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How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their
ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does
stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of
resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion
(FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent
diffusivity D(x) = D0|x|γ and their “combined” process of HDP-FBM. We find, inter alia, that the resetting
dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and
magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we
also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability
density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations
the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under
confinement. We show that certain characteristics of these reset processes are functionally similar despite a
different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-
breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced
resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r.
Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally
testable prediction. We conclude by discussing some implications to experimental systems featuring resetting
dynamics.

DOI: 10.1103/PhysRevE.104.024105

I. INTRODUCTION

A. Overview of recent developments

Resetting a stochastic process, either normal or anoma-
lous [1–10], via restart events—abrupt or taking a finite
time, stochastic or random but distributed, or entirely deter-
ministic in time—returns the particle to its initial position
(or a set of those) according to a certain rule. In re-
cent years, the field of resetting has experienced a wave
of new theoretical developments [11–78] as well as some
experimental progress [66,67]. There bouncing-back, often
rare, restart events might obey different distributions of
waiting times, take place in space-dependent and space-
time coupled manner, with power-law time-varying reset
rates, with offset-position-dependent probabilities, with vary-
ing or stochastic reset jumps, in different geometries and
dimensions, in network- and comb-like structures, in con-
fining potentials and under constraints, in nonexponential
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reset protocols, with interactions (in coagulation-diffusion
and reaction-diffusion protocols), for over- and underdamped
dynamics, to mention some recent directions of resetting
studies.

In most studies, resetting is considered for classical
paradigmatic Brownian motion (BM), while resetting studies
for more sophisticated fractional- and anomalous-diffusion
processes, including continuous-time random walks (CTRWs)
and Lévy motion, are less common. Certain first-passage-
based, search-related, and search-optimization-like problems
involve position restart, with one of the most known mani-
festations being the minimization of the mean first-passage
time to a target at intermediate rates of resetting. A relevant
recent study is the first-passage-analysis of a particle in a lin-
ear potential with a power-law position-dependent diffusivity,
D(x) ∼ |x| [61]. Note also that for resetting rates varying in
time the nonequilibrium stationary state (NESS) [25,79] was
shown [34] to exist for a decay of r(t ) slower than ∼1/t . A
stochastic velocity reversion for run-and-tumble particles was
also considered [40].

B. Some examples of resetting

The list of real-world processes epitomizing resetting or
restarting includes, but is not limited to, optimization of some
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foraging or search strategies [80–87] (employed by animals,
fish, insects, microorganisms, bacteria, immune T-cells, etc.)
and in behavioral biology [88] (e.g., by a diffusion process
with two distinct modes: with a detailed local search and
rapid relocations between “patches” likely to yield food)
[89–91], relocation of animals to previously frequently visited
places [20] and movement-ecology data [20,92–96] in macro-
biological sciences.

Some examples from the nano- and microbiological world
are the events of stochastic resetting due to backtracking inter-
rupting a processive motion of RNA polymerase along DNA
upon transcription [33] and an alternating switching between
the 3D diffusion-based spreading and 1D recognition-based
target search in motion of DNA-binding proteins [97–101].
On the level of simple organisms, stochastic-switching mech-
anisms between different phenotypes can be mentioned
(employed by various bacteria and fungi to optimize adap-
tation of a phenotypically diverse population of individuals
to fluctuating (and, often, irregularly changing) environments
[102–107]).

In computer sciences, resetting is involved in strate-
gies for boosting combinatorial-search algorithms [108–110]
[via adding a controlled amount of randomization (com-
plete backtracks) to minimize the cumulative search time
for a set of tasks or make mean search-times more pre-
dictable], and dependency-directed backtracking algorithms
in hard constraint-satisfaction problems involving artificial
intelligence [108].

Resetting concepts in psychology emerge in visual pattern
recognition, picture-viewing-, and visual-search-strategies
[111–115] (where large-visual-angle jerkinglike saccadic
motions are interrupted by fixational tremor-like, jiggling mi-
crosaccadic “observational” motions (depending, inter alia,
on the actual task being posed, the contextual informa-
tion, habituation effects, etc.) [116–121] and in optimized
eye-movement strategies for visual-search tasks (such as in
saccadic models of preferred image-search directions maxi-
mizing information about the “target”) [115,122].

In quantitative financial mathematics, the models of op-
tion pricing for barrier-type and reset-type options (involving
option-price adjustments upon crossing certain price bound-
aries or at preset dates) are known for decades [123–127].
Abrupt drops of stock-market prices at times of economic
crashes and other sudden catastrophic events [60] can also be
viewed as reset-related phenomena.

Recent experimental particle-tracking and resetting setups
involve a manipulation of micron-sized beads in optical traps
[128] and “tweezers” [66,67] and can potentially yield time
series amenable for a single-trajectory-based time-averaging
analysis aimed at deciphering the underlying diffusion pro-
cess, as in the theory developed below.

From the theoretical perspective, the diffusive spread of a
stochastic process is in a way “confined” by resetting events
yielding in the long-time limit a NESS. In this state, the
probability-density function (PDF) is quasistationary, but the
system still features probability fluxes due to perpetual reset-
ting events of positions of the particles [14]. The main focus of
theoretical and simulations-based investigations of resetting in
various stochastic processes so far was often on the shapes
of the PDF (in the NESS and in the particle-displacement

phase), scaling relations and plateaus for the mean-squared
displacement (MSD), as well as certain first-passage-time-,
search-, and surface-adsorption-related quantities.

C. Resetting of SBM: Recent results

Recently, the effects of resetting on the behavior of the
MSD and PDF of scaled BM (SBM) [7–9,129–137] with a
power-law-like time-dependent diffusion coefficient,

D(t ) = αKαtα−1 ∼ tα−1, (1)

with α > 0, was considered both for exponential and power-
law distributions of waiting times between two consecutive re-
setting events. We refer the reader here to the two extensive
(mainly MSD- and PDF-focused) studies [53,54]. Both non-
renewal (or partial) resetting setups (with resetting of the
position only, while keeping the value and the time-variation
of the diffusivity unaltered) [53] and renewal (complete re-
setting of particle position and diffusivity) [54] setups for the
SBM diffusivity D(t ) in Eq. (1) were considered.

For nonrenewal exponential resetting of single-particle dif-
fusion with the waiting-time distribution

ψ (t ) = re−rt (2)

(a Poissonian precess with a constant rate r and exponential
PDF of waiting times between randomly occurring resetting
events), the MSD of reset SBM in the limit of strong resetting
and long times, at

rt � 1, (3)

was shown to be [53,54]

〈x2(t )〉 ≈ 2αKαtα−1/r. (4)

So, the MSD of reset SBM acquires an exponent by one
smaller than that of conventional or nonreset SBM, with

〈x2(t )〉 =
∫

x2P(x, t )dx = 2Kαtα (5)

and PDF

P(x, t ) = exp

[
− x2

4Kαtα

]
/
√

4πKαtα. (6)

Here Kα is the generalized diffusion coefficient (with the
physical units [Kα] = m2/sα) and α is the anomalous scaling
exponent [3,4,8]. Therefore, resetting leaves SBM with α > 2
superdiffusive, while superdiffusive SBM with 1 < α < 2 is
being converted after resetting into a process with a subdiffu-
sive growth of the MSD, and, last, initially subdiffusive SBM
with 0 < α < 1 gets totally localized by resetting (all particles
are accumulated near the origin at long times).1

1For a power-law-like (non-Poissonian) nonrenewal resetting, with
ψ (t ) = (β/τ0 )/(1 + t/τ0 )1+β and β > 0, it was shown [53,54] that
the MSD for reset SBM keeps the exponent of basal SBM and gets
only reduced in magnitude for 0 < β < 1. In the range β > 2 the
scaling exponent of the MSD of SBM with resetting gets reduced by
one, similarly to the case of exponential or Poissonian resetting in
Eq. (4), so that [53,54] 〈x2(t )〉 = 2ατ0Kαtα−1/(β − 2).
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For renewal resetting (when both the particle position and
diffusivity are being reset), for SBM with exponential re-
setting the MSD was shown to approach a NESS plateau
(denoted by index “pl” below) with the saturation level at
[53,54] 〈

x2
pl

〉 = 2 Kα�(1 + α)/rα. (7)

This turns into the known result for BM with exponential
constant-rate resetting, namely,〈

x2
pl

〉 = 2 K1/r, (8)

where �(y) is the Euler-Legendre Gamma function.2,3

D. Outline of the paper

Our main objective here is to enrich the list of important
physical observables employed in resetting-dynamics studies
by a single-trajectory-based time-averaged MSD (TAMSD)
and the ergodicity-breaking parameter EB [see Eqs. (9) and
(11) below]. The TAMSD is a quantifier often implemented
in single-particle-tracking experiments and its characteristic
features have been intensely developed theoretically over the
past years for a variety of nonreset stochastic processes featur-
ing anomalous diffusion [8]. The EB parameter characterizes
the spread of individual TAMSDs and describes the degree of
nonergodicity [8].

The primary focus of this study is on the effects of
resetting onto the TAMSD characteristics for stochastic pro-
cesses of nearly ergodic (see Refs. [138–141]) fractional
BM (FBM) [42,142–150] and of nonergodic heterogeneous
diffusion processes (HDPs) [132,149,151–155] as well as
for a combination of FBM with varying Hurst exponent H
[156,157] and HDPs with varying exponent of the power-
law-like diffusivity γ [155]. Note that a “hybrid” process of
SBM-HDP was also introduced [132] and recently applied to
the experimental data [158]. The implications of resetting onto
the MSD and PDF of FBM, HDPs, and HDP-FBM are also
considered, being a secondary focus.4

2For a power-law resetting with 0 < β < 1, in contrast, the MSD
of reset SBM keeps the scaling exponent of free SBM, while the
MSD magnitude gets altered by a factor containing the waiting-time
PDF exponent β [53,54], 〈x2(t )〉 = 2 Kαtα × �(α − β + 1)/[�(α +
1)�(1 − β )]. The MSD behavior differs dramatically for scaling
exponents 1 < β < 2, namely, at long times for β < α + 1 the MSD
scales as 〈x2(t )〉 ∼ tα+1−β , while for β > α + 1 the MSD approaches
a long-time plateau with α- and β-dependent values.

3For CTRWs, a similar type of the MSD- and PDF-based analysis
for complete resetting (of both particle positions and waiting times)
and in the case of partial resetting (of particle positions only) was
executed as well [55]. For complete resetting, for CTRWs the be-
haviors of the MSD and PDF were shown to be the same as for the
corresponding SBM. This is expected because SBM is known to be
the mean-field model of CTRWs [130].

