are present. We find parameter regimes with large differences between average and most probable
hitting times. This makes it difficult to assign a typical timescale and hints at highly defocused regulation times.
We also map our computational model onto a resetting problem that allows us to derive several analytical results.
Besides offering new insights into enhancer-insulator interactions, our paper advances the understanding of gene
regulatory networks and causal connections between genome folding and gene activation.
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I. INTRODUCTION

Cell fates and complex body plans are established through
signaling cascades that turn genes on and off in complex spa-
tiotemporal patterns. One of the critical genetic elements that
help coordinate these cascades is enhancers. These are short
regulatory DNA sequences [50–1500 base pairs (bp)] that
attract proteins, such as transcription factors, to “enhance” the
transcription of select genes [Fig. 1(a)]. Enhancer elements
are often far from the target gene start, sometimes as far
as millions of base pairs apart. Yet, experiments show they
appear close in 3D to regulate transcription [3].

In humans, the genome harbors hundreds of thousands
of dispersed enhancers supporting gene expression networks
[4]. Notably, these enhancers do not necessarily act on the
closest promoter and may regulate multiple genes [5,6]. This
posits a challenging coordination task of all these distal
3D interactions to protect genes from unintended activation.
One way cells manage this task is by using insulators. Like
enhancers, insulators contain clusters of binding sites for
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sequence-specific DNA-binding proteins that block enhancer-
promoter interactions. However, insulators are usually a bit
larger, spanning ∼300–2000 bp. When first discovered in
Drosophila melanogaster [7–9], the insulators appeared to
define boundaries between different chromatin states. How-
ever, researchers soon found they could block enhancer action
when inserted at specific genomic loci and that gene activity
depended on specific DNA binding proteins associating with
the insulator element.

From a genetic point of view, insulators are simply some
DNA piece that activates a gene when removed. But the ques-
tion is how this insulation works mechanistically, especially
as some enhancer-promoter distances are so large [3]. One of
the most popular mechanistic descriptions is the topological
model. This model suggests that two or more insulating el-
ements bind each other to form loops [10]. This idea agrees
with Hi-C data from mammals, where CTCF insulator ele-
ments (CCCTC-binding factor) make three-dimensional (3D)
contacts and often define borders of shielded chromatin com-
munities, so-called topologically associated domains [11,12].
This is further consistent with the loop-extrusion model,
where a handcuff-shaped protein (Cohesin) binds and ex-
trudes DNA through itself until it reaches a CTCF site, thus
creating a loop with CTCF as the anchor points [13,14].
The topological model also agrees with extensive polymer
simulation studying insulation in varying enhancer-insulator-
promoter configurations (measured by reduced 3D contact
probabilities) [15].

However, there are recent experimental data that chal-
lenge this paradigm [16]. This data set comes from Hi-C
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FIG. 1. Schematics of enhancer-promoter-insulator constructs on DNA (a) and our three-state looping model (b), (c). (a) The insulator
region blocks long-ranged enhancer-promoter interactions. Reducing such interactions causes “insulation” as the transcription factor cannot
physically assist the transcription machinery (e.g., RNA polymerases) that interacts with the promoter. (b) Three-state lattice model. We
model the chromatin as a sequence of N sites. A few of these sites represent enhancers (green) or insulators (orange). They can loop and
associate to any other site with the rate kl ( j|i). This rate balances looping entropy and binding energy, where this energy changes with their
time-varying relative positions. The line graph below shows a snapshot of the energy landscape experienced by the enhancer. This landscape
has two “dips” corresponding to the insulator loop anchor. The other sites represent “inactive” chromatin. Unlike enhancers and insulators,
we consider chromatin as an ensemble of interacting loops and include them by adjusting the enhancer-promoter looping exponent [1,2]. We
color the promoter in blue. In the model, we treat the promoter as an absorbing target. (c) Local binding dynamics. After looping, the enhancer
and insulator can either strongly associate (bind) to the new site by kb or dissociate back to its original position by ko (similar to a resetting
process). If bound, then the return rate to the associated state is ku.

experiments from D. melanogaster and contains the contact
counts between thousands of insulator-insulator pairs. By
clustering these pairs based on their genomic separation, the
paper convincingly shows that insulators do not contact each
other more frequently than with general chromatin. This sug-
gests the topological insulator model needs revision (at least
in Drosophila).

Building on this observation, our paper proposes an
alternative mechanism where insulators bind weakly to sur-
rounding chromatin rather than other insulators. We formulate
our model on a lattice with stochastic looping dynamics where
we calibrate the rates to existing experimental data and bench-
mark to existing measured contacts from Ref. [16]. Next, we
use our model to study the dynamics of enhancer-promoter
hitting times and show that the average may deviate sub-
stantially from the typical (most probable). We also map our
computational model onto a resetting problem and provide
several analytical results. Our work offers new insights into
the enhancer-insulator mechanics. Besides yielding a better
understanding of gene regulatory networks, knowing how in-
sulators work may help unveil causal relationships connecting
gene expression and genome folding [17,18].

II. METHODS

A. Looping model for enhancer-insulator dynamics

We represent the chromatin as an array of sites i =
1, . . . , N , where each site symbolizes a nucleosome (≈175
bp), the basic chromatin unit. This choice is natural from
a biological (or epigenetic) point of view [19–21] but not
critical for our general framework. The array has four site
types: enhancers, promoters, insulators, and regular chromatin
(Fig. 1). In most simulations, we consider one enhancer and
one promoter, typically placed 20–50 array indices between
one another (≈3.5–8.5 × 103 kb), and up to 20 insula-
tors. However, actual gene clusters usually have a much
richer arrangement where several enhancers and insulators
act in concert to ensure proper gene expression of many
genes. But to better appreciate the model, we study simpler
configurations.

