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Abstract
We analyze historical data of stock-market prices for multiple financial indices using the concept of
delay-time averaging for the financial time series (FTS). The region of validity of our recent
theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and
delayed time-averaged mean-squared ‘displacements’ (TAMSDs) of the historical FTS is extended
to all lag times. As the first novel element, we perform extensive computer simulations of the
stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate
a quantitative agreement with the analytical long-term price-evolution predictions in terms of the
delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust
procedure of determination of the model parameters of GBM via fitting the features of the
price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of
single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically
based assessment and rationalization of probabilistic trends in the evolution of stock-market prices.

1. Introduction

1.1. Evolution of stock-market prices and stochastic processes with multiplicative dynamics
Variations of stock-market prices are generally believed to be unpredictable, with completely random price
fluctuations obeying memory-less random walks [1–4]. This was first argued in 1900 by Bachelier [1], who
introduced (before Einstein and Langevin) the concept of arithmetic Brownian motion (BM), developed fur-
ther in 1908 by Bronzin [2]. Bachelier and Bronzin laid the foundation of modern financial mathematics,
the starting point for applying stochastic processes and statistical analysis to time-evolution of stock prices,
S(t). Generations of brilliant scientists—economists, econometricians, econophysicists, specialists of financial-
time-series (FTS) analysis, etc (including many Nobel-prize winners)—have been focusing their long-term
efforts on unraveling the general underlying functioning principles of financial markets and predicting the
governing laws of formation and evolution of asset prices [1–45] (see also the key books [46–63]). One of
the main conjectures for financial-market models is that consecutive price changes and respective returns,
rn = [S(tn) − S(tn−1)]/S(tn−1), are uncorrelated in time (Bachelier’s first law [1]) and can be represented by
independent identically distributed Gaussian random variables.

The ground-breaking discovery in financial mathematics was the development of the paradigmatic geo-
metric BM (GBM) process (also called ‘exponential’ or ‘economic’ BM). It was ‘revived’ in 1965 by Samuel-
son [12] from Bachelier’s works and the respective closed-form option-pricing formula utilizing the GBM
process was invented by Black, Scholes, and Merton (BSM) in 1973 [21–26]. This famous BSM model was
generalized i.a., by Cox, Ingersoll, and Ross [32], Hull and White [33], Wiggins [J B Wiggins, Option values
under stochastic volatility: theory and empirical estimates, J. Financial Econ., 19, 351 (1987)], Stein and Stein
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[E M Stein and J C Stein, Stock price distributions with stochastic volatility: an analytic approach, Rev. Finan-
cial Studies, 4, 727 (1991)], and later by Heston [36] who presented the asset-price-evolution formula in the
presence of stochastic volatility or ‘riskiness’ (see also references [23, 28, 31, 32, 64] for models of time-varying
and price-dependent volatility3,4. In the BSM model, the evolution of asset prices obeys GBM with a log-
normal distribution of prices and log[price(time)] increasing roughly linearly with time (see also section 3.1).
The models of jump-diffusion [25, 28, 41, 66–71], square-root [32] diffusion, time-changed, and alternative
[28, 72–75] stochastic processes for option pricing were proposed as well.

The exponential growth of stock-market prices—that appears to be consistent with many GBM-based
models—is at the core of a highly speculative [76] (as mentioned already by Bachelier [1]) stock-price-
formation process. The quickest price and profit growth [77–79] is also attributable to commodity-oriented
(oil, gold, etc) [80], housing and real-estate [81] markets, and, in particular, cryptocurrencies [82–84] as well
as other financial pyramids5. We refer the reader to the reviews [78, 86] for the basic concepts of economics
(including volatility, economic crashes, and human behavior) as well as mathematical models/approaches in
modern finance.

Despite a number of inherent limitations and idealizations of the BSM-based model [87, 88] and certain
claims that option-traders rarely [65, 85] use it as their main decision-making strategy (employing complicated
heuristic/empirical models instead), the interest to GBM-type models from the community of stochastic pro-
cesses stays persistent [89–91]. Mathematically, numerous extensions of GBM and BSM model were developed
(the list of studies is too long to adequately overview it here), including, i.a., pricing of lookback and bar-
rier options, options with constant elasticity of variance, GBM modifications based on fractional equations,
stochastic volatility, with anomalous-diffusion processes [92–101], and subordination [102, 103]. The con-
cept of (subdiffusive) continuous-time random walks was also employed [104, 105] to describe periods of
price stagnation in FTS (as ‘trapping events’ with distributed waiting times) [106–108]. Some aspects of
(non)-ergodicity [109–111] were also studied for GBM [112, 113] and discussed for economics in general
[114–117].