4Note that despite identical PDFs of particle displacements
governing SBM and FBM, SBM is a memoryless Markovian pro-
cess featuring nonstationary increments and nonequivalence of the
MSD and TAMSD [134] (often also indicative of weak ergodic-
ity breaking), whereas, in contrast to SBM, FBM is an innately

The paper is structured as follows. We define the observ-
ables and present the details of the simulation scheme in
Sec. II. In Secs. III, IV, and V—all being similar in pre-
sentation style and structure of subsections—we examine the
implications of resetting onto the MSD (respective subsec-
tions A), PDF (B), TAMSD (C), and EB (D) of reset FBM,
reset HDPs, and reset HDP-FBM, correspondingly, as ob-
tained theoretically and from stochastic computer simulations.
The features of reset FBM and reset HDPs are compared to
those for reset SBM outlined in Sec. I C. The main scaling re-
lations for all three reset processes considered are summarized
in Table I. We thus start from the known results for reset SBM
in Sec. I C, move to reset FBM (examined now in terms of the
MSD, PDF, TAMSD, and EB) featuring some commonalities
with reset SBM, and, last, enter the complete terra incognita
of reset HDPs and reset HDP-FBM, again, examined these
reset stochastic processes with the standard measures (MSD
and PDF) and novel quantifiers (TAMSD and EB parameter).
Finally, we draw conclusions and discuss some applications
of our results in Sec. VI. Some supplementary derivations are
outlined in Appendices A, B, and C, a number of auxiliary
plots are presented in Appendix D, while the abbreviations
are listed in Appendix E.

II. OBSERVABLES, MODELS, AND SIMULATION SCHEME

A. Definitions of physical observables

We employ the concept of single-trajectory-based averag-
ing along the time series of particle positions x(t ) in terms of
the TAMSD [8]

δ2(
) = 1

T − 


∫ T −


0
[x(t + 
) − x(t )]2dt . (9)

Here, 
 is the so-called lag time and T is the total length of the
time series. After averaging over N statistically independent
TAMSD realizations, the mean TAMSD is computed as the
arithmetic mean,

〈δ2(
)〉 = 1

N

N∑
i=1

δ2
i (
). (10)

The angular brackets denote hereafter averaging over realiza-
tions of noise, while averaging over time is denoted by the
overline. To quantify the degree of ergodicity, the so-called
ergodicity-breaking parameter EB is utilized [8,145,159]

EB(
) = 〈(δ2(
))2〉/〈δ2(
)〉2 − 1 = 〈ξ 2(
)〉 − 1, (11)

where the dimensionless variable

ξ (
) = δ2(
)/〈δ2(
)〉 (12)

non-Markovian process with a long-time memory and stationary
displacement increments, for which the MSD and mean TAMSD are
[statistically] equivalent (it is considered as an ergodic process in
this sense [8,145,149]). The standard quantifier of ergodicity—the
ergodicity-breaking parameter denoted as EB in Eq. (11)—behaves
for SBM and FBM, however, rather similarly in terms of EB ap-
proach to zero at 
/T � 1. Generally, the stationarity of increments
of a stochastic process is a prerequisite of its ergodicity.

024105-3



WEI WANG et al. PHYSICAL REVIEW E 104, 024105 (2021)

TABLE I. Collection of the main asymptotic results for the MSD and mean TAMSD of reset FBM, HDPs, and HDP-FBM, both at short
and long times. The conclusions regarding the nonequivalence of both averages (at short times) are listed in the last column.

Stochastic MSD and Short-time Long-time MSD 	=TAMSD
process TAMSD scaling scaling at short times

Reset FBM, 0 < H < 1/2 〈x2(t )〉 ∼t2H , Eq. (23) 〈x2
pl〉 ∼ r−2H , Eq. (25) No

〈δ2(
)〉 ∼
2H , Eq. (30) 〈δ2
pl〉 ≈ 2〈x2

pl〉, Eq. (32)

Reset FBM, 1/2 < H < 1 〈x2(t )〉 Same as for H < 1/2 Same as for H < 1/2 Yes

〈δ2(
)〉 ∼
1, Eq. (31) Same as for H < 1/2

Reset HDPs, p = 2
2−γ

〈x2(t )〉 ∼t p, Eq. (39) 〈x2
pl〉 ∼ r−p, Eq. (42) Yes

〈δ2(
)〉 ∼
1, Eq. (47) 〈δ2
pl〉 ≈ 2〈x2

pl〉, Eq. (46)

Reset HDP-FBM, 0 < H < 1/2 〈x2(t )〉 ∼t2H p, Eq. (49) 〈x2
pl〉 ∼ r−2H p, Eq. (50) Yes

〈δ2(
)〉 ∼
2H , Eq. (55) 〈δ2
pl〉 ≈ 2〈x2

pl〉, Eq. (58)

Reset HDP-FBM, 1/2 < H < 1 〈x2(t )〉 Same as for H < 1/2 Same as for H < 1/2 Yes

〈δ2(
)〉 ∼
1, Eq. (56) Same as for H < 1/2

describes the dispersion of individual TAMSD realizations
around their mean (10). The distribution of TAMSDs for an
ensemble of particle trajectories is characterized by the PDF
φ(ξ ) [8,149]. For ergodic BM, the EB parameter in the limit of
short lag times and long trajectories, at (
/T ) � 1, vanishes
linearly following

EB(
) ≈ 4
/(3T ). (13)

B. Diffusion models

We employ the same simulation scheme as in the recent
numerical and analytical investigation of the “compound”
process of HDP-FBM introduced in Ref. [155]. Shortly, the
overdamped Langevin equation

dx(t )/dt = ηH (t ) (14)

with fractional Gaussian zero-mean noise ηH (t ) featuring the
power-law correlation function (for t 	= t ′),

〈ηH (t )ηH (t ′)〉 � K2H × 2H (2H − 1) × |t − t ′|2(H−1), (15)

is used to simulate free [142,143] and reset FBM in terms of
single-particle diffusion.

For HDPs, the same Langevin equation for a zero-mass
particle,

dx(t )/dt =
√

2D(x)η(t ), (16)

is modeled with white Gaussian noise having zero mean and
unit variance,

〈η(t )η(t ′)〉 = δ(t − t ′), (17)

and position-dependent diffusion coefficient of a power-law
form [151],

D(x) = D0|x|γ . (18)

For γ < 0, to regularize the diverging diffusivity at the origin,
x = 0, a modified position-dependent diffusion coefficient is
used in simulations, namely [151,155]

D(x) = D0A/(A + x−γ ), (19)

with the factor A = 10−2 [acting as a small offset]. For 2 >

γ > 0 no problems with diverging diffusivities occur and the
form (18) is used directly. The critical point for the diffusivity
exponent is at γ = 2: upon approaching this point the ex-
ponential (and not a power-law-like) growth of the MSD is
realized [152,160].

For a stochastic process of HDP-FBM we consider analyt-
ically and simulate the overdamped Langevin equation (with
the constant K̄ = 1 having physical units

√
sec/m)

dx(t )/dt =
√

2D(x)K̄ηH (t ). (20)

We refer the reader to Ref. [155] for the the details of the an-
alytical solutions, the description of the region of parameters
of FBM and HDPs amenable for a solution for HDP-FBM.

C. Some applications of FBM and HDPs

The model of FBM was recently applied to rationalize the
non-Brownian anomalous dynamics of lipids, cholesterols,
and proteins in or on lipid membranes [161–164], the dynam-
ics of G-proteins and G-protein-coupled receptors on plasma
membrane [165,166], the diffusion of labeled mRNAs in liv-
ing bacterial cells [167], anomalous motion of lipid granules
in living yeast cells [168], the diffusion of telomeres inside
the nuclei of human cancer cells [169,170], the dynamics of
chromosomal loci in bacterial cells [171–173], non-Gaussian
nonergodic anomalous diffusion of micron-sized beads in
mucin-polymer hydrogels [174], tracer dynamics in actin
networks [175] (for the particles larger in size than the net-
work mesh-size) [176], heterogeneous intracellular transport
of DNA cargo in cancerous cells (with coexisting ergodic and
nonergodic but nonaging dynamics) [177], intermittent bulk-
surface non-Gaussian aging subdiffusion of anticancer-drug
doxorubicin in silica nanoslits [178], both sub- and superdif-
fusive FBM-like motion of p-granules in early embryos of
nematode worms [179], for various target-search problems
[180], to mention a few recent examples.

Solutions of the diffusion equation with variable diffusion
coefficients go back to Boltzmann [181], while the nonlinear
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diffusion equation with the diffusivity being a power law of
concentration of the diffusing substance, D(C) ∼ Cε, with
ε > 0, was solved by Pattle [182] (see also some recent
“reincarnations” [183,184]). Contemporary models of diffu-
sion with space-dependent diffusion coefficients [160,185–
192]—with HDPs being a specific example that assumes the
functional diffusivity form (18)—can be used to describe the
non-Brownian diffusion in crowded, porous, and heteroge-
neous media [193–210] (such as densely macromolecularly
crowded cell cytoplasm), the reduction of a critical “patch
size” required for survival of a population in the case of
heterogeneous diffusion of its individuals [189], diffusion
in heterogeneous comblike and fractal structures [190], es-
calated polymerization of RNA nucleotides by a spatially
confined thermal (and diffusivity) gradient in thermophoresis
setups [211], motion of active particles with space-dependent
friction in potentials [212], and transient subdiffusion in
disordered space-inhomogeneous quantum walks [213]. We
also emphasize the recent data-analysis study of anomalous
diffusion of a heterogeneous ensemble of endosomes mathe-
matically describable by a process of "heterogeneous FBM"
with distributed scaling exponents and exponent-correlated
generalized diffusion coefficients, see Ref. [214].

We mention also a class of diffusion models with
concentration-dependent power-law-like diffusivity D(C) ∼
Cε [183,215], concentration-dependent dispersion in the pop-
ulation dynamics, with a nonlinear dependence of mobility
on particle density, D(ρ) ∼ ρκ (yielding a migration from
more- to less-populated areas) [216–218], as well as similar
nonlinear equations [10] for porous-media dynamics [219],
nonlinear heat-conductance systems (with a power-law-like
temperature-dependent conductivity), and the dynamics of
granular materials [219,220].

D. Algorithm of numerical simulation

We use below the exact theoretical results and asymp-
totic relations of Ref. [155] for FBM, HDPs, and HDP-FBM
processes (without re-deriving them here) and employ the
middle-point, physically motivated, Stratonovich-convention-
based simulation scheme for Eqs. (14), (16), and (20) (see
the details of the Itô-Stratonovich conversion employed and
Eq. (32) in Ref. [155]). For all these processes at each ele-
mentary time-step of dt = 10−2 or dt = 10−3 in simulations
a constant rate of resetting is implemented r, so that resetting
probability to the initial position

xres = x(0) = 0 (21)

is r × dt ; see Fig. 1. When simulating reset FBM we always
employ Eq. (21), while for reset HDPs and reset HDP-FBM
an offset xres = 0.01 is used (to avoid stalling of particles at
the origin, especially for superdiffusive HDPs).