As mentioned above, enhancers are DNA elements that
attract regulatory proteins, such as transcription factors. While
being attached to DNA, the transcription factors try to find
the enhancers associated with the designated promoter to reg-
ulate transcription. In other words, protein-bound enhancers
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make repeated looping attempts with surrounding chromatin
until they reach the target site. Our model captures these
dynamics by considering that the enhancers are always bound
by transcription factors and that the enhancers and insulators
loop and interact with the nearby chromatin at rates we define
below.

Our model treats the promoter as an absorbing point, and
the simulation stops once the enhancer complex reaches there
(i.e., infinite reaction rate). This contrasts the interaction with
surrounding chromatin which is much weaker. We model
enhancer-chromatin binding using standard transition-state
theory where the enhancer may be bound with energy Eb or
loosely associated (Ea) from where it may detach (Fig. 1).
These two states (“bound” and “associated”) are similar to
“search” and “recognition” modes often used to represent
two-state searchers to explain the so-called speed-stability
paradox in DNA-target search problems [22,23]. Furthermore,
by separating the model where it either loops or binds to the
sequence, we avoid having to tune every parameter in corre-
lation with each other, simplifying the process of determining
the parameter space.

In addition to Ea and Eb, there is an energy barrier �Gb

separating the bound and associated states (called activation
energy in transition-state theory). Below (Sec. III A), we esti-
mate these parameters from actual transcription factor binding
data.

In addition to surrounding chromatin, the enhancer also
binds to insulators. We model this binding using transition
state theory but assign different values for Ea, Eb, and �Gb.
Importantly, because the insulators are dynamic objects like
the enhancer, they form loops with surrounding chromatin
(discussed below), meaning these energies change with site
index j (and time). Therefore, for some fixed insulator config-
urations, we express the unbinding and binding rates as

ku( j) = γ e−[�Gb( j)−Eb( j)],

kb( j) = γ e−[�Gb( j)−Ea ( j)],
(1)

where γ is the basal binding rate, on the order 107 s−1

[24,25], and the thermal energy kBT is set to unity. Since
kb( j)/ku( j) = exp[Ea( j) − Eb( j)], these rates obey detailed
balance.

Next, we discuss the enhancer’s looping rates. Similar to
previous work [26–29], these rates depend on the entropy cost
of forming the loop kB ln[(�/�0)−α] where � is the loop length,
α is the looping exponent, and �0 is a characteristic loop scale
[2]. To calibrate constants to obey typical DNA-looping times,
we again use transition-state theory and add a small binding
activation energy �Gl . Given these parameters, the looping
on-rate from lattice site i to j is

kl ( j|i) =
{
δe−α ln(�i j/�0 )−�Gl if i �= j,
0 i = j,

(2)

where δ is the basal looping frequency, which is on the order
of 103s−1 [24], and �i j = dnucl. × |i − j| is the loop length;
dnucl. is the nucleosome diameter (∼10 nm, or 175 bp).

The looping off-rate follows a similar formula as Eq. (1),
but it contains the energy activation associated with the looped
state �Gl instead of �Gb( j) since we imagine this is the only
state from which the loop can break apart [it is also unphysical

that the loop rate depends on the position-dependent Ea( j)].
Thus, to unloop from the bound state [Eb( j)], the enhancer
must first become “associated” [Ea( j)] and then unloop. In
summary, the looping off-rate is

ko( j|i) = δe−[�Gl −Ea ( j)], (3)

where the two looping rates obey detailed balance
kl ( j|i)/ko( j|i) = exp{−Ea( j) − [−α ln(�i j/�0)]}. In our
model, the site returns to its starting position after looping,
similar to other models [27,30,31]. We tune the time
between looping events using l0 and �Gl to account for
the noncorrelated loops, which we discuss later.

Before showing how we calibrate the binding energies to
experimental data, we make three comments. First, even if
the discussion above was mostly about enhancers, we assume
insulators to follow the same dynamics [Eqs. (1)–(3)], albeit
with slightly different energy parameters. For example, we as-
sume that insulators interact weekly with chromatin. They do
so with a binding constant that should not be smaller than K ∼
102 µM, which is the characteristic scale for specific binding
(estimated from Escherichia coli [32]). While our model does
not rest on specific insulator-insulator interactions, they are
not excluded. But they cannot be significantly larger than for
general chromatin. If they were, then insulator pairs would
appear as high-contact stripes in Hi-C maps. This was not ob-
served in Ref. [16]. Therefore, we let these interactions have
the same strength as regular insulator-chromatin interactions.

We also point out that the insulators in our simulations
constantly form loops and, therefore, appear on two different
lattice positions [Fig. 1(b)] from the point of view of the
enhancer. One position is always fixed and coincides with the
insulator’s designated DNA segment. The second one repre-
sents the other end of the insulator-chromatin loop. As this
loop is short-lived, the second position is highly dynamic and
switches frequently and symmetrically around the insulator’s
primary position during the simulation (Fig. 7). This effect
implies that the enhancer has two possibilities to bind the
insulator [Fig. 1(c)].

Second, thus far, we have discussed DNA looping, omitting
regular chromatin. But in reality, chromatin also fluctuates.
Instead of introducing specific looping rates akin to Eqs. (2)
and (3), we treat chromatin as an ensemble of interacting loops
and modify the looping exponent α for enhancers and insula-
tors accordingly. For long self-avoiding chains, the exponent
(often denoted “ring factor”) is

α ≈ dν − 2σ, (4)

where d is the embedding dimension, ν is the exponent as-
sociated with the polymer’s radius of gyration, and σ is the
“scaling factor” (σ = 0 for noninteracting loops) [33]. Using
d = 3, ν = 0.588, and σ = −0.175 gives α = 2.114 [1,34].