As no statistical ensemble of ‘independent’ FTS can be obtained at identical and controlled conditions, no
reproducible ‘economic experiments’ can in principle be conducted to probe other possible price-evolution
scenarios. The absence of ensemble averaging as such—the nonexistence of the ensemble-averaged mean-
squared ‘displacement’ (MSD)—undoubtedly favors the single-trajectory-based approaches for the FTS-
analysis. Here, the ‘moving average’ and exponentially-weighted moving average are often used to smoothen
the price trends and optimize profits for certain trading strategies employing price fluctuations around those
averages.

1.2. Market efficiency, cost of information, and behavioral finance
The mathematical models of GBM-type—the main focus of our analytical analysis—clearly oversimplify the
behavior of real financial markets. The space of factors and parameters affecting actual price variations of a
stock/asset is huge and below we shortly overview some mechanisms of price-formation processes.

The response of markets to financial news, relevant judicial decisions, and macroeconomic announcements
[3, 5, 86, 118, 119] in terms of reaching an ‘equilibrium’ via fluctuations and price-formation processes is nei-
ther exactly defined nor reproducible [120]. This process involves aspects of information spreading, numerous
feedback mechanisms, principles of behavioral finance [121–125] (including beliefs [115], expectations, over-
confidence, heterogeneity of traders [115, 126], gambling behavior, speculation, reaction to trends and rumors,
‘magical thinking’ [122], etc). In a hypothetical scenario of perfectly efficient, infinitely ‘liquid’ and memory-
less markets—with all relevant information being publicly available and instantly reflected in the current price

3 A contract entitling its holder (with no obligation) to buy an underlying asset at a preset price on an a given date in the future is a ‘call’
option (American-type). This is ‘striking’ or ‘exercise’ price, while the expiration date is the maturity time of the option [18, 22, 23]. The
goal is to price an asset/derivative provided the strike price and expiration date are known (to sell it with profit upon expiration). The BSM
model is the general framework to attack this goal, working backward in time to asses option prices. In contrast, a contract that entitles its
holder to sell a given asset or share at any time on or before expiration is called a ‘put’ option (American-type) [22, 23]. European-type
options differ by the fact that they cannot be exercised before the last day of the contract.
4 From a historical perspective, similar option-price-valuation formulas were discussed by Bronzin in 1908 [2], Sprenkle in 1961 [8],
Boness in 1964 [11], Samuelson in 1965 [12, 18], and Thorp in 1969 [17] (see the discussion by Haug and Taleb [65] and the BSM story
by Black [26]). We also refer to the bond-pricing model by Cox et al [32], considered also in the presence of inflation.
5 The Dutch tulip mania of 1636–1637 is the first known speculative bubble. The rational market principles fail at the times of financial
crises (either of 1873 and 1893 panics, the ‘great crash’ of 1929 (‘Black Friday’), the ‘Black-Monday’ of 1987, the 1998–1999 Russian
financial crisis, the 2000 Dot-Com bubble, the 2008–2009 financial crisis, the BitCoin crash late December 2017, and the economic
decline/crash caused by rapidly growing Covid-19 pandemic uncertainties in March–April 2020, etc). These crises—often inevitable,
expected but almost unpredictable ‘Black-Swan’-like [85] events—are needed i.a. to reload the ‘price-growth spring’ via regaining the
confidence of investors in a given stock (e.g., after its ‘rebranding’, splitting, merging, etc).
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[3]—even a tax-free trading would be hardly profitable. Real financial markets are extremely complex and out-
of-equilibrium systems [86], often operating at a limited ‘liquidity’. Thus, some short-horizon trends of price
evolution may potentially be predictable from the incoming information and based on statistical analyses of
price-fluctuation patterns of market response to similar information in the past.