The waiting-time distribution of resetting events Eq. (2)
yields the average resetting time (subscript “res” below)

〈tres〉 =
∫ ∞

0
t × re−rt dt = 1/r. (22)

We consider instantaneous resetting or “jumping-to-the-
origin” events [consistent with the inertia-free or overdamped
dynamics of the particles in their displacement phase

FIG. 1. Simulated trajectory of a subdiffusive HDP with the
diffusion-coefficient D(x) ∼ |x|−2 being shown, in the presence of
Poissonian resetting of particles to x = 0.

(between the events of resetting)]. Other-than-Poissonian
distributions of resetting times, noninstantaneous resetting
protocols (constant-velocity, etc.), resetting triggered by
crossing of certain thresholds, etc., can also be considered and
implemented in simulations.

Resetting of FBM, similarly to that of SBM [53,54], can
be performed in a partially- or fully-renewal scheme. In the
second case, the memory of noise correlations (15) is com-
pletely “erased” upon each resetting event: we use this fully
renewal scheme when simulating exponentially reset FBM
and HDP-FBM below. For HDPs, the implementation of re-
setting is unproblematic because the process is memoryless.
In all simulations, we generate particle trajectories for all
three reset processes of FBM, HDP, and HDP-FBM via a
discretization scheme with a Poissonian-resetting protocol,
see Eq. (2). The position x(t + dt ) is generated depending on
the previous point x(t ) via the standard Langevin-dynamics
simulation approach [using Eqs. (14), (16), and (20)] when no
resetting occurs during the time t + dt (with the probability
1 − r × dt) and the particle is moved to the reset position xres

(with the probability r × dt) when the resetting event does
take place.

III. RESETTING OF FBM

For reset FBM with a fully erased memory—as well as
for other Gaussian (Markovian as well as non-Markovian)
stochastic processes with the same free-motion PDF as that of
SBM—it was predicted (provided after each resetting the par-
ticle performs statistically identical diffusion process) to have
the same MSD and PDF as for renewal resetting of SBM [54].
In general, one can expect that, both for FBM and HDPs, the
events of instantaneous resetting of particle positions to the
origin will give rise to larger displacements for consecutive
time-steps. This not only contributes to a growing magnitude
of the TAMSD at short lag times (see below), but also can
give rise to a more pronounced irreproducibility of individual
TAMSD trajectories and, therefore, larger values of the EB
parameter in this region. In the limit of long time, in the NESS
the MSD and TAMSD are expected to stagnate and lose any
dependence of (lag) time. We substantiate on these intuitive
expectations below.
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A. MSD

We present the results of analytical computations and find-
ings of computer simulations for the MSD of reset FBM in
Fig. 2 (also showing the TAMSD realizations), for several
values of the Hurst exponent H , for both sub- and superdif-
fusive dynamics (in terms of the MSD). For smaller values of
H we used a smaller time-step of dt = 10−3 to better resolve
the short-time behavior of the ensemble- and time-averages.
The MSD of FBM with exponential resetting starts unper-
turbed with the expected short-time behavior characteristic of
anomalous diffusion [8,145–147], namely

〈x2(t )〉 = 2K2Ht2H . (23)

At times of the order of the average resetting time (22),

tpl ∼ (1/r) × [�(2H + 1)]
1

2H , (24)

the MSD starts saturating at a plateau (with plateau-related
quantities denoted by the subscript “pl” hereafter), with the
same height as that for reset SBM [53,54], see Eq. (7).
Specifically, for NESS the height of the MSD plateau (with
a substitution α = 2H) is〈

x2
pl

〉 ≈ 2 K2H�(2H + 1)/r2H , (25)

as indicated in Fig. 2. We have checked that this transition
behavior for the MSD is the same for the scenarios with and
without long-time memory of FBM (15) being included in
simulations (results not shown). The consistency of the short-
time MSD asymptote (23), the r-dependent MSD plateaus
(25), and different onset times onto the NESS-related MSD
behavior is demonstrated in Figs. 13 and 14 in Appendix D
via presenting the results of computer simulations and the
theoretical predictions for several rates of resetting r.

B. PDF

The results for the PDF at intermediate-to-large displace-
ments for reset FBM in the NESS are in full agreement
with the predictions for fully reset SBM, given by a time-
independent function of the form (with α = 2H to go from
SBM- to FBM-expressions) [53,54]

P(x) ∼
√

2r√
2H (2H + 1)

(
2H

4K2H r

) 1
2H+1

|x| 1−2H
1+2H

× exp

[
−

(
x2r2H

4K2H

) 1
2H+1 (

(2H )
1

2H+1 + (2H )−
2H

2H+1
)]

.

(26)

The leading functional behavior for the PDF “tails” in Eq. (26)
is a stretched-or-compressed exponential function [53,54],

P(x) ∼ exp
[−const(r, H ) × |x| 2

2H+1
]
. (27)

We have checked that the levels for the MSD plateaus in the
NESS, 〈x2

pl〉, are well described using the approximate PDF
(26), especially for H �1/2, as shown in Fig. 16.

In Fig. 3 we present the agreement of the results of
computer simulations for the PDF of reset FBM with the
theoretically shape (26) at long times in the NESS and
for intermediate-to-large displacements of the particles. The

(a)

10-2 100 102

10-1

100

101

(b)

10-2 100 102
10-2

10-1

100

101

(c)

10-2 100 102

10-3

10-1

101

FIG. 2. Magnitude of the MSD (blue circles), the spread of in-
dividual TAMSDs (thin red curves), and the mean TAMSD (thick
blue curve) for the dynamics of reset FBM (see Fig. 15), shown for
varying values of the Hurst exponent (the values of H are indicated
in the legends). Simulations of resetting are conducted with no FBM-
related memory effects. Theoretical long-time plateaus for the MSD
and mean TAMSD are given by Eqs. (25) and (32), respectively. Here
and below, all the MSD and mean TAMSD asymptotes are shown in
the plots with their exact numerical prefactors being included. The
short-time asymptote for the MSD is Eq. (23), while the evolution of
the mean TAMSD at short lag times follows Eqs. (30) and (32), for
subdiffusive and superdiffusive FBM, correspondingly. The asymp-
totes are shown as the black dashed and dot-dashed lines. Parameters:
the length of the trajectories is T = 102, the elementary time-step in
simulations is dt = 10−2 (except for H = 0.2 with dt = 10−3), the
number of trajectories for ensemble averaging is N = 104, the reset-
ting rate is r = 1 (the resetting probability per step is r × dt = 10−2),
and the generalized diffusion coefficient is set to K2H = 1/2.
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FIG. 3. Shapes of the PDFs of reset FBM, computed for the
Hurst exponents H = 0.2 with dt = 10−3 and H = 0.8 with dt =
10−2 (see the legend) at r = 1. The symbols represent the results of
simulations, while the solid curves are the theoretical intermediate-
to-long-times expectations for the PDF given by Eq. (26). The dashed
lines at large displacements are stretched- or compressed-exponential
asymptotes for the PDF tails [53,54] given by Eq. (27).

shapes of the PDF for reset FBM with and without memory
are statistically identical at these conditions. We prove this
in Fig. 3 presenting the results for sub- and superdiffusive
choices of H . Note also that the MSD evolution for reset FBM
with and without memory is also identical (results not shown).
For resetting rate r = 1, the FBM dynamics at H = 0.8 is
much faster than at H = 0.2. For a preset or fixed length of
simulated trajectories, the MSD plateaus for reset FBM at
H = 0.8 occupy a rather extended time domain, while the
quasistationary state for a slower dynamics at H = 0.2 is not
yet realized, compare Figs. 2(c) and 14(b) at r = 1.

The PDF shapes for reset FBM evolve upon approaching
the NESS. We find that for r = 1 the PDF shape at the origin
for strongly subdiffusive reset FBM is almost smooth and
Gaussian (as for nonreset FBM), while for the same rate of re-
setting for strongly superdiffusive reset FBM the PDF exhibits
a pronounced cusp at the origin stemming from the returning
events of the particles. This cusp is well described by the
theoretical prediction Eq. (26), see Fig. 3, and it corroborates
with the emergence of the NESS plateaus of the MSD and
mean TAMSD. The empty and filled symbols in Fig. 3 show
the results of reset-FBM simulations with and without the
long-time memory of noise being taken into account: in Fig. 3
we check the validity of the theoretical PDF once for nonre-
newal resetting of FBM too. Therefore, for considerably larger
values of r, when for strongly subdiffusive reset FBM the
MSD also reveals a plateau in the NESS (results not shown,
but see Fig. 14(c) for the onset on this saturating behavior at
r = 3), the respective PDF of reset FBM at H = 0.2 also has
a cusp at x = 0, as shown in Fig. 17.

The PDF cusp for subdiffusive reset FBM is not in agree-
ment with Eq. (26) and it critically depends on the simulation
time-step. Ideally, the probability of resetting each step should
be small in order for the results to be independent on the
time-step used in simulations. The numerical integration of
the long-time limit of the PDF (B1)—evidently step-size-
independent—does not reveal any cusp at x = 0, see the

cross-symbols in Figs. 17 and 18. As we reduce the simulation
time-step from dt = 0.01 to 0.001 keeping the resetting rate
the same, the PDF peak in simulations for H = 0.2 vanishes
and the PDF form nicely agrees with the results of numerical
integration of Eq. (B1); see Fig. 18. This numerical inaccuracy
giving rise to the “spurious” PDF cusp for H = 0.2 gives
rise to small, but systematically measurable, deviations in the
plateau heights of the MSD and mean TAMSD in the NESS
for the simulations for very large r (results not shown). Note
that for reset SBM [53,54] the PDF shape from the theory was
shown as a combination of the results of the Laplace approx-
imation Eq. (26) [valid at intermediate-to-large separations
from the origin], while the central PDF part near x = 0 was the
cusp-free numerical integration of the exact PDF expression
(B1).

Note that the approximate Laplace-method-based PDF
(26) is generally not normalized: for subdiffusive (superdiffu-
sive) reset FBM it underestimates (overestimates) the integral∫

P(x)dx, as shown in Fig. 19. We still call this approxi-
mate nonnormalized distribution function a PDF hereafter,
for brevity. The PDF (26) describes the simulation data well
at intermediate-to-large separations [53,54], for |x| � x�. The
deviations from the results of computer simulation at small
|x| values from Eq. (26) are especially pronounced for very
subdiffusive reset FBM. A rough estimation for the threshold
separation x� for reset FBM with H < 1/2 follows [based on
the realized PDF shapes] from solving ∂P(x)/∂x|x=x� = 0 for
the inflection point, that gives

x�(H, r) =
(

1/2 − H

1 + 1/(2H )

)H+1/2( 2K2H

Hr2H

)1/2

, (28)

see the inset of Fig. 19 showing x�(H ) variations.
The exponential decay of the PDF of reset FBM in the

NESS given by Eq. (27) [identical to that of full Eq. (26)]
as well as the scaling relation for the growth-dynamics of
the NESS domain with time given by ∼tH+1/2 were obtained
before in Ref. [25]. The NESS starts getting established from
the restart position, with the spatial NESS domain growing
quicker in time than a typical FBM diffusion length that
scales as ∝ √

MSD(t ) ∼ tH . Outside of this PDF- and MSD-
stationarity domain, the reset system still performs relaxation
and features a time-dependent PDF [describing the trajecto-
ries with almost no resetting occurred so far]. In Fig. 20 the
PDF decay derived in Ref. [25] is explicitly compared to our
simulation data for subdiffusive reset FBM.