Third, some papers include a bending term ∝ 1/�i j in the
looping rates [27]. This contribution accounts for the bending
energy cost when creating short loops. We omit this since we
only consider loops that are much longer than the DNA’s Kuhn
length (≈300 bps).

Fourth, we acknowledge that there are different choices for
discretizing chromatin, each leading to unique downstream
effects. First, there are intrinsic limits on how small we
can set the lattice spacing without adding new biophysical
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mechanisms. As pointed out above, if the spacing is smaller
than the DNAs persistence (or Kuhn) length, then we would
have to incorporate a bending rigidity into the free energy cal-
culations for loop formation. Conversely, if the lattice spacing
is too large, then such a model fails to capture the decaying
looping probabilities along the DNA chain, resulting in large
regions with uniform probabilities in conflict with Hi-C data.
Finally, there is no straightforward method to map different
discretization levels while keeping microscopic variables like
the mean hitting time constant due to position-dependent re-
setting rates. Hence, any change in lattice spacing requires a
re-calibration of the models parameters.

III. RESULTS

A. Matching model parameters to data

To calibrate the model to empirical data, we estimate Ea( j),
Eb( j), and �Gb( j) for binding and association, and l0 and
�Gl for the looping process. To this end, we use compre-
hensive binding data for transcription factors and measured
in vitro looping rates. We start with association and binding.

Previous work calculated the energy (and free-energy)
landscape along DNA for individual transcription factors
(TFs) that bind to 10–30 bp long sequence-specific motifs
[24,35,36]. But because DNA is so much longer (and there
are only four base pair types), there are many instances of
almost similar binding sequences. This results in fluctuating
genome-wide binding profiles interpreted as the TF’s spatial
probability density pTF(x), where x denotes the DNA coordi-
nate. From this probability density, it is common to define the
energy profile E (x), assuming that pTF(x) ∼ exp[−E (x)]. We
defer to Supplemental Material Sec. SII ([37]) for technical
details about obtaining E (x) from a given TF target sequence.
In Supplemental Material Sec. SII [37], we plot the average
binding data for about 300 TFs that we use to estimate Ea( j),
Eb( j), and �Gb( j) for the enhancers and insulators. In our
lattice notation E (x) → E ( j).

To estimate Ea( j), Eb( j), and �Gb( j) for the enhancer, we
use the formalism developed [24] for a two-state TF flipping
between “search” and “recognition” mode while searching
for a DNA-target sequence. When in recognition mode, the
TF is immobile, and the residence time depends on how
similar the local and target sequences are to each other. In
other words, the time depends on the depth of the landscape
E ( j). When in search mode, the TF diffuses and only weakly
interacts with the DNA. Reference [24] also assumes that
the effective energy landscape during the search mode is a
scaled version of E ( j), i.e., ρE ( j), where ρ is adjusted to
agree with measured 1D diffusion constants. In practice, this
means setting ρ � 0.3; we use ρ = 0.3. Last, there is a free
energy barrier �GRS separating “search” and “recognition”
mode that we also extract from TF-binding data (see below
and in Supplemental Material Sec. SII [37]). In summary, the
equations to calculate Ea( j), Eb( j), and �Gb( j) read

Ea( j) = ρE ( j),

Eb( j) = �GRS + E ( j), (5)

�Gb( j) = �GRS + 1 + ρ

2
E ( j),

where all the parameters on the right-hand side come from
empirical data. In particular, we used TF data from the JAS-
PAR database [38] to extract E ( j) and �GRS. We apply
these formulas to the three binding instances we have in our
problem: enhancer-insulator, insulator-insulator, and unspe-
cific (enhancer-chromatin and insulator-chromatin.) We used
�GRS = 10.13 in all three cases.

1. Enhancer-insulator binding

We calculated 〈E ( j)〉binding sites for all human chromosomes
and available transcription factors from the JASPAR database
[38]. Using Eq. (5), we find that the population median
[Md(·)] is Md(〈E ( j)〉binding sites ) = −21.13 (see Supplemental
Material Sec. SII [37]). This gives Ea( j) = −6.34, Eb( j) =
−11.0, and �Gb( j) = −3.60, which is a system having low
binding energy, corresponding to a low association energy and
energy barrier [see Fig. 2(a), lower orange line].

2. Unspecific binding for enhancers

Here we set E ( j) = 0. Plugging this into Eq. (5) gives
Ea( j) = 0, Eb( j) = 10.13 and �Gb( j) = 10.13. This situa-
tion is where strong association (binding) is rare and weak
[Fig. 2(a), green upper line].

3. Unspecific binding for insulators

Here we set E ( j) = −15.0. Plugging this into Eq. (5) gives
Ea( j) = −4.5, Eb( j) = −4.9 and �Gb( j) = 0.39.

Next, we match the looping rates for enhancers and insu-
lators. To set the corresponding parameters l0 and �Gl , we
use experimental data from [39–41]. These report that typical
looping times for 300 bps long loops are 101–102 seconds
(LacI protein and restriction enzymes NaeI and NarI), and 103

seconds for 3500 bp long loops. Matching with our simulation
gives l0 ≈ 0.04 and �Gl = 0.0. However, the looping times
in vivo may deviate substantially in crowded cell conditions,
where far-away sections come in contact faster than expected
due to compartmentalization [18]. To this end, we vary l0 to
study the fast- and slow-looping regimes.

B. Sticky insulators reproduce measured contact differences
in Drosophila melanogaster embryos

In this section, we benchmark our model to empirical data
from Ref. [16]. Using Hi-C experiments, this paper quanti-
fies how effectively insulators block 3D interactions between
flanking DNA segment pairs. By collecting contact profiles
for hundreds of insulator positions in mutant and wild-type
Fruit fly embryos, the authors made two key observations.
First, the insulators block 3D interactions over distances up
to 200 kb. We replot the empirical data in Fig. 2(b) for two
replicate experiments (Rep. 1 and Rep. 2). The background is
derived from the same experiments but uses random loci far
from any insulators. Second, they also measured 3D contacts
between insulator pairs and could not detect any specific bind-
ing, which contradicts the standard topological model.