The traders’ anticipation, numerous sources and types of noise [120], delays and memories are existential
for trading and ‘functioning’ of the market. In traditional economic theories, the trading events act as an
instrument to dynamically probe and approach the market equilibrium (Walras’ tâtonnement process, see
reference [86]), via regulating supply and demand [86]. This equilibrium can, however, be illusive or even
artificially created, e.g., by ‘big players’ controlling the market [115]. These (usually much more informed
investors) trade profitably knowing the ‘true price’ [35, 115, 118, 120, 127], often at the expense of less informed
traders [128].6 The cost of information acquisition prevents the market from being ‘informationally efficient’
[118, 129, 130] impeding (or even destroying) the ‘fair play’ among the participants and often violating the
market-efficiency hypothesis.

As an indication of private-information-driven changes of volatility, the fluctuations of FTS were demon-
strated (over multiple time domains) to be far too large [131], and with price changes being only partially
attributable to important financial news [127, 132]. The variations of stock-market prices were also shown to
fail in reflecting rationally changes in fundamental values [133]. This questions the relative role of exogenous
(external) versus endogenous fluctuations (or ‘self-generated’ price changes) in such price-formation pro-
cesses. The latter are often irrational and affected possibly more by behavioral-finance principles and human
decision-making principles, rather than by real values.

Long-term speculative exponential GBM-like growth of stock-market prices is, thus, supplemented by dis-
proportionably volatile and often irrational short-term price variations (with noise- versus information-based
trends [86, 120, 134] being impossible to separate rationally). Moreover, market ‘overreaction’ to new finan-
cial information is well known [121, 135]. This can be a useful instrument for the traders to artificially create
bigger winning margins first in order later to ‘capitalize’ larger profits on a price ‘bounce-back’7.

The exponential GBM-like price growth can, in addition, be interrupted by hardly predictable [85]—but
possibly inevitable or even pre-programmed—price drops at times of market crashes and financial bubbles
[80, 81, 85, 139–142]. The ‘efficient market hypothesis’ [12, 19] implies that the variation of the unanticipated
part of stock prices should be a martingale [25], with no correlations in price differences [4, 12] (see also refer-
ence [136]). The speculative bubbles are based on overoptimistic expectations, the herding behavior of market
participants [143–146]—particularly in periods of extreme volatilities (in high-risk–high-reward times), and
pure greed—all accelerating the price dynamics and growth, with a possibly superexponential [147, 148] price
‘explosion’ near the bubble. The burst of speculative bubbles and subsequent market crushes are inconsistent
with the hypothesis of efficient markets [5, 19, 27] (the empirical evidence of the latter are, in fact, insufficient
[133, 136, 138, 149]).

1.3. Outline of the paper
The paper is organized as follows. In section 2 we recapitulate on the recent results of the time-averaged
MSD (TAMSD) δ2

i (Δ) analysis for GBM and historical stock-market prices [150]. In section 3 we present
the essential details of the analytical model of GBM. In section 3.1 we introduce the formalism for GBM,
in section 3.2 the key expressions for its delayed TAMSD δ2

d,i(Δ) are derived. In section 4 we discuss the
numerical solution of the stock-market price-evolution equation and present the details of computer sim-
ulations for GBM. The findings for δ2

i (Δ) and δ2
d,i(Δ) are described and compared to analytical results for

GBM. In section 5 we present the main results of the FTS-analysis in terms of the delayed TAMSDs for a num-
ber of indices. In section 6 we summarize the results, list general conclusions, and discuss possible further
developments.

Our main target here is to present the full analytical results for δ2
d,i(Δ) (generalizing and extending

those of reference [150]), to confirm the agreement of its behavior with the results of computer simula-
tions and the analysis of evolution of stock-price data (at all lag times). We present some auxiliary figures
in appendix A, some derivations in appendix B, and the data-driven procedure of parameters estimation in
appendix C.