To quantify the height of the PDF at the point of particle
resetting in the NESS, in Fig. 21 we show the results of
computer simulations for the values of P(x = 0) for reset
FBM. As for nonreset FBM, the PDF is identical to that of
pure SBM [given by Eq. (6)], using the PDF-transformation
relation Eq. (B1), for reset FBM in the NESS the PDF at the
point of return assumes the value

P(x = 0) ≈
∫ ∞

0

re−rτ τ−H

√
4πK2H

dτ = rH�(1 − H )√
4πK2H

∝ rH . (29)

The asymptotic long-time law P(x = 0) ∼ rH excellently
agrees with the results of our simulations, see Fig. 21.
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C. TAMSD

We find from simulations that for subdiffusive Hurst ex-
ponents, with 0 < H < 1/2, the TAMSD starts sublinearly
and has roughly the same magnitude as the short-time MSD
Eq. (23), namely

〈δ2(
)〉 ≈ 2K2H
2H . (30)

For initially superdiffusive FBMs, in the range of Hurst expo-
nents 1/2 < H < 1, in contrast, the mean TAMSD is linear at
short lag times,

〈δ2(
)〉 ≈ 2 K2H�(2H + 1)/r2H × (r
)1, (31)

as shown in Fig. 2. In Appendix A we provide the derivation
of asymptotes (30) and (31). For H = 1/2 we need to take the
sum of two independent terms (30) and (31) to quantitatively
fit the short-lag-time behavior of the mean TAMSD.

At long lag times for reset FBM the TAMSD plateau in
the NESS is realized, with the magnitude of twice that of the
MSD plateau [given by Eq. (25)], namely,〈

δ2
pl

〉 ≈ 2 × 2 K2H�(2H + 1)/r2H . (32)

The ratio 〈
δ2

pl

〉/〈
x2

pl

〉 = 2 (33)

in the long-time (quasistationary) limit is known also for FBM
confined in harmonic potentials [147] and interval-confined
HDPs [153]. This twice-the-MSD magnitude in Eq. (32)
stems from the TAMSD definition Eq. (9) and is not related to
resetting per se. The reason being that after multiple resettings
in the NESS the process values at x(t + 
) and x(t ) become
almost independent, so that

〈[x(t + 
) − x(t )]2〉 ≈ 〈x2(t + 
)〉 + 〈x2(t )〉 ≈ 2
〈
x2

pl

〉
, (34)

yielding Eq. (33).
We stress, however, that for FBM in parabolic potentials

at short lag times the MSD and mean TAMSD are fully
equivalent in magnitude and scaling [147]. This fact is in stark
contrast to reset FBM studied here, where weak ergodicity-
breaking and MSD-versus-TAMSD nonequivalence emerges
at H > 1/2, see also Table I. Indeed, we observe that for reset
FBM the mean TAMSD in the region of short lag times always
increases in magnitude as compared to that of free or nonreset
FBM. At the very last point of the trajectory, at 
 → T ,
the magnitude of the mean TAMSD approaches that of the
MSD in the plateau region. This fact is, however, not very
well visible in Figs. 2, 13, and 14 because of a logarithmic
sampling of the data (with only ten points per decade).

Via equating the short-lag-time TAMSD asymptotes and
the long-time TAMSD plateau one can assess the lag time at
which the TAMSD plateau (32) starts to be followed as 
pl ∼
(1/r) × [2�(2H + 1)]

1
2H for 0 < H < 1/2 and 
pl ∼ 2/r for

1/2 < H < 1. To assess the effects of a varying resetting rate
r, in Fig. 13 we present the results of computer simulations
for the largest Hurst exponent H = 0.99 (when the scatter
of individual δ2(
) trajectories is the broadest [for the same
(fixed) r], see also Sec. III D) at varying r values. We observe

that the predicted r-dependent plateaus for the MSD and mean
TAMSD at long times in the NESS, Eqs. (25) and (32), respec-
tively, excellently describe the results of simulations.

The spread of individual TAMSD realizations for the reset-
ting dynamics of FBM typically increases, as compared to that
of free FBM with EB(
) → 0 for long trajectories and short
lag times (at 
/T → 0) in the continuous-time formulation
(see Refs. [138–140] for the definition(s) and general discus-
sion of ergodicity), as demonstrated in Refs. [8,145,149,150].
This effect is particularly pronounced for large superdiffusive,
H , as illustrated in Figs. 2(c) and 13. In the region of resetting
rates r considered in Fig. 13 for H = 0.99 the relative spread
of the TAMSDs increases with decreasing r. Note, however,
that the variation of the dispersion of individual TAMSDs as
a function of the Hurst exponent and resetting rate is rather
nontrivial, as we unveil below.

In contrast, for strongly subdiffusive Hurst exponents, see,
e.g., the results presented in Fig. 14 for H = 0.2, the impact
of the resetting rate [varying in the same interval] is rather
weak. This is intuitively clear: as compared to the trajectories
of strongly superdiffusive FBM which depart far away from
the origin and thus are strongly impacted by a given resetting
rate, for very subdiffusive FBM the trajectories are weakly
fluctuating in a close proximity of the starting position, so that
the impact of events of particle’s resetting to zero is nearly
unnoticed in our quantifiers. To substantiate on this claim, in
Fig. 15 two FBM trajectories for H = 0.8 and H =0.2 are
presented in the absence and in the presence of resetting.

D. EB

1. Distribution of the TAMSDs

The distribution of TAMSDs for reset FBM at H = 0.8 is
presented in Fig. 22. We find that for small rate of resetting
the distribution φ(ξ ) at short lag times for a weakly reset
FBM is considerably skewed toward the region ξ > 1. This
fact (known not only for FBM [149,151]) stems from the
existence of a natural boundary at ξ = 0 [as ξ is positively
defined, Eq. (12)] and an unbounded domain extending to
ξ � 1. As the rate of resetting increases for FBM with a given
H (in the range of r chosen), the TAMSD realizations become
progressively less scattered around their mean, indicative of a
more reproducible (or ergodic) dynamics in terms of scatter,
described by φ(ξ ).

The variation of the EB parameter of reset FBM versus the
lag time for several values of H is presented in Fig. 4. We
observe that for larger H values the magnitude of EB shifts
upwards (and does so not only for short lag times, but also in
the entire range of 
). We also find that EB = 2 is the terminal
value at 
 = T . The variation of EB(
) at the shortest lag
time 
 = 
1 with varying H exponent is observed to be
the strongest. The region of EB-parameter saturation at inter-
mediate 
 emerges roughly at lag times of the plateau-like
behavior of the mean TAMSD corresponding to the NESS.
As inferred also from the spread of the TAMSDs—which
is roughly lag-time-independent in this region, as shown in
Fig. 2—nearly constant and 
-independent values of EB
corroborate these findings. The height of the EB plateaus
in this NESS regime and short-lag-time EB values are both
H-dependent. The overall EB(
)-variation for reset FBM in
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FIG. 4. EB parameter of reset FBM, computed at a fixed resetting
rate r = 1 and for the trace length T = 102, plotted versus the lag
time 
 for several values of the Hurst exponent (see the legend). The
BM-asymptote (13) is the black dashed line at short lag times.

Fig. 4 is similar to that found for the Ornstein-Uhlenbeck
process [222] (see Figs. 4 and 5 in Ref. [221]). The protocol of
exponential resetting, therefore, acts on the TAMSD and EB
similarly as (harmonic) confinement, as one could intuitively
expect. The detailed analytical derivation of EB for reset FBM
will be presented elsewhere [223].

2. Large r values

This enhanced reproducibility of TAMSD realizations in
this range of rates r is also reflected in decreasing values of the
EB parameter computed at 
 = 
1, see Fig. 5 for H = 0.8. A
qualitatively similar behavior of EB versus r is also observed
in our computer-simulated data for reset FBM at H = 0.5 and
0.4, but in a progressively smaller range of resetting rates, see
Fig. 5. At these “intermediate” r values, for reset FBM with
elevated Hurst exponents, the value of EB at short lag times

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102
10-4

10-3

10-2

10-1

100

101

102

FIG. 5. Dependence of the EB(
1) parameter (11) on the rate of
FBM resetting r, computed for T = 102 at 
1 = dt = 10−2, for a set
of H exponents. The asymptote (35) is the black dot-dashed line at
intermediate-to-large resetting rates. The values of EB for nonreset
FBM are the dashed plateaus with the H -respective colors at r → 0
(see the legend).

drops according to

EB(
1, r) ∼ 1/r, (35)

and larger Hurst exponents yield larger EB.
Therefore, the dependence (35) of EB(
1, r) on r in this

r-range for reset FBM with elevated H is functionally similar
to that of EB(
1) on 1/T repeatedly detected for a number
of (both normal and anomalous) stochastic processes [8]. The
latter indicates progressively more ergodic behavior for longer
trajectories, so that the relation EB(T,
1) ∼ 1/T holds. The
decrease of EB values with r (in the limit of frequent resetting)
for reset FBM with larger Hurst exponents is corroborated
by a shrinking φ(ξ (
1)) distribution of the TAMSDs com-
puted for the same conditions with increasing r, as shown
in Fig. 22. In contrast, for strongly subdiffusive reset FBM
we observe a nearly constant EB upon varying r, see Fig. 5
for H = 0.2.

For strong or frequent resetting, as the probability of a
reset event at each displacement step approaches unity, the
EB parameter becomes very sensitive to the step-size value
[discreteness effects, as those for the PDF cusps at x → 0 in
Fig. 18]. For instance, our simulations for T = 102 with dt =
10−2 yield similar intermediate-to-large-r behavior of EB and
actual EB values for superdiffusive reset FBM as compared to
those at dt = 10−3 (with 10-times more points per trajectory),
see Fig. 23. For smaller time-steps—when even for the largest
reset rates studied the condition r × dt � 1 is satisfied and
the reset probabilities per step are small (the Poissonian statis-
tics still applicable)—the EB-versus-r scaling relation (35)
is valid up to r = 100, see Fig. 23 (compare to the data of
Fig. 5).