To reproduce the measured contact decay in Fig. 2(b) using
our model, we constructed a large-scale version where each
lattice site matches the resolution of the data (i.e., 5 kb),
rather than a single nucleosome (∼0.2 kb). In the middle of
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FIG. 2. Energy levels and fit to experimental data [16]. (a) Two
typical interaction cases: high and low interaction energy (green and
orange). The energy is high for nonspecific sites (gray sites in Fig. 1)
that corresponds to a weak association energy (Ea), a weaker bound
energy (Eb), and a large barrier �G separating Ea and Eb. This is a
fleeting binding event that case differs from the enhancer-insulator
interactions, where the interaction energy is low (orange). Here, the
association and bound energy are both small and separated by a
smaller energy barrier. (b) Recent experiments found that the contact
difference between DNA regions separated by insulator-rich seg-
ments increases if the insulators are compromised (i.e., genetically
engineer a mutant lacking the CP190 binding factor that binds to
insulators) [16]. We replot the empirical data here (with permis-
sion) as dotted blue and purple lines with ± one standard deviation
(shading). To match the data, we simulated a center-placed insulator
region and calculated the contact probability with each flanking site.
By setting the lattice spacing to the Hi-C data resolution (5 kb), we
found an excellent agreement between our simulations and the data
if the insulator-chromatin interaction energy is E ( j) = −17 (∀ j) and
the looping scale is l0 = 0.4. We normalized the y-axis by dividing
by the maximum value of our simulations and the experimental
data.

the lattice, we placed an insulator-rich region (one site) that
weakly associates with all other sites with the same energy
[E ( j) = const.] and forms loops. To get the contact frequen-
cies, we simulate repeated looping events of all flanking sites
across the insulator according to rates kl (i| j) and ko [Eqs. (2)
and (3)] and record the residence times between all site pairs
using the Gillespie method implemented in Julia, see Sup-
plemental Material Sec. SI ([37]). Next, we collected these

residence times over 102 simulations (≈106 time steps each)
and used them as a proxy for contact probabilities. To fit
the model to the dotted lines in Fig. 2(b), we calculated the
relative difference in these probabilities with and without the
insulator [Fig. 2(b), green dots].

We note that our model agrees well with the empirical data
using E ( j) = −17 as unspecific binding for insulators and
l0 = 0.4 ↔ 2000 bp. This length scale agrees with general
coarse-grained “beads-on-a-string” polymer models for chro-
matin. For example, if modeled as a freely jointed chain, each
monomer should contain 2000–25000 bp of DNA [42]. This
value differs slightly from our previous fitting using in vitro
looping times, where l0 = 0.2 ↔ 1000 bp. In the remaining
part of the paper, we return to a nucleosome-centric model
and use l0 = 0.24 and the unspecific binding E ( j) = −15
as the standard settings (albeit we also study the effects of
l0 variations). But, in summary, this section shows that our
model can reproduce empirical data from Hi-C measurements
across an ensemble of insulators in D. melanogaster.

C. Insulator densities strongly affect enhancer-promoter
hitting frequencies

One of the paper’s key aims is to better understand the hit-
ting dynamics between the enhancer and promoter elements
under insulation, as such an encounter is the primary step in
transcription. In particular, we wish to calculate the distribu-
tion of time interval lengths between hitting events and study
how they change with key variables such as insulator densi-
ties, positions and binding strengths. To this end, we perform
Gillespie simulations using the rates outlined in Sec. II A. The
simulations use a 200 lattice site system (≈35 kbp), where the
enhancer and promoter reside in the middle, separated by 30
sites in the standard setting (≈5 kbp) [Fig. 3(a)]. On these 30
sites, we put an insulator region with length nins. A typical
simulation produces ≈105 samples, where we record the time
ta for the enhancer to reach the promoter site for the first
time.

We show several simulated histograms in Fig. 3(b) with
varying insulator density (σins = nins/20 = 0.0, 0.1, 0.5, 1.0)
(see legend). We portray the histogram in two ways to high-
light different features. The lower panels show histograms
ρ(ta), where the area is normalized to unity (“Density”). The
upper panels (“Probability”) show the enhancer’s probability
P (ta) of finding the promoter within a specific time interval
�t . We calculate this probability from the density ρ as

P (ta) =
∫ ta+�t

ta

ρ(u)du ≈ ρ(ta) × �t . (6)

Above the histograms, we also show the accumulated prob-
ability as colored stripes. These stripes provide an intuition
for the weight of data points, where each shift into a shaded
color indicates 10 percentiles of the data. Last, we indi-
cate the average and median hitting times by filled arrows
above the P (ta) curves, where the larger arrow indicates the
mean.

Consider the leftmost histogram column. Plotted in
logscale, we note that the hitting-time distributions are broad
and that most data points follow the same trend until ta ∼ 10−1
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FIG. 3. Histograms of the first-hitting times for varying insulator density σins and looping scale l0. (a) Schematics of enhancer-insulator
promoter configurations for two insulator densities (“low” and “high”). The distance between the enhancer (left, blue) and the promoter
(green, right) is 30 sites. The insulators are placed in the middle (orange), where we increase the density by extending the insulator region
(from 0 to 20). We used a spacing of 5 sites between the insulators and the enhancer and promoter to avoid effects simply due to proximity.
(b) Log-binned histograms of the first-hitting times for different insulator densities. We portray the histograms in two ways: area-normalized
(bottom, “Density”) and hitting-time probability [see Eq. (6)] (top, “Probability”). The colors and markers correspond to a varying amount of
insulators (a). The colored bars above show the 10th percentiles of all data points. The filled and shaded arrows above the lines indicate the
mean (filled) and median (shaded) first-hitting times, respectively. We observe a few peaks and valleys in the histograms, corresponding to
different search trajectories, such as the enhancer finding the promoter on the first try (potentially with a few intermediate fleeting chromatin
interactions) or getting sequestered by the insulator for a significant period. Note the clear exponential shoulders in the probability distribution.
These correlate to the exponential decay of the wide plateaus of constant first-hitting time probabilities, seen in the density.

and then spread apart. This means the short-time dynamics
are insulator-independent. We interpret this as the enhancer
loops into the target after a few short-lived encounters with
surrounding chromatin without touching the insulator.