6 The latter can only react to particular news/trends, conveyed in the already-adjusted stock prices (with an unknown information context
[86]), and thus predestined in a long run to make less money than the better-informed ones. No trading would likely be profitable for
informed traders if all information they possess (including those on future orders or deals) were instantly publicly available.
7 Some correlations of price changes and certain predictability of returns also question the paradigm of stock-market prices being describ-
able by unbiased/random walks [136, 137] as well as the ‘efficient market hypothesis’ itself [138]. This, in turn, indicates inefficiency of the
underlying mechanisms of price formation, limiting a set of mathematical models and stochastic processes implementable to quantitatively
describe such stock-price variations.
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2. Previous results for the TAMSD of GBM: aged and delayed properties
In contrast to standard moving/‘rolling’ average—averaging prices over n preceding points along an FTS—the
TAMSD operates with all points of an FTS Si(t) of length T yielding the trajectory-averaged displacements at
varying values of the lag time, 0 < Δ < T, via integrating the squared stock-price increments as [150]

δ2
i (Δ) =

1

T −Δ

∫ T−Δ

0
[Si(t +Δ) − Si(t)]2dt. (1)

Here, Si(t) is the price of the ith stock. In equation (1) the price increments shifted in time by Δ are squared
and averaged over the FTS. The discrete interpretation of (1) for equidistantly sampled input data—such
as in historical FTS—is straightforward. The TAMSD concept—ubiquitously used for the analysis of single-
particle-tracking data [154–156]—was employed to the FTS-analysis in reference [150], a foundation for
the current study. The mean TAMSD for N independent trajectories constructing a ‘satisfactory’ statistical
ensemble is 〈

δ2(Δ)
〉
=

1

N

N∑
i=1

δ2
i (Δ). (2)

We summarize below the basic concepts and main results of reference [150], focusing in particular on the
concepts of the aged and delayed TAMSDs. First, we confirmed that the TAMSD behaved strictly linear with
the lag time Δ for a large number of companies of various classes, with

〈
δ2(Δ)

〉
∼

〈
S2(T)

〉
×Δ/T. (3)

This behavior is consistent [150] with the predictions of the standard-GBM model highlighting, thus, weak
ergodicity breaking [155] emerges for this process at short lag times, at Δ � T. Specifically, the exponentially
growing MSD for GBM (16) contrasts the linearly growing mean TAMSD in equation (3). We extend this
analysis here for all lag times Δ and present nontrivial features of the TAMSD at later stages of the trajectories.

Second, we introduced the aged

δ2
a,i(Δ) =

1

T −Δ

∫ ta+T−Δ

ta

[Si(t +Δ) − Si(t)]2dt (4)

and the delayed

δ2
d,i(Δ) =

1

T − td −Δ

∫ T−Δ

td

[Si(t +Δ) − Si(t)]2dt (5)

TAMSDs and enumerated them as functions of the aging ta and delay td time for a large number of FTS [150].
The modified TAMSDs (4) and (5) were also computed analytically for standard GBM with a constant volatility
σ. The mean aged TAMSD was found (in the limit of short lag times, Δ � T, and with no drift) to grow nearly
exponentially with ta both for real FTS and for GBM predictions, namely

〈
δ2

a(Δ)
〉
∼

〈
δ2(Δ)

〉
× eσ

2ta . (6)

The stock-specific or ‘idiosyncratic’ factor σ2
i in equation (6) was, however, shown [150] to yield a spread of

the distribution of log
[
δ2

a,i(Δ)
/
δ2

i (Δ)
]

when this ratio is examined as a function of aging time ta for different

stock-indices at a fixed lag time Δ. The most relevant difference between the aged and delayed TAMSDs is the
fact that δ2

d,i(Δ) assigns more ‘weight’ to the data points toward the end of FTS. This key difference yields (for
often nearly exponentially growing FTS) some universal and parameter-free relations for the delayed TAMSD.

Third, the most interesting finding of reference [150] was the universal behavior predicted for the delayed
TAMSDs versus td for all stock indices examined, with

log
[
δ2

d,i(Δ)
/
δ2

i (Δ)
]
= log

[〈
δ2

d(Δ)
〉/〈

δ2(Δ)
〉]

∼ td/T, (7)

in the limit of short delay times and short lag times, at

{td,Δ} � T. (8)

The parameter-free master curve (7) obtained for many FTS is consistent [150] with the GBM-based solution
in the same limit (8). The concept of the delayed TAMSD (5) introduced in reference [150] is, therefore, espe-
cially useful for the analysis of fast-growing FTSs and for assessing their universal parameter-free characteristic
features, such as (7).