We stress here also the essential differences in the behav-
ior and magnitudes of EB from the discrete-time stochastic
simulations versus those from a continuous-time theory [145],
as studied in Ref. [150]. For instance, for subdiffusive FBM
the EB value at a fixed lag time 
1 and trajectory length
T loses its dependence on Hurst exponent and stagnates at
a discretization-induced plateau, with the height decreasing
with the number of points in the trajectory N̄ as [150]

EBpl(
1, N̄ ) ∼ 1/N̄ . (36)

The EB values computed at short lag times for subdiffusive
reset FBM scale with the time-step dt = T/N̄ used in the sim-
ulations. In Figs. 5 and 23 the simulation data for reset FBM
presented for two different time-steps illustrate the EB(
1)-
variation Eq. (36) with dt , compare the data for H = 0.2 at
intermediate-to-large r values. To summarize, when simulat-
ing the EB parameter for reset-FBM dynamics a special care
regarding the time-step chosen is to be taken (especially for
large r values) and regarding comparison of the obtained EB
values versus the theoretical predictions (especially for small
EB values affected by step-size discreteness).

For strongly subdiffusive reset FBM the variation of
EB(
1) with r does not exhibit any maximum at intermedi-
ate r; see also Ref. [223]. The maximum of EB versus r is
realizable, however, for slightly subdiffusive FBM, see Fig. 5
for H = 0.4. We also stress that for reset FBM the variation
of EB(
1) with resetting rate r stays qualitatively similar also
for longer trajectories, with the EB values reduced according
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FIG. 6. EB parameter EB(
1, rT ) of reset FBM for “rescaled”
trajectory lengths. EB is computed for simultaneously varying r and
T such that rT = const = 102 (at dt = 
1 = 10−2). At H = 0.8 and
0.5 the computed EB values are nearly constant, as per Eq. (37),
while for H = 0.2 EB still decays with T as ∼1/T .

to EB(
1, T ) ∼ 1/T relation (as for free BM [8] and FBM
with 0 < H < 3/4 [145,150]), see Fig. 24.

From the theoretical perspective, as the reciprocal rate of
resetting defines a new time-scale for the process of reset
FBM, r−1, the length of the time series for an appropri-
ate comparison of “relaxation to ergodicity” quantified via
respective EB values should be renormalized as

T → Tr ≡ rT . (37)

This time-rescaling “scales out” the apparent nonergodicity
for strongly superdiffusive reset FBM, having the strongest
effects onto EB due to the quickest underlying dynamics.
Specifically, when r and T are being varied simultaneously
but such that rT = const, for H � 0.5 we find in Fig. 6 that
the systematic decay of EB(
1) with r given by Eq. (35) in
the region


1 � r−1 � T (38)

of frequent resetting turns into a nearly constant EB. For
smaller values of H—when the region of decay (35) covers
a smaller range of r—the expected rescaling (37) holds natu-
rally only for that domain of r and T . When resetting has weak
or no effects onto EB at all, as for very subdiffusive reset FBM
in Fig. 5, one does not expect time-rescaling (37) to work.
Here, one can compare the nearly constant EB values for
H = 0.8 and the EB values decreasing as ∼1/T for H = 0.2
for a nonreset process, when for both H values r and T are
varied such that rT =const, as in Fig. 6.

Note that from the experimental perspective such a rescal-
ing of physical time might not always be easy to implement
and the variation of EB(
1, r) with r recorded for a fixed
trajectory length T might be more accessible for the analysis
of time series from single-particle-tracking experiments, with
the decay law (35) expected for EB of frequently reset FBM;
see Ref. [223] for the analytical derivation.

3. Small r values

For very weak or rare resetting, we recover the small
values of the EB parameter characteristic for ergodic free

FBM [8,145,150] at 
/T � 1 at the corresponding H val-
ues, computed recently [155] and denoted as the dashed
lines of respective colors in Fig. 5 (in the regime of small
r values). We emphasize, however, that the approach of
EB of reset FBM to that of nonreset FBM yields a non-
monotonic dependence of EB(r)—particularly strong for very
superdiffusive, but also present for slightly subdiffusive—
reset FBM. This nonmonotonicity of EB(
1) yields a strongly
resetting-enhanced dispersion of short-lag-time magnitudes of
individual TAMSDs of reset FBM at intermediate resetting
rates. The maximum of EB as a function of r—characterizing
the strongest irreproducibility of TAMSDs—shifts toward
smaller r values for more superdiffusive FBMs, compare the
data for EB(r) for H = {0.8, 0.5, 0.4} in Fig. 5. We find that
the maximally achievable EB values for strongly superdif-
fusive reset FBM at intermediate r are colossal, about four
orders of magnitude larger than the respective EB values for
free FBM with the same T [145,150].

IV. RESETTING OF HDPS

A. MSD

At short times, the MSD of reset HDPs starts similarly
to that of unperturbed HDPs, as shown in Fig. 7, namely,
following the power law

〈x2(t )〉 ≈ Cpt p, (39)

where the scaling exponent, p(γ ), is given in terms of the
exponent of the space-dependent diffusivity (18) by [151]

p = 2/(2 − γ ), (40)

and the prefactor Cp in Eq. (39) is [151]

Cp = �(p + 1/2)π−1/2(2/p)2p(D0)p. (41)

The MSD plateau (see Appendix B for the derivation)〈
x2

pl

〉 ≈ Cp�(p + 1)/rp (42)

is realized at long times (in the NESS). This expression
for the stagnating MSD features the same functional form
as the MSD plateau of the reset-FBM process in Eq. (25),
with the pair of parameters {p,Cp} effectively playing the
role of {2H, K2H }. The typical time at which the MSD
plateau of Eq. (42) starts to be followed can be estimated—
from equating the growth law (39) and plateau height
(42)—as

tpl ∼ (1/r) × [�(p + 1)]
1
p ∼ 1/r. (43)

B. PDF

The approximate PDF of reset HDPs at intermediate-to-
long separations follows from the general consideration for
reset HDP-FBM processes (see Appendix C for the derivation,
and also Sec. V) at 2H = 1 as

P(x) ≈ 1

2

√
r

D0
|x|1/p−1 exp

[
−p

√
r

D0
|x|1/p

]
. (44)

This PDF (truly normalized at H = 1/2, see Fig. 19) has a
Laplacian-like shape in variable |x|1/p as compared to the
Gaussian-like PDF of nonreset HDPs given by expression
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FIG. 7. The same as in Fig. 2, but for reset HDPs, computed for
the scaling exponents of D(x) ∼ |x|γ being γ = 1 (a) and γ = −2
(b), corresponding to super- and subdiffusive HDPs, respectively.
The theoretical short-time asymptotes Eqs. (39) and (48) and the
NESS-related long-time MSD and mean TAMSD plateaus given by
Eqs. (42) and (46), respectively, are the dashed black lines. The
magnitude of the diffusivity (18) is fixed in simulations to D0 = 1.

(C1). Additionally, for p = 1 it turns into the PDF of canoni-
cal reset BM [13,14,25,53,54] given by

P(x) = (1/2)
√

r/D0 exp(−
√

r/D0 × |x|). (45)

Note that the PDF form (44) cannot predict trimodality
observed in computer simulations for reset HDPs with scaling
exponents γ < 0 because the ideal theoretical consideration
yielding the free-HDP PDF Eq. (C1) is based upon assuming
infinite diffusivity at the origin (that, in turn, instantly relo-
cates the particles from there, so that one expects P(x = 0) =
0), while in the in-silico-reality of simulations the diffusion
coefficient for subdiffusive HDPs has to have finite values at
the origin, see Eq. (19), yielding P(0) 	= 0. We quantify the
physical reasons of trimodality of PDFs and the dependence of
PDF heights at the origin for a general scenario of HDP-FBM
processes in Sec. V B below.

For reset subdiffusive HDPs (γ < 0) in the NESS for
the trimodal PFD shapes observed in simulations (at certain
conditions, see Sec. V B) the two side peaks stem from the
spreading dynamics of nonreset HDPs, while the central peak
at x = 0 emerges due to resetting to the origin, see Fig. 8.
The PDFs for reset superdiffusive HDPs, with the diffusivity
exponents 2 > γ > 0, have a single peak/cusp at the origin,

-5 0 5
10-2

10-1

100

FIG. 8. Shapes of the PDFs of reset HDPs plotted for the same
scaling exponents of the diffusivity as in Fig. 7, and at diffusion time
T = 102 in the NESS, as indicated in the legend. The theoretical
asymptote of Eq. (44) is the solid curve.

due to the return events and the influx of particles at x = 0,
leaving the general PDF shape largely unaltered.

C. TAMSD

We start with the long-lag-time behavior here, where a
plateau of the mean TAMSD develops, as demonstrated in
Fig. 7. The height of this plateau is twice that of the MSD
plateau in Eq. (42), namely,〈

δ2
pl

〉 ≈ 2 × 〈
x2

pl

〉 ≈ 2 × Cp�(p + 1)/rp, (46)

similar to the TAMSD-versus-MSD plateaus for reset FBM.
At short lag times, the linear growth of the mean TAMSD with
lag time known for HDPs [151,155],

〈δ2(
)〉 = 〈x2(T )〉 × 
/T = CpT p × 
/T, (47)

stays unaltered for reset HDPs, see Fig. 7. Specifically, us-
ing the input from computer simulations regarding the linear
growth at short lag times and the TAMSD plateau (46) at long
lag times, the following approximate evolution of the TAMSD
with the lag time can be proposed,

〈δ2(
)〉 ≈ (1/2)
〈
δ2

pl

〉 × (r
)1 + Cpr−p × (r
)1. (48)

The second term in this expression is analogous to that in
Eq. (47), with the inverse reset rate playing the role of the
trajectory length in the prefactor, i.e., 1/r ↔ T .

The spread of individual TAMSD trajectories for subdiffu-
sive reset HDPs becomes relatively small, see Fig. 7(b). It is
visible in particular for small scaling exponents γ when the
nonreset HDPs are only weakly nonergodic (with the MSD
and mean TAMSD being close in magnitude and in values
of their scaling exponents). For superdiffusive HDPs with
resetting, the spread of individual TAMSDs is comparatively
large, see the behaviors of the MSD and mean TAMSD for
γ = −2 and γ = 1 illustrated in Fig. 7.

D. EB

The degree of irreproducibility of TAMSD realizations
and nonergodicity for reset HDPs depends on the sub- ver-
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sus superdiffusive nature of nonreset HDPs. In particular for
superdiffusive reset HDPs, similarly to the results for su-
perdiffusive reset FBMs in Fig. 5, the EB parameter exhibits a
maximum at intermediate rates of reset, see the results shown
in Fig. 12 for the case H = 1/2. For subdiffusive reset HDPs,
the EB parameter reveals a plateau in the limit of rare reset-
ting, r → 0 (with the height not very sensitive to the exponent
γ ). In the limit of strong resetting, on the other hand, both
sub- and superdiffusive HDPs feature EB decreasing rapidly
as ∼1/r with the rate of resetting, as illustrated in Fig. 12. We
thoroughly describe the results for EB(
1, r) variation with r
for a more general process of HDP-FBM in Sec. V D.