Plotting P (ta) instead of ρ(ta) unveils a series of peaks
corresponding to different types of search trajectories. The left
peaks are associated with enhancer-promoter contact events
not involving insulators (as explained above). This contrasts
with the right peaks, representing the most probable hit-
ting time. These peaks shift towards larger ta with growing
insulator densities, making the distributions orders of magni-
tude broader.

Apart from simulated data (symbols), the plots contain
several dashed lines with identical colors. These lines closely
follow the data points and represent a numerical inverse

Laplace transform of a theoretical search-and-resetting model
for ρ(ta) [Eq. (17)], that we derive in Sec. IV. In addi-
tion, two black dashed lines show local exponential fits for
the two peaks. In particular, the right black line follows
the simple relationship ρ(ta) ∼ exp(−ta/τa), where τa is the
mean hitting-time derived analytically [Eq. (19), Sec. IV]. All
dashed curves show a good agreement between simulations
and the analytics.

Let us consider all the histograms in Fig. 3(b). Each col-
umn shows the hitting-time distribution for varying looping
scale l0 (values are indicated in the bottom right). While this
parameter is often interpreted as the Kuhn length, it is also a
proxy for chromatin compaction. As discussed in Ref. [18],
typical looping scales differ significantly for different types
of chromatin folding and density (e.g., space-filling versus
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FIG. 4. Heterogenous search trajectories. (a) Relative differ-
ence between mean and median (see the inset equation) from
Fig. 3(b) (filled and shaded arrows). Note the nonmonotonic growth
and decay. (b) Uniformity index histograms (normalized), H (χi j ) for
varying insulator densities. The bimodal shapes indicate heteroge-
neous enhancer-promoter search trajectories.

self-avoiding). By lowering l0 in our model, thus mimicking
less dense folding, we note that the left peaks disappear and
that the histograms become insensitive to the insulator den-
sity. If l0 increases, then the peaks become more pronounced,
indicating increasing enhancer-insulator interactions due to
less time spent looping (and thus allowing for more possible
contacts), resulting in greater insulation.

D. Enhancer-promoter search trajectories are highly dissimilar

In the previous section, we noted a broad distribution of
hitting times ta [Fig. 3(b)]. This suggests that there is a sig-
nificant difference between average and typical search times
[indicated by filled arrows in Fig. 3(b)]. To quantify these
differences, we plot their relative distance with increasing
insulator density σins in Fig. 4(a) (for fixed l0 = 0.24). Without
insulators, the mean and median are relatively similar (the
mean is slightly larger). But as the insulator count increases,
the average and the mean start to deviate until reaching some
threshold density, where the trend reverses. This threshold
density occurs at a relatively low value (around 0.1), which
might change depending on the system configuration, such as
insulator strength, placement or discretization. We interpret
this trend change as a result of two competing timescales—

one short, governed by chromatin interactions, and one long,
dominated by insulator-enhancer interactions.

To further explore the heterogenous difference between
search times, we adopt a theoretical framework based on the
uniformity index ωi j [43–46]. This index is defined as the ratio
of one search time versus the sum of two search times for two
randomly chosen trajectories i and j:

χi j = t i
a

t i
a + t j

a

. (7)

If most samples are similar, then the histogram of χi j values,
H (χi j ), follow a bell-shaped curve centered around 1/2. How-
ever, if the samples are dissimilar, where some are short and
others are long, then the distribution is broad or even bimodal
with two peaks χi j = 0 and χi j = 1. We plotted the similarity
distribution H (χi j ) in Fig. 4(b) for several insulator densities.
We see that the histograms are never bell-shaped. Instead, they
are bimodal and become increasingly so for growing insulator
density (σins). This shows yet again that there is no well-
defined scale describing enhancer-promoter hitting times. The
distribution indicates that there is a significant portion of ul-
trashort search times where the enhancer immediately loops
to the promoter and a large fraction of orders-of-magnitude
longer trajectories [note the ta variation in Fig. 3(b)], where
the enhancer gets sequestered at the insulator region, possibly
several times, before reaching the promoter site. Because of
the heterogeneous dynamics, it is difficult to assign a typical
enhancer-promoter hitting timescale describing the breadth
of timescales. Finally, we point out that this heterogeneity
gets reinforced with unsuccessful binding enhancer-promoter
binding attempts when they must come together several times
before forming a stable complex. However, we do not explore
this aspect further here.

E. Insulation efficiency

The histograms in Fig. 2(b) show that the distribution of
hitting times changes with insulator density σins and looping
scale l0. But there is yet another critical variable: the inter-
action energy E between insulators and enhancers. Here, we
explore the relationship between E and the average hitting
time τa and where it is most sensitive.

To study this question, we simulated and calculated τa

analytically [Eq. (19)] for several values of E and σins, keep-
ing l0 fixed [Fig. 7(a)]. Simulations for very strong binding
energies are omitted due to the very long simulation times.
The figure depicts that increasing the insulator density gen-
erally leads to higher τa. However, the slope is much higher
for stronger enhancer-insulator interaction (large negative E
values). This suggests that the insulator density has little in-
fluence on τa when the interactions are too weak.