4



J.Phys.Complex. 2 (2021) 045003 (30pp) S Ritschel et al

Our current analysis extends the consideration of δ2
d,i(Δ) to the entire range of lag- and delay-times. We

demonstrate, i.a., that the behavior of the later parts of the log
[
δ2

d,i(Δ)
/
δ2

i (Δ)
]

versus td curves with a faster-

than-linear growth are not inaccuracies of the basal law (7) observed at short lag times. This ‘nonlinear’ growth
is rather a real feature of FTS, which agrees with both the GBM predictions and results of computer simulations,
as shown below. We also clarify the implications of financial crashes on deviations from typical GBM-based
evolution of FTS observed for the TAMSD in crisis-free times.

3. Model and analytical results

3.1. GBM: equation, general solution, model parameters, and moments
Since Bachelier [1], the evolution of a priori uncorrelated [3] stock-market prices is described using the concept
of random walks. According to the BSM model, the asset price S(t) obeys a stochastic differential equation
driven by multiplicative [152] noise,

dS(t) = μS(t)dt + σS(t) × dW(t), (9)

where W(t) is the standard Wiener process defined via zero-mean white Gaussian noise ξ(t) as

W(t) =

∫ t

0
ξ(t′)dt′. (10)

Equation (9) is considered in the Itô formalism. The constant parametersμ and σ denote the drift and volatility
of this process, respectively (see the discussion in section 6.2). After applying Itô’s lemma [57, 153], one can
derive from (9) the partial differential equation yielding the Black–Scholes formula (the BSM model). The
solution of equation (9) in Itô representation defines GBM as a Markovian process (exponential of BM X(t))
of the form

S(t) = S0 e(μ−σ2/2)t+σW(t), (11)

where S0 ≡ S(0) is the initial price, and
S(t)/S0 ∼ eX(t). (12)

The first and second moments of GBM, defined as

〈Sq(t)〉 =
∫ ∞

0
Sq(t)P(S, t)dS, q = {1, 2}, (13)

are obtained via averaging (11) with the log-normal distribution8 [22, 23]

P(S(t), t|S0, 0) =
exp

(
− [log[S(t)/S0]−(μ−σ2/2)t]2

2σ2t

)
√

2πσ2S(t)2t
. (14)

The latter satisfies the Fokker–Planck-like partial-differential equation (see references [25, 28, 106, 108])

∂P(S, t)

∂t
= −μ

∂[SP(S, t)]

∂S
+

σ2

2

∂2[S2P(S, t)]

∂S2
(15)

with the δ-function-like initial condition, P(S(0), t = 0) = δ(S(0) − S0). The averaging procedure (13) yields

〈S(t)〉 = S0eμt and
〈

S2(t)
〉
= S2

0eσ
2
μt . (16)

For brevity, we use hereafter the following definition

σ2
μ = 2μ+ σ2. (17)

The variance of GBM is given by
〈[

S(t) − 〈S(t)〉
]2
〉
= S2

0 e2μt
(

eσ
2t − 1

)
. (18)

8 The log-normal distribution of stock prices after any time interval is another fundamental postulate of the BSM model. The other
assumptions are, i.a., (on the ‘model’ level) that trading is continuous in time, the price variations are continuous and jump-free in time,
the adjustment to a new information is instant and memory-less, and the actual price reflects all information available. Additionally
(on the ‘executional’ level), no restrictions on short-term sells are imposed, no taxes or retail commissions are to be paid from possible
profits, no general transaction/trading fees exist, etc (see reference [25] for option-pricing models with discontinuous price variations).
Importantly, for GBM models the volatility is known parameter constant in time, that is a rather unrealistic assumption [120].
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For GBM, the exponential growth of
〈

S2(t)
〉

in (16) stems from the BM of the log(price), with the variance of
fluctuations growing linearly with time (as in the original Bachelier’s study [1]).