As a comparison, for interval-confined nonreset HDPs the
spread of TAMSD realizations at short lag times was severely
restricted by confinement and the values of the EB parameter
were shown to decrease as ∼1/T with the trajectory length T ,
even in the very confined scenarios; see Figs. 4, 6(b), and 6(d)
in Ref. [153]. We stress that the MSD-TAMSD inter-relation
〈δ2

pl〉 ≈ 2〈x2
pl〉 was also valid for the interval-confined HDPs

in the limit of long times, after multiple “reflections” of the
particles from the confining walls took place.

V. RESETTING OF HDP-FBM

A. MSD

The MSD of reset HDP-FBM at short times starts as for
the unperturbed process [155], following the law

〈x2(t )〉 ≈ CpHt2H p, (49)

while at long times the NESS plateau of the MSD emerges,
with the height (see Appendix B for the derivation)〈

x2
pl

〉 ≈ CpH�(2H p + 1)/r2H p, (50)

as shown in Fig. 9. Here CpH is given by Eq. (41) with
D0 → D0H = D0K̄22K2H . This general behavior of the MSD
is expected and analogous to that of the parent processes of
reset FBM and reset HDPs (considered in Secs. III A and
IV A, correspondingly).

B. PDF

The approximate PDF of stochastically reset HDP-FBM
at intermediate-to-long distances from the origin, given by
expression (see Appendix C for the derivation)

P(x) ≈
√

2r√
2H (2H + 1)

(
2H p2

4D0H r

) 1
2H+1 1

p
|x| 2−p(2H+1)

p(2H+1)

× exp

[
−
( |x|2/pr2H

D0H (2/p)2

) 1
2H+1 (

(2H )
1

2H+1 +(2H )−
2H

2H+1

)]
,

(51)

is shown in Fig. 10, revealing a good agreement with the
results of our computer simulations. We observe a good agree-
ment between theory and simulations at intermediate-to-large
separations x, while for small |x| the spike or peak due to
resetting emerges (when the conditions of PDF trimodality are
satisfied, as described below).

Trimodal PDFs for reset HDP-FBM processes in the NESS
are selected as those shapes having three—rather that one or

(a)
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FIG. 9. The same as in Fig. 2 but for the generalized reset HDP-
FBM process, computed for the parameters as indicated in the plots.
The short-time predictions of Eqs. (50) and (57) and the long-time
plateaus of Eqs. (50) and (58) for the MSD and mean TAMSD,
respectively, are the dashed and dot-dashed lines.

two—points with zero derivative of the PDF with respect to
the coordinate. The necessary condition for this is γ < 0 (sub-
diffusive parental HDPs) and superdiffusive Hurst exponents
H (as we conclude from the region in the plane of {H, γ }
amenable for computer simulations; see Fig. 1 in Ref. [155]).
The diagram of trimodal PDF shapes in the plane {H, r} for a
fixed value of the diffusivity exponent γ = −2 is presented
in Fig. 11. We find that high resetting rates and strongly
superdiffusive parental FBMs promote the emergence of PDF
trimodality for reset HDP-FBM. Trimodality is clearly a func-
tion of the HDP exponent γ < 0 too (the results of simulations
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FIG. 10. The same as in Fig. 3 but for reset HDP-FBM plotted
for diffusion time t = T = 102 at the resetting rate r = 1 and for the
parameters of Fig. 9 (see the legend).

for other γ values are not shown). In the region of large
resetting rates r and high Hurst exponents H the PDF peak
at the reset position x = 0 is most distinctly pronounced.

Note that the domain of HDP exponents γ < 0 and Hurst
exponents H < 1/2 is not allowed for our specific simulation
procedure employed for HDP-FBM processes [155]: thus, we
cannot check if trimodal PDFs are present for HDP-FBM also
at H < 1/2 and subdiffusive HDPs (the “forbidden region” of
parameters). The region of exponent variation in Figs. 25 and
11 is such that only γ < 0 (p < 1) and superdiffusive FBMs
with H > 1/2 are allowed (again, see Fig. 1 in Ref. [155]).

Now we rationalize the height of the resetting-induced PDF
peak at the origin. Because of regularization of subdiffusive
HDPs via the diffusivity Ansatz (19), the particles returned to
the origin start spreading effectively not according to HDP-
FBM, but rather as conventional reset FBM. The PDF peak at
x ≈ 0 cannot be captured by the Laplace-method-based PDF
(51) applicable at intermediate-to-large separations from the

0 0.5 1 1.5 2

0.6

0.7

0.8

0.9

bimodal

trimodal

FIG. 11. Diagram of bimodal and trimodal PDF shapes for the
reset generalized HDP-FBM process in the plane of resetting rates r
and Hurst exponents H, plotted for γ = −2. The region 0 < H <

1/2 is not accessible in the simulations of subdiffusive parental
HDPs (which are yielding bimodal PDFs being “transferred” into
trimodal PDFs by resetting). Other parameters: T = 102, dt = 10−2,
N = 104.

origin. For larger r values, however, the fraction of diffusing
particles returned to the origin is comparatively large so that
FBM dominates the overall dynamics, while the HDP-based
spreading dynamics is not yet established. Therefore, at larger
r we expect the scaling for the PDF height at the origin, P(x =
0), for reset HDP-FBM to follow that of simple reset FBM,

P(x = 0) ∼ rH , (52)

given by Eq. (29). This asymptote is indeed found to fit the
results of computer simulations rather closely for the regime
of frequent resetting, as illustrated in Fig. 25.

For small r values the PDF value at x = 0 is rather HDP-
dynamics dominated, as for a free process of HDP-FBM
[155]. Therefore, for rare resetting of HDP-FBM we predict
the following relation:

P(x = 0) ∼ rpH . (53)

This scaling is reminiscent of that found for free HDP-FBM
[155], with the inverse rate of resetting playing the role of the
trajectory length T , as intuitively expected,

T ↔ 1/r. (54)

Performing simulations for two different simulation time-
steps, in Fig. 25 we show that the differences for the heights of
the PDF at the origin do exist, but they are not substantial so
that the theoretically predicted asymptotic laws (52) and (53)
for P(x = 0) are still valid.

C. TAMSD

For reset HDP-FBM for the choice of exponents 0 < H <

1/2 the leading TAMSD term scales sublinearly as

〈δ2(
)〉 ≈ CpH r−2H p × (r
)2H , (55)

while for 1/2 < H < 1 the leading term grows linearly,

〈δ2(
)〉 ≈ (1/2)
〈
δ2

pl

〉 × (r
)1. (56)

Generally, the mean TAMSD of the reset HDP-FBM process
is a combination of these two terms,

〈δ2(
)〉 ≈ (1/2)
〈
δ2

pl

〉 × (r
)1 + CpH r−2H p × (r
)2H , (57)

whereas at long lag times the mean-TAMSD plateau is re-
alized with twice the height of the MSD plateau given by
(50), i.e., 〈

δ2
pl

〉 ≈ 2
〈
x2

pl

〉 ≈ 2 × CpH�(2H p + 1)/r2H p. (58)

These expressions present a natural continuation of the results
for reset FBM and HDPs and they enable excellent quantita-
tive fit of the simulation data for varying model parameters
and scaling exponents (γ and H), see Fig. 9. We emphasize
that the sublinear (55) and linear (56) short-lag-time scaling
of the TAMSD for reset HDP-FBM are “inherited” from the
respective scaling laws for reset FBM, Eqs. (30) and (31),
while the the height of the TAMSD plateau in the NESS given
by Eq. (58) depends on the “intensity” of the HDP-driven
dynamics, CpH .

Note that for HDPs we generally use slightly nonzero reset
positions. In Fig. 9 for γ > 0 we set

x0 = xres = 10−2, (59)
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FIG. 12. The same as in Fig. 5, but showing the ergodicity-
breaking parameter for the reset HDP-FBM processes EB(
1 =
10−2) versus the rate of resetting, for H and γ exponents as indicated
in the legend. The asymptote (35) is the black dot-dashed line shown
at intermediate-to-large r. Parameters: T = 102 and dt = 10−2.

while for γ < 0 the reset position was fixed at x0 = 0.3 [to
shorten the transient short-time regime where the theoretical
and simulation-based MSD results somewhat differ (due to
expected effects of initial-position relaxation [151,152])].

D. EB

The spread of individual TAMSDs of stochastically reset
HDP-FBM depends—in addition to the leading dependence
on resetting rate r—on the values of the Hurst exponent H
and the HDP-diffusivity exponent γ . Performing simulations
for systematically varying r we observe that, especially for
superdiffusive FBM being the parent process for HDP-FBM,
the dependence of EB on r is nonmonotonic. Similarly to the
EB(r) dependence for reset FBM, the EB(r) for HDP-FBM
exhibits a maximum at intermediate rates of resetting. For
these conditions, as r → 0 the EB parameter smoothly goes
to the respective values for the nonreset process.

In contrast to FBM, for HDP-FBM processes in the
absence of resetting the EB values are not small be-
cause the parent HDP process is by itself nonergodic, with
MSD 	=TAMSD and finite EB values even for infinitely long
trajectories [151,152] (the general features of EB(p) variation
for HDPs are similar to those of CTRWs [152]). There-
fore, for the trajectories of a finite length and at 
/T � 1
the variations in the magnitudes of short-lag-time TAMSD
realizations—characterizing different TAMSD-based trans-
port coefficients—are distinctly visible.

In the opposite limit of very frequent resetting, again sim-
ilar to the EB parameter of reset FBM, a power-law decay
EB(r,
1) ∼ 1/r is detected in simulations, see Fig. 12. This
decay of EB(
1) at high rates of reset is universal, being
detected for all choices of exponents H and γ of reset HDP-
FBM processes, as well as for trajectories of different lengths,
see Fig. 26. The detailed analysis of positioning of this EB(r)-
maximum as a function of exponents H and γ as well as of
trajectory length T is beyond the scope of the current study.

The analysis of whether—for a fixed FBM exponent H
and resetting rate r—the spread of TAMSDs increases as the

exponent γ deviates from the “most ergodic” value γ = 0
(expected to yield smallest EB values) toward negative γ

for subdiffusive and positive γ for superdiffusive HDPs can
also be performed. Its results can then be compared to the
theoretical predictions for the EB(γ )-dependence for nonreset
HDPs [151]. All these issues deserve a special theoretical con-
sideration (especially if they become relevant for real resetting
experiments).

VI. DISCUSSION AND CONCLUSIONS

The current study is a “Pitot drop” [224] to a “tsunami” of
recent resetting-related publications. This small contribution
contains, however, vital single-trajectory-based concepts of
the TAMSD and the distribution of TAMSDs ubiquitously
used in the analysis of time series from numerous single-
particle-tracking experiments. These concepts will hopefully
be useful and productive for theoretical studies of other reset
stochastic processes (see Sec. VI C) as well as for experimen-
tal resetting setups.