To better illustrate this finding, we extracted the slope from
the end of each curve [see Fig. 5(a)] and plotted it against
E [Fig. 5(b)]. Repeating this procedure for three different l0
values, we note a sigmoidlike behavior, where the sensitivity
switches significantly in a tight E -range and remains constant
outside. This indicates that there is a critical lowest binding
energy E∗ required to tune repression using the insulator size;
insulator lengths vary about one order of magnitude in cells
(200–3000 bp). The sigmoid curves also show that increasing
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FIG. 5. The efficiency of insulation. (a) Analytical average
enhancer-promoter hitting time for varying enhancer-insulator inter-
action energies (E , see color bar) and insulator density. To increase
readability, we normalized the curves so the y values sum to 1.
Note how the slope increases with strong interactions (smaller E ).
(b) Slope sensitivity of τa to E , calculated from the large σins be-
havior [see panel (a)]. Analytical solutions are shown as circles and
lines, with simulations shown as triangles. For all three l0 values,
the curves show the same sigmodal behavior with a strong E . The
dashed line represents an inverted Hill curve, which after fitting gives
E1/2 = −14.4, −17.4, −19.6 and n = 8.2, 14.1, 18.8 for the three
l0 = 0.24, 0.094, 0.037 values.

the enhancer-insulator interaction energy beyond some value
does not lead to greater sensitivity. Moderate energies are
enough, which happen to coincide with actual transcription
factor binding energies (see Supplemental Material Fig. S1
[37]).

To appreciate the magnitude of the switching behavior, we
fitted an inverted Hill curve ∼[1 + (E1/2/E )n]−1 to the data
in Fig. 5(b). The fitting yields quite extreme Hill coefficients
in the range n = 10 − 20. This indicates ultrasensitive switch-
like behavior when E ≈ E1/2. The fitted Hill coefficients are
much higher than observed for TF-operator sites, which are
usually smaller than 4 [47].

Furthermore, we note that the overall sensitivity decreases
with shorter looping times (E∗ or E1/2 becomes lower with l0).
We envision this reflects cases when the enhancer can explore
several sites before finding the promoter, which increases the
chance of finding an insulator and, thus, increases insulation.

IV. EFFECTIVE RESETTING THEORY
FOR ENHANCER-PROMOTER DYNAMICS

In this section, we derive an analytical theory that allows
us to calculate several quantities and better understand our
simulation results. For example, we calculate an exact ex-
pression for the first-hitting time density in Laplace transform
space ρa(s), its first and second moments (〈ta〉 and 〈t2

a 〉),
and the enhancer’s position probability density function Pi(t )
(i = 1, . . . , N). To achieve this, we express our model as
a target-search problem with resetting in a random energy
landscape.

We envision an enhancer sitting at site i0 looping out to
a site i to find a target at i = a. When reaching site i ( �= a),
the enhancer stays associated for a short while and may either
return directly to i0 or become bound at i. Regardless of which,
the enhancer eventually returns to i0 like a resetting event,
see the schematic in Fig. 6. The difference between the two
scenarios is that the residence time is longer if bound, where
the enhancer must pass through the “associated” state before
it may reset to site i0. Without insulators, the resetting rate
r is the same across all lattice sites, and this system consti-
tutes a standard resetting problem studied by several authors
[48–52]. In our notation, the master equation for Pi(t ) when
the resetting rate is constant reads

dPi(t )

dt
=

∑
j

ω(i, j)Pj (t ) − rPi(t )

+
∑
j �=a

rPj (t )δi,i0 − ρa(t )δi,a, (8)

where we write the jumping rates as

ω(i, j) =

⎧⎪⎨
⎪⎩

−∑
k �=i0

kl (k| j), j = i = i0,

kl (i| j), j = i0,

0, otherwise.

(9)

Here, the diagonal element ω(i0, i0) = −∑
k �=i0

kl (k|i0) rep-
resents all outgoing loops from the enhancer’s position i0 to
anywhere on the lattice, and ω(i0, j) = kl ( j|i0) is the loop
from i0 to j. In addition to ω(i, j) and r, the master equa-
tion includes a sink term ρa(t )δi,a for the target, where ρa(t )
is the first-hitting time distribution [53,54]. Because of this
sink, we must compensate with another term proportional
to the survival probability

∑
j �=a Pj (t ) (third term, right-hand

side) that ensures there is no resetting if the enhancer already
reached the target.

Equation (8) is solvable using standard methods. However,
the situation changes when there are insulators. It changes
because enhancers and insulators may bind each other, thus
creating a nonuniform binding landscape. This manifests as a
position-dependent resetting rate r( j|i) at site j given that the
searcher started at some site i. This is a more complex problem
than Eq. (8) that cannot be solved with standard methods.

To find r( j|i) as a function of the rates and energies
outlined in Sec. II A, we assume that the “bound” and
“associated” states are in equilibrium. This assumption gives
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FIG. 6. Schematic of the effective model that captures the general model in Sec. II A. All rates are shown for an enhancer (or insulator)
that starts at i0, jumps to some node j with a rate ω(i0, j), and resets back to i0 rate k( j|i0). Note that the resetting rate is a combination of
rates, assuming equilibrium between the associated and bound states (see Sec. II A and Supplemental Material Sec. SV [37]). At some of the
sites, an insulator might be present (marked in orange), which affects the resetting rate.

(see derivation in Supplemental Material Sec. SIII [37])

r( j|i) = ko( j|i)
1 + kb( j|i)

ku( j|i)
= δ

e−[�Gl −Ea ( j)]

1 + eEa ( j)−Eb( j)
. (10)

It is essential to realize that this resetting rate depends criti-
cally on the insulators’ positions as they determine the binding
landscape Eb( j) when forming loops with the surrounding
chromatin. We show below how we estimate Eb( j) assuming
the insulators’ spatial probability density is in equilibrium.
But first, we reformulate the master equation Eq. (8) with a
position-dependent resetting rate in an analytically solvable
form.