3.2. TAMSD of GBM: nonaged, aged, and delayed cases
The relations (16) and (18) follow from the general ‘stochastic’ solution (11) and one- and two-
point probability-density functions of the Wiener process,

P1(W1, t1) = exp

(
−W1(t1)2

2t1

)
/
√

2πt1 (19)

and (at t1 > t2)

P12(W1, t1;W2, t2) =
exp

(
− (W1(t1)−W2(t2))2

2(t1−t2)

)
√

2π(t1 − t2)
, (20)

computing, respectively,

〈Sq(t)〉 =
∫ ∞

−∞
[S(W , t)]qP1(W , t)dW (21)

and 〈
(S(t) − 〈S(t)〉)2

〉
=

∫ ∞

−∞
(S(W , t) − 〈S(W , t)〉)2 × P1(W(t), t)dW. (22)

Similarly, the integrand of TAMSD (1) can be expressed via

〈
[S(t +Δ) − S(t)]2

〉
=

∫ ∞

−∞
S2(W1, t) × P1(W1, t)dW1 +

∫ ∞

−∞
S2(W2, t +Δ) × P1(W2, t +Δ)dW2

− 2

∫ ∞

−∞

∫ ∞

−∞
S(W1, t) × P1(W1, t)S(W2, t +Δ) × P12(W1, t;W2, t +Δ)dW1 dW2

(23)

that yields

〈
[S(t +Δ) − S(t)]2

〉
= S2

0

(
1 − 2 eΔμ + eσ

2
μΔ

)
× eσ

2
μt . (24)

Taking the final TAMSD integral over t from the last exponent in (24), one gets for the standard (nonaged),
aged, and delayed TAMSDs of GBM, respectively,

〈
δ2(Δ)

〉
=

S2
0

(
1 − 2 eΔμ + eσ

2
μΔ

)
(T −Δ)σ2

μ

[
eσ

2
μ(T−Δ) − 1

]
, (25)

〈
δ2

a(Δ)
〉
=

S2
0

(
1 − 2 eΔμ + eσ

2
μΔ

)
(T −Δ)σ2

μ

[
eσ

2
μ(ta+T−Δ) − eσ

2
μta
]

, (26)

and 〈
δ2

d(Δ)
〉
=

S2
0

(
1 − 2 eΔμ + eσ

2
μΔ

)
(T −Δ− td)σ2

μ

[
eσ

2
μ(T−Δ) − eσ

2
μtd
]
. (27)

From equation (25) in the absence of drift, at short lag times (Δ � T) and for long traces (σ2T � 1) one
gets the fundamental relation (3) [150]. From equation (26) relation (6) follows at short lag and aging times,
{ta,Δ} � T. Finally, from (27) at short lag and delay times ({td,Δ} � T) one arrives at the fundamental law
(7). The TAMSD analytical expressions (25)–(27) is our first key result. Although derived to get the short-time
asymptotes before [150], the complete expressions are presented here for the first time. We refer to appendix
B for an alternative TAMSD derivation.

4. GBM: results of computer simulations versus theory

4.1. Numerical integration scheme
As follows from (12), to simulate GBM the Wiener process W(t) needs to be exponentiated. The increments
of W(t) are independent and normally distributed random variables with mean zero and variance (t1 − t2), so
that

W(t1) − W(t2) ∼ N (0, t1 − t2). (28)
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Figure 1. Variation and spread of individual TAMSDs for N = 25 GBM traces generated in silico (left panels) and the respective
initial-lag-time-value-normalized TAMSD trajectories (right panels). The values of σ are indicated in the plots, μ = 0.1 for all the
panels, the trace length is T = 35 years, and the lag-time increment is δt = 1 day. The linear asymptote (35) is the dashed line and
the mean TAMSDs is the thick black curve in each panel.

As W(t1) ∼ N (0, t1) for t2 = 0, using (12) for the mean and variance of X(t) we get, respectively, 〈X(t)〉 =(
μ− σ2/2

)
t and 〈[

X(t) − 〈X(t)〉
]2
〉
= σ2t. (29)

The subsequent values of the Wiener process are generated using

Wn+1 = Wn +
√

tn+1 − tn × Zn, (30)

where n = {0, 1, 2, . . . , N̄ − 1} is the discretization index and Z ∼ N (0, 1) obeys the normal distribution for
the time points

0 = t0 < t1 < · · · < tN̄ = T. (31)

For a stochastic process X(t) defined by (12) using expression (30) we get

Xn+1 = Xn +
(
μ− σ2/2

)
(tn+1 − tn) + σ

√
tn+1 − tn × Zn. (32)