A. Summary of the main results

The constant-rate Poissonian-resetting setup was employed
to the initially ergodic long-time-memory process of FBM
and the initially nonergodic but Markovian HDPs to study
certain resetting effects onto the ensemble- and time-averaged
characteristics of the particle-spreading dynamics (in terms
of the MSD and TAMSD, the PDF, and the EB). These two
widely used processes that are very different in their stochastic
nature, as well as the “compound process,” exemplify how
resetting events can smear out the initial distinctions between
FBM and HDPs yielding often similar behaviors for many
standard quantifiers, as summarized in Table I.

1. Reset FBM

We detected nonequivalence of the MSD and mean
TAMSD for reset superdiffusive and the equivalence for sub-
diffusive reset FBM. Specifically, we found that both for sub-
and superdiffusive FBM the MSD starts (as for free FBM)
with ∼t2H scaling, while the TAMSD starts sublinearly in
lag time for subdiffusive and linearly for superdiffusive reset
FBM. In the long-time limit, both the MSD and mean TAMSD
revealed the plateau-like behaviors, with the height of the
TAMSD being twice that of the MSD, 〈δ2

pl〉 ≈ 2〈x2
pl〉; see also

Table I.
Regarding the PDF of reset FBM in the NESS, we quanti-

fied in simulations and described analytically the shapes both
at intermediate-to-large separations from the origin, as well
as the height of the PDF at the origin (representative of the
relative fraction of particles returned at the initial position by
the restart events).

Depending on the resetting rate r, more frequent resetting
was shown to be capable of both impeding and enhancing the
degree of spreading of the magnitudes of individual TAMSDs
of reset FBM. The nonmonotonic behavior of EB versus r and
resetting-induced nonergodicity we discovered in simulations
was most pronounced for highly superdiffusive reset FBM,
at H → 1. In the strong-resetting limit, we found a sim-
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ple power-law decrease EB(r) ∼ 1/r for reset superdiffusive
FBM that can be checked/probed experimentally.

2. Reset HDPs

For reset HDPs, at short times we observed the MSD
growing unperturbed as ∼t p and the mean TAMSD grow-
ing linearly with the lag time, the same scaling relations as
for nonreset HDPs [151,152,155], and thus weak ergodicity-
breaking and MSD-TAMSD nonequivalence is observed for
reset HDPs (see also Table I). Similarly to reset FBM, for
reset HDPs we found that the long-time plateau of the mean
TAMSD in the NESS is twice the MSD plateau, as we quan-
tified analytically in excellent agreement with the in silico
findings. The relation 〈δ2

pl〉 ≈ 2〈x2
pl〉 valid for all the reset

processes studied here is our first key result.

3. Reset HDP-FBM

For the generalized process of reset HDP-FBM we found
that upon Poissonian resetting the MSD at short times al-
ways starts as ∼t2H p, while the mean TAMSD starts linearly
for the super- and sublinearly ∼
2H for the superdiffusive
FBM component of reset HDP-FBM. These asymptotes as
well as the long-time plateaus with 〈δ2

pl〉 ≈ 2〈x2
pl〉 observed

in computer simulations agree excellently with the theoretical
predictions. Apart from reset subdiffusive FBM that remained
ergodic upon resetting, other pure and “combined” reset pro-
cesses we considered here have revealed the nonequivalence
of the MSD and mean TAMSD at short (lag) times, see
Table I. This omnipresent MSD-TAMSD nonequivalence at
short times upon resetting (even for initially ergodic pro-
cesses) is our second key result.

The shape of the PDF computed analytically with the
Laplace method was demonstrated to agree well with the
numerical results of our Langevin-equation-based stochas-
tic simulations. For subdiffusive HDPs and superdiffusive
FBM contributing to the compound (subdiffusive HDP)-
(superdiffusive FBM) reset process we detected a novel class
of trimodal shapes of the PDF. We unveiled the domain of
existence of these trimodal PDFs, with the general conclu-
sion that more frequent resetting and more superdiffusive
Hurst exponents of FBM favor trimodal PDF profiles of re-
set HDP-FBM. We quantified the scaling relations for the
peak of the PDF at the origin (the fraction of particles re-
maining at the reset position), both theoretically and via
simulations.

Note that although trimodal PDF profiles were consid-
ered for specific setups of noninstantaneous resetting for the
normal dynamics with certain position-dependent functional
forms of the reset speed [45], the trimodal PDFs we unveiled
for reset (subdiffusive HDP)-(superdiffusive FBM) processes
are new and universal, being based on the underlying dynam-
ics of the “source” processes of subdiffusive HDPs with a
bimodal PDF and superdiffusive FBM. This emerging PDF
trimodality in the NESS for reset subdiffusive HDPs and
respective HDP-FBM is our third key result. Such trimodal
PDFs can be realizable in diffusion-resetting protocols, even
with instant returning of particles to the restart position.

For the EB parameter, similarly to that of reset FBM, at
high rates of resetting we discovered a universal power-law

decrease EB(r) ∼ 1/r, with the exact values of EB being
sensitive to the values of dynamics-governing exponents H
and γ . At small resetting rates the EB values approach those
of the nonreset process, as expected, while a pronounced
maximum of EB(r) and, thus, resetting-induced nonergodic-
ity emerges at intermediate r. This universal nonmonotonic
EB(r)-dependence—with a prominent maximum followed by
EB(r) ∝ 1/r-decay at large r—is our fourth key result.

We conclude here stating that the behaviors of the MSD
and mean TAMSD in the NESS for FBM, HDPs, and
HDP-FBM processes under exponential resetting are func-
tionally remarkably similar, alike the found effect of the
nonmonotonic variation of EB versus resetting rate. High-rate
exponential resetting (naturally) smears out the distinctions
between initially very different processes we studied here,
yielding in the long-time limit similar—possibly, also for
other processes under such resetting—functional dependen-
cies for the TAMSD and EB.

B. Possible effects of initial conditions

We employed the standard [and experimentally relevant]
concept of ergodicity as the equivalence of the MSD and mean
TAMSD at short times and quantified the spread of individ-
ual TAMSDs at 
 = 
1 = dt in terms of EB. The initial
particle positions were always kept fixed. These conditions
are realizable experimentally, with the MSD being computed
without subtracting this [nearly zero] initial position, x0. From
the theoretical perspective, however, considering initial posi-
tions of particles being distributed according to the long-time
PDF in the NESS, P(x0), creates another statistical ensemble
and, thus, offers a different approach to compute averages.
The ensemble- and x0-averaged MSD after this additional
averaging, 〈〈(x(t ) − x0)2〉P(x0 )〉, can be a more theoretically
rigorous measure for assessing the degree of nonergodicity
and MSD-TAMSD nonequivalence.

We refer the reader to the study [221] regarding the impact
of the starting positions being fixed versus being distributed
with the equilibrium PDF on the properties of diffusion in a
parabolic potential, the Ornstein-Uhlenbeck process. It was
found, inter alia, that the MSD-TAMSD nonequivalence at
short lag times indeed disappears when the MSD involves
second averaging over Peq(x0) of all possible starting posi-
tions being sampled from the equilibrium-state PDF, 〈〈(x(t ) −
x0)2〉Peq(x0 )〉. The “confining” Ornstein-Uhlenbeck process is
similar to resetting-based protocols also in terms of long-time
MSD/TAMSD plateaus featuring 〈δ2

pl〉/〈x2
pl〉 = 2 [again, for

the starting positions distributed with Peq(x0)] [221]. The ef-
fects of distributed x0-positions onto nonergodicity of various
reset anomalous-diffusion processes will be the subject of our
future investigations.

C. Applications and further developments

Our TAMSD-based approach to reset stochastic processes
seems more natural for examining the continuous trajec-
tories, emerging, e.g., as outputs in single-particle-tracking
experiments, as compared to the MSD-based methods. Some
methods for the analysis of abrupt transitions and the detection
of change-points in time series, inter alia, in the presence
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of measurement uncertainties, were developed recently [225]
and applied to predicting the moments of several economic
crashes. With our quantifiers, the predicted differences in the
short-lag-time scaling of the mean TAMSD for reset FBM—
namely, a sublinear and linear TAMSD growth depending on
the value of Hurst exponents, see Sec. III C—could help us
to assess (e.g., upon varying H and comparing with the MSD
growth) if the underlying dynamics is indeed of FBM-type.

Straightforward future developments of this study is to ap-
ply the TAMSD- and EB-based formulation to other stochas-
tic processes with a resetting dynamics imposed—such
as CTRWs [16,37,38,55,62,71,130,226], Lévy walks/flights
[227], SBM [53,54,131], exponential SBM [137], diffusion
with multiple mobility states, the Ornstein-Uhlenbeck process
[221,222], geometric BM [228–232], diffusion models with
distributed [233,234], and “diffusing diffusivity” [150,235–
243] as well as various “hybrid” processes (SBM-HDPs [132],
FBM-(diffusing diffusivity) [21], SBM-(diffusing diffusivity)
[135], etc.). Also, one can employ other types of resetting
protocols [periodic, power-law, and other functional forms for
ψ (r) distributions; resetting when particular xmax values are
reached, to distributed resetting points, with memory effects,
etc.] and to consider the underdamped versions [135,137]
of anomalous-diffusion processes (with the initially ballistic
MSD) with resetting to unveil the differences from the behav-
iors reported here for reset FBM, HDPs, and HDP-FBM as
well as to mimic relevant experimental situations.

Recently, an experimental realization of diffusion of
a colloidal particle with resetting implemented via holo-
graphic optical tweezers was reported [67], possibly allowing
position- or energy-dependent resetting of trap-confined
beads [36] and dragging particles [73] in external traps.
The ability and sensitivity of such optical-trap-based se-
tups to infer the underlying stochastic process governing
the particles’ motion—as a function of resetting conditions
and other relevant parameters—remains to be quantified.
Moreover, performing such optical-traps experiments with
micron-sized beads in crowded environments of living
cells—to infer whether FBM or viscoelastic diffusion or
restricted/compartmentalized diffusion is at play—can poten-
tially have additional complications.