To this end, we write the resetting rate as

r( j|i) = r∗ + �r( j|i), (11)

where r∗ = min j[r( j|i)] is the smallest resetting rate, and
redefine the looping matrix to

ν(i, j) =

⎧⎪⎨
⎪⎩

ω(i, j) − �r( j|i0), j = i,
ω(i, j) + �r( j|i0), i = i0,
ω(i, j) otherwise.

(12)

Using this in Eq. (8) gives

dPi(t )

dt
=

∑
j

ν(i, j)Pj (t ) − r∗Pi(t )

+ r∗Qa(t )δi,i0 − ρa(t )δi,a, (13)

where Qa(t ) = ∑
j �=a Pj (t ) is the survival probability. This

master equation is now in a standard form and analytically
solvable. It represents one of our paper’s main results. But
before presenting the analytical solution, we outline the basic
arguments for including the insulator dynamics in the reset-
ting rate.

In our simulations, we update the positions of the enhancer
and the insulators by drawing loops with rates kl ( j|i). If the
enhancer and one of the insulators happen to end up on the
same lattice site, then they form a complex with rate kb( j). To
include this process in the resetting rate r( j|i), we make two
assumptions. First, we take advantage of the timescale sep-
aration between the insulators’ probability density function

and characteristic search times (the quantity of main interest)
and assume that the insulators’ probability density function is
stationary. We calculate this probability distribution P(ins)

j an-
alytically from Eq. (8) by leaving out the target [see Eq. (21)].
We overlay a few examples of P(enh)

j alongside simulated data
in Fig. 7(a); the agreement is excellent.

Second, we assume that the resetting rate r( j|i) for an
enhancer is a weighted combination of the resetting rate with
or without an insulator at site j. Denoting the rates for these
cases as r( j|i)ins and r( j|i)no ins, we obtain

1

r( j|i) ≈ 1 − pins( j)

r( j|i)ins
+ pins( j)

r( j|i)no ins
. (14)

We estimate pins( j) as the sum of all the insulator’s probability
distributions at site j, times the probability of a binding event
occurring before the insulator leaves

pins( j) =
∑
ins

P(ins)
j (t → ∞)

r( j|i)ins

r( j|i)ins + r(k| j)
, (15)

where k denotes the insulator’s starting site (similar to i0 for
the enhancer).

We point out that approximation (14) tends to overestimate
the resetting probability. It also changes when insulators have
a varying E (ins) since it sums over all possible binding ener-
gies when, in reality, the enhancer can only be bound to one
insulator.

In summary, our theoretical model is completely defined by
Eqs. (10) and (13)–(15) that allow us to calculate ρa(t ) analyt-
ically. However, we note that some of the above assumptions
start to fail when the site-specific binding is so strong that
the residence times are comparable with typical target-search
times (e.g., the free-energy barrier �Gb( j) should not be too
high; see Supplemental Material Fig. S2 [37]).

A. Analytical solution and asymptotic expansion
for the first-hitting density

In this section, we solve Eq. (13) analytically. First, we
diagonalize the matrix ν [with elements in Eq. (12)] into
ν = VDV−1 where each column V is the eigenvector of ν and
D has the eigenvectors λ1, . . . , λN (sorted from smallest to
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FIG. 7. Benchmarking simulations (symbols) and resetting the-
ory (dashed black lines). (a) The probability density function of the
enhancer positioned at lattice site i = 0 (indicated by the peak in
the distribution) for two cases, one without insulators (green dots)
and ten insulators (orange dots) placed in between the enhancer and
the absorbing boundary at i = 30 (the promoter). The insulators are
placed following the schematic in Fig. 3(a), representing the case
when the density is 0.5. In the case without insulators, the PDF
follows a power-law dropoff, as expected. In the case when insulators
are present, we note that the probability of being bound to the insu-
lators decreases the probability at other indices, effectively slowing
down search times. (b) The mean and variance of the first-hitting time
between enhancer and promoter for varying insulator density. Both
of the quantities increase with an increase in density.

largest) along the diagonal (i.e., Dii = λi and zero otherwise).
Next, we introduce the new variable q j (t ) = ∑

i V −1
ji Pi(t )

and take a Laplace transform (L{ f }(s) = ∫ ∞
0 f (t )e−st t). This

gives

sq j (s) − V −1
ji0

= λ jq j (s) − r∗q j (s)

+ r∗

s
V −1

ji0
− ρa(s)

(
r∗

s
V −1

ji0
+ V −1

ja

)
, (16)

where we used that the survival probability Qa(t ) = 1 −∫ t
0 ρa(t )dt is Qa(s) = [1 − ρa(s)]/s. As the final steps we

obtain a closed form expression for ρa(s) by solving
Eq. (16) for q j (s) and use the absorbing boundary condition

∑
j Va jq j (s) = Pa(s) = 0. This gives

ρa(s) =
(s + r∗)

∑
j

A j

s+r∗−λ j∑
j

r∗Aj+sB j

s+r∗−λ j

, (17)

where Aj = Va jV
−1
ji0

and Bj = Va jV
−1
ja . We remind that this

analytical solution holds for any enhancer-promoter-insulator
configuration (captured in r( j|i) and ν) under the assumption
of fast binding dynamics.