We hope that the theoretical and experimental re-
setting communities will find the current time-averaging
single-trajectory-based approach—with the concepts of
TAMSDs and TAMSD-irreproducibility embodied by the EB
parameter—useful to infer the degree of nonergodicity for
other diffusion models and real physical systems in the pres-
ence of [stochastic] resetting dynamics.
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APPENDIX A: TAMSD OF RESET FBM:
SHORT LAG TIMES

We start with the autocorrelation function of FBM with
Poissonian resetting at a rate r obtained in Ref. [42],

〈x(t + 
)x(t )〉

= K2H e−r


{∫ t

0
re−rτ

(
τ 2H + (τ + 
)2H − 
2H

)
dτ

+ e−rt (t2H + (t + 
)2H − 
2H )

}
, (A1)

and with the expression for the MSD of SBM under a
constant-rate resetting (substituting the SBM exponent α via
the Hurst exponent H of FBM as α = 2H) [53,54]

〈x2(t )〉 = 2K2Ht2H e−rt + 2K2H r−2Hγ (2H + 1, rt ), (A2)

where the (lower) incomplete Gamma function is

γ (a, z) =
∫ z

0
e−xxa−1dx. (A3)

The TAMSD of Eq. (9), with the integrand

〈[x(t + 
) − x(t )]2〉
= 〈x2(t + 
)〉 + 〈x2(t )〉 − 2〈x(t + 
)x(t )〉, (A4)

can then be presented as a combination of two terms

〈δ2(
)〉 = 2K2H

T − 


∫ T −


0
dt{(t + 
)2H e−r(t+
)

+ t2H e−rt − e−r
e−rt (t2H + (t + 
)2H − 
2H )}

+ 2K2H

T − 


∫ T −


0
dt

{
r−2Hγ (2H + 1, r(t + 
))

+ r−2Hγ (2H + 1, rt )

− e−r

∫ t

0
re−rτ (τ 2H + (τ + 
)2H − 
2H )dτ

}
.

(A5)

In the limit of vanishing lag times, at 
/T � 1, at the
condition of multiple resetting events within a trajectory of
length T , given by

rT � 1, (A6)

the first integral in Eq. (A5) can be neglected compared to
the second term. The second term (after taking the integrals)
yields the approximate result for the TAMSD

〈δ2(
)〉 ≈ 2K2H

T − 


∫ T −


0
dt

{
(1 − e−r
)r−2Hγ (2H + 1, rt )

+ 
2H e−r
(1 − e−rt )
}
. (A7)

In the limit of long enough trajectories and short enough lag
times, at

r
 � 1, (A8)
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the first term in the integrand of Eq. (A7) yields that for

2 > 2H > 1 (A9)

the leading TAMSD behavior is given by

〈δ2(
)〉 ≈ 2K2H�(2H + 1)r1−2H × 
1. (A10)

On the contrary, for

0 < 2H < 1, (A11)

the second term in Eq. (A7) gives the leading contribution to
the short-lag-time TAMSD asymptotic that is sublinear in 
,

〈δ2(
)〉 ≈ 2K2H × 
2H . (A12)

The asymptotes of Eqs. (A10) and (A12)—which are the
asymptotic relations (30) and (31) in the main text—can
clearly be obtained also via first expanding the integrand of
the TAMSD in Eq. (A5) for small 
 and then taking the limit
of long times (not shown in detail).

APPENDIX B: MSD OF RESET HDP-FBM

For the resetting dynamics of a stochastic process with
the Gaussian PDF for particle displacements P0(x, t ) in the
presence of exponential resetting [a constant rate of reset-
ting, Eq. (2)], the PDF of the reset process P(x, t ) can be
expressed via the PDF of the unperturbed process P0(x, t )
through [53,54]

P(x, t ) = e−rt P0(x, t ) +
∫ t

0
re−rτ × P0(x, τ )dτ. (B1)

The first term in Eq. (B1) signifies the probability of no
resetting events taking place from time 0 to time t (with the
exponentially decaying probability of such an event), while
the second term integrates over all multiple resetting events
possible to occur in incremental time-steps during the same
time period. Multiplying both sides of Eq. (B1) by x2 and
integrating over all possible particle positions one gets for the
MSD of the reset HDP-FBM process that

〈x2(t )〉 = e−rtCpHt2H p + CpH r−2H p × γ (2H p + 1, rt ),
(B2)

where the definitions and notations (41) and (A3) are used.
The height of the MSD plateau at long times [for rt � 1 and
many resetting events taking place by time t (long-time limit
of the NESS)] is dominated by the second term in Eq. (B2),〈

x2
pl

〉 ≈ CpH�(2H p + 1)/r2H p, (B3)

that yields Eq. (50) in the main text. At short times (when the
condition rt � 1 is satisfied) the Taylor expansion of Eq. (B2)
yields that the MSD starts nearly unperturbed, as [155]

〈x2(t )〉 ≈ CpHt2H p, (B4)

that gives Eqs. (39) and (49) in the main text.

APPENDIX C: PDF OF RESET HDP-FBM

Starting with the PDF of HDP-FBM in the absence of
resetting [155],

P(x, t ) = |x|1/p−1√
4πD0Ht2H

exp

[
−

( |x|1/p

(2/p)
√

D0Ht2H

)2
]
, (C1)

and using the relation (B1) connecting the nonreset and the
reset PDFs, in the limit of long times (when the term of
no-resetting up to time t , e−rt P0(x, t ) in Eq. (B1), can be
neglected) we arrive at

P(x, t ) ≈ r
|x|1/p−1

√
4πD0H

∫ t

0
e−rτ τ−H e−DpH (x)τ−2H

dτ, (C2)

where we defined for brevity

DpH (x) = |x|2/p/[D0H (2/p)2]. (C3)

Following the strategy outlined in Ref. [53,54] for the PDF
of reset SBM, we use the Laplace method to approximate
the exponent-containing integral in Eq. (C2). The maximum
of a negative-power exponent in Eq. (C2) is achieved at the
minimum of its argument, namely, at

τmin = [2HDpH (x)/r]
1

2H+1 . (C4)

This yields for the second derivative

(rτ + DpH (x)τ−2H )′′τ,τ |τmin = 2H (2H + 1)DpH (x) × τ−2H−2
min ,

(C5)
so that the power of the exponent becomes

rτmin + DpH (x)τ−2H
min

= r
2H

2H+1 [DpH (x)]
1

2H+1

(
(2H )

1
2H+1 + (2H )−

2H
2H+1

)
. (C6)

For the prefactor of the exponent in the resulting
PDF, exp[−(rτmin + DpHτ−2H

min )], obtained after applying the
Laplace method to Eq. (C2), one gets

r
|x|1/p−1

√
4πD0H

√
2π

2H (2H + 1)DpH (x)τ−2H−2
min

τ−H
min

=
√

2r√
2H (2H + 1)

(
2H p2

4D0H r

) 1
2H+1

(
1

p

)
|x| 2−p−2H p

p+2H p . (C7)

Combining (C6) with (C7) and substituting the explicit x-
dependence of DpH from Eq. (C3), we arrive at the final
approximate result for the PDF of HDP-FBM in Eq. (51) of
the main text,

P(x) ≈
√

2r√
2H (2H + 1)

(
2H p2

4D0H r

) 1
2H+1 1

p
|x| 2−p(2H+1)

p(2H+1)

×exp

[
−
( |x|2/pr2H

D0H (2/p)2

) 1
2H+1(

(2H )
1

2H+1 +(2H )−
2H

2H+1

)]
.

(C8)
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Naturally, in the absence of space-dependent diffusion (when
the MSD is linear, p = 1) the NESS PDF of HDP-FBM
Eq. (51) turns after putting 2H = α into the PDF of SBM with
fully renewal resetting [53,54]; see also Eq. (26).

APPENDIX D: SUPPLEMENTARY FIGURES

Here we present some auxiliary figures supporting the
claims in the main text, see Figs. 13–26.

(a)
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100
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(b)

10-2 100 102

10-2

100

(c)

10-2 100 102
10-4

10-2

100

FIG. 13. The same as in Fig. 2, for the same parameters, except
for H = 0.99 and varying resetting rate r (the values are indicated in
the plots), with the same asymptotes shown.
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(b)

10-2 100 102

10-1

100

101

(c)

10-2 100 102
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FIG. 14. The same as in Fig. 13, for the same parameters except
for H = 0.2 and dt = 10−3, computed for varying rate of resetting r.
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FIG. 15. Exemplary trajectories of reset (red) and nonreset (blue)
FBM for H = 0.2 for panel (a) and H = 0.8 for panel (b), with other
parameters being the same as in Fig. 2.
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approx. MSD

FIG. 16. Comparison of the MSD plateaus of reset FBM in the
NESS between Eq. (25) and using the approximate PDF form of
Eq. (26), plotted for varying Hurst exponents.
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FIG. 17. The same as in Fig. 3, for r = 10, dt = 10−2, and H =
0.2. The results of numerical integration of the exact PDF expression
Eq. (B1) are the cross symbols.
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FIG. 18. The same as in Fig. 17, for the same parameters, except
for dt = 10−3 and r = 10 being used in simulations.
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FIG. 19. Variation of the integral of the approximate Laplace-
method PDF given by Eq. (26), computed numerically versus the
Hurst exponent H . The inset shows the normalized separation x�

expressed by Eq. (28) versus H .
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-4 -2 0 2 4
10-3

10-2

10-1

100

FIG. 20. Results of simulations of subdiffusive reset FBM com-
pared to the PDF (26) and to the leading decay law (27) (derived
first in Appendix 1 of Ref. [25]). The threshold separation (28) is the
dotted line. Parameters: T = 102, dt = 10−2, H = 0.2, and r = 1.

10-1 100 101
10-1

100

101

FIG. 21. PDF values of reset FBM at x = 0 shown for varying
reset rates and for different Hurst exponents. The theoretical predic-
tions (29) are the dashed lines of the respective color. Parameters:
T = 102 and dt = 10−2.

0 1 2 3
10-2

10-1

100

101

(
)

FIG. 22. Scatter distribution of TAMSD amplitudes, defined as
φ[ξ (
)] in Eq. (12), computed at the shortest lag time 
 = 
1 =
10−2 for reset superdiffusive FBM with H = 0.8 and for r =
0.3, 1, 3, with other parameters being the same as in Fig. 2(c).
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FIG. 23. The same as in Fig. 5, for the same parameters, except
for dt = 
1 = 10−3.

10-6 10-4 10-2 100 102

10-5

100

FIG. 24. The same as in Fig. 5, with EB computed at 
1 = 10−2,
for the same parameters except for T = 103 (see the legend).
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FIG. 25. PDF values of the reset HDP-FBM process for p =
1/2 (or γ = −2), with the regions of bimodal (rare resetting) and
trimodal (frequent resetting) PDF shapes being indicated for each
choice of the Hurst exponent, computed at x = x0 = 0.01 from com-
puter simulations. The analytical asymptotes (29) and (53) are the
dashed lines of the corresponding color shown, respectively, in the
regime of large and small rates of resetting. The simulation data
for dt = 10−2 and 10−3 are shown by filled and empty symbols,
correspondingly. Parameters: T = 10 with dt = 10−3 and T = 102

with dt = 10−2, see the legend for details, while ensemble averaging
executed over N = 8000 HDP-FBM trajectories.
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FIG. 26. The same as in Fig. 12, for the same parameters, except
for T = 10.

APPENDIX E

BM: Brownian motion;
SBM: scaled BM;
FBM: fractional BM;
HDPs: heterogeneous diffusion processes;
CTRWs: continuous-time random walks;
PDF: probability density function;
MSD: mean-squared displacement;
TAMSD: time-averaged MSD;
NESS: nonequilibrium stationary state.
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