This solution allows us to extract the average hitting time
analytically in terms of ν. By expanding ρa(s) for small s
(long-time limit) and using

ρa(s)  1 − 〈ta〉s + s2

2

〈
t2
a

〉 − . . . , (18)

we obtain to first-order in s that [55]

〈ta〉 =
∑

j �=1
Bj−Aj

r∗−λ j

An + r∗ ∑
j �=1

Aj

r∗−λ j

. (19)

A similar expansion focusing on the second-order terms
yields the second moment〈
t2
a

〉 = 2(
A1 + ∑

j �=1
r∗Aj

r∗−λ j

)2

×
{[ ∑

j �=1

(
− r∗Aj

(r∗ − λ j )2
+ Bj

r∗ − λ j

)]( ∑
j �=1

Bj − Aj

r∗ − λ j

)

+
(

A1 +
∑
j �=1

r∗Aj

r∗ − λ j

)( ∑
j �=1

Bj − Aj

(r∗ − λ j )2

)}
. (20)

In the Supplemental Material ([37], see Sec. SIV), we provide
an explicit formula for the variance σ 2 = 〈t2

a 〉 − (〈ta〉)2.
To test the theory against simulations, we compare the

variance and mean in Fig. 7(b). The simulations (symbols)
and the theory (black dashed lines) show excellent agreement.

As a final result, we show that the analytical result for the
probability density Pi(t ) is valid for both enhancers and insula-
tors. If ignoring the absorbing target (thus setting Qa(s) = 1),
then Eq. (16) becomes

Pi(t ) =
∑

j

Vi jV
−1
ji0

r∗ − λ je(λ j−r∗ )t

r∗ − λ j
, (21)

where the initial condition here is Pi(0) = δi,i0 . In the steady
state, this equation simplifies to

Pi(t → ∞) = Vi1V
−1

1i0
+

∑
j �=1

r∗

r∗ − λ j
Vi jV

−1
ji0

, (22)

which we used to estimate the insulators’ positions in the
resetting rate r( j|i). We show the complete derivation in the
Supplemental Material ([37], Sec. SV).

V. DISCUSSION AND CONCLUSION

Cells use a complex web of enhancer-insulator interactions
to support gene regulatory networks and orchestrate signaling
cascades during development. Insulator elements are critical
to prevent unintended gene activation and are relatively simple
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from a genetic point of view—removing them from DNA
or abolishing the associated transcription factors causes gene
activation. Yet, it remains unclear how this happens because
of recent conflicting empirical observations [16]. This pa-
per presents a new mechanistic model where insulators bind
weakly to surrounding chromatin rather than to themselves,
which is the common assumption.

This assumption largely derives from so-called insula-
tor bypass [56–58]. This phenomenon refers to a family of
genetic experiments aiming to neutralize insulator-enhancer
blocking by genetically inserting a piece of foreign DNA.
Known as transgenic constructs, these DNA pieces contain yet
another insulator (specifically, a short DNA sequence that at-
tracts insulator-binding factors), and several studies show that
these constructs help remove the blocking when sandwiched
between the insulator-enhancer pair. The governing explana-
tion for these observations is that insulators pair up and form a
loop. This theory has yet further support from measurements
showing that some insulator-binding factors can bind each
other (e.g., Ref. [58]). However, most transgenic experiments
study short-ranged interactions, usually less than 5 kb. While
insulator pairing could be the primary insulation mechanism
at short distances, it is doubtfully so over long distances. This
is the principal observation in [16] using Hi-C data, having 5
kb as the lower resolution limit. They could not detect notable
insulator-insulator interactions across thousands of pairs.

The observations from Ref. [16] are the starting point of
this work. We aimed to establish a new biophysical model
that did not rely on specific insulator-insulator interactions.
Instead, it rests on generic but weak insulator-chromatin in-
teractions. From a few assumptions, we calibrated the model
to a few independent empirical datasets and derived analytical
results that fit empirical observations.

One assumption that likely represents an oversimplifica-
tion is that the insulators have equal binding strengths to
enhancers and the surrounding chromatin. We also limit this
study to simple enhancer-insulator-promoter configurations.
But in reality, gene clusters have more complex arrange-
ments, including many enhancers, insulators, and promoters,
all having heterogeneous binding strengths. It would be in-
structive to investigate how hitting frequencies between select
enhancer-promoter pairs respond to changes in these vari-
ables. For example, will one strong insulator do the same job
as a few weak ones? We leave these questions for future work.

Another finding emerging from our simulations is a
broad range of enhancer-promoter hitting times. This finding
connects to the broader discussion of whether the mean-first-
passage-time alone is a sufficient measure for biochemical
reactions. For example, in reactions with both reaction and

diffusion control, mean times split into two additive contri-
butions under macroscopic reactant concentrations. However,
this approach fails when specific proteins exist at very low
and fluctuating concentrations, such as signaling in biological
cells. In such scenarios, e.g., in gene-gene communication,
distinct distance dependencies between the communicating
genes emerge [59]. This also emerges in generic settings,
where reaction times may span orders of magnitude [44,60].
These findings argue that mean reaction times lose their
meaning when measuring individual realizations from one
cell to another. What we observe here is a similar situa-
tion. The enhancer-promoter hitting times span a pronounced
range rather than being nicely synchronized. According to
our results, this variability indicates that the system is more
“plastic” and imprecise in its individual steps. Whether this
has any particular biological advantage for enhancer-promoter
regulation remains an open problem, but it is a notable conse-
quence of our model.

To close, mammalian genomes harbor ∼20 000 genes reg-
ulated by ∼900 000 enhancer-like elements interspersed with
∼30 000 CTCF-bound sites, many of which act as insulators
[61]. These elements represent critical components of gene
regulatory networks that also seem to shape DNA’s spatial
organization by forming complex networks of 3D interactions
and semihierarchical 3D communities [62] (e.g., topologically
associated domains and A/B compartments). Thus, unveiling
the mechanisms of insulation is a critical step to understanding
the causal mechanisms of the structure-function relationship
of interphase chromosomes.
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