On the equidistant time-grid with the step-size δt = tn+1 − tn the simple recursion formula [33] for GBM then
becomes

Sn+1 = Sn × e(μ−σ2/2)×δt+σ
√
δt×Zn . (33)

From equation (11) follows that ratio S(t)/S0 is distributed log-normally, namely

S(t)/S0 ∼ log
(
N

[(
μ− σ2/2

)
t,σ2t

])
, (34)

see equation (14). We checked that computer simulations (see figure 1) indeed produce the correct distribution
(34), figure AA1. The time-step in the simulations δt was chosen to be 1 business day or 1/252 of the fiscal year
(unless explicitly specified otherwise). This makes the results of our simulations straightforwardly comparable
with the findings of the analysis of real FTS for classical stocks examined with the same time-step in section 5.1.

4.2. TAMSD
Extensive GBM-based computer simulations deliver novel features for the current study, as compared to the
original data-focused study [150]. Some individual in-silico-generated GBM trajectories and the respective
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Figure 2. Results of computer simulations for the mean TAMSD of GBM (panel (A)) obtained for varying volatility parameter σ
(the data symbols) and the respective analytical results of equation (25). The data in panel (B) are presented after renormalizing
the TAMSD magnitudes to their initial values at Δ = Δ1 = 1 day. For computer-generated GBM FTS the mean TAMSDs were
evaluated for a series of lag times, at Δ = {1, 3, 10, 30, 100, 300, 1000, 3000, 8000 days}, in order to provide a nearly uniform
sampling and data density in log scale. Parameters: μ = 0.1, σ = 0.1, . . . , 0.4, T = 35 years, and N = 106 traces were used for
averaging. Error bars are smaller than the symbol size.

TAMSD paths are shown in figure AA2 for varying trace lengths, T = {1, 2, . . . , 35 years}. We find that—for
the entire range of values of parameters μ and σ used—the TAMSD of GBM for short-to-intermediate lag
times the TAMSD of GBM follows a nearly linear scaling with the lag time,

δ2
i (Δ) ∝ Δ. (35)

For longer lag times, a faster growth of the TAMSD and faster-than-linear scaling with the lag time are
often observed. In this later region—due to the worsening statistics inherent for the TAMSD definition (1)
[154, 155]—considerably fewer increment values are available for time averaging and, therefore, the observed
variations of δ2

i (Δ) with Δ are much stronger. We mention that for a steadily increasing Si(t) realization of
GBM in simulations the TAMSD magnitude increases for longer trace lengths T, while for stalling or dropping
price realizations Si(t) the TAMSD loses this systematic trend, compare, e.g., figures AA2(B) and AA2(H).

In figure 1 we show N = 25 different TAMSD realizations for GBM—each set generated at the same magni-
tudes of drift and volatility—as functions of the lag time and for the trace length of T = 35 years. We recognize
the linear scaling of the TAMSD in the region Δ � T, equation (35). We also find that for relatively small
σ—when the dynamics is mainly impacted by a nonzero value of the drift parameter μ (responsible for the
exponential growth of the first moment of GBM, equation (16))—the TAMSDs reveal a faster-than-linear
growth at later lag times. The spread of individual TAMSDs in a given set of generated curves decreases for pro-
gressively smaller σ values, as expected for the situation when the influence of ‘randomness’ or the underlying
volatility of the process decreases, see figures 1(A) and (B).

For larger σ values the reproducibility of TAMSD realizations for GBM naturally decreases: each
TAMSD becomes more volatile in magnitude and as a result their spread around the mean value increases
dramatically, see figure 1(G). The mean TAMSDs are strongly shifted toward the top region of the distribution
of individual TAMSDs, as illustrated in figure 1(G): we find that often a single trajectory with an extremely
large magnitude dominates the mean TAMSD. With increasing σ the distributions of TAMSDs in figure 1
reveal larger spreads, typical for the GBM process with higher volatilities.
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Figure 3. Right column shows the variation of the delayed TAMSDs δ2
d(Δ) computed for a single GBM S(t) trace, depicted in the

respective panels of the left column at varying delay times, td = {1, 2, . . . , 34} years. For panels of the right panel the
linear-in-lag-time asymptote is shown as the dashed line (without the exact prefactor included). The values of σ are provided in
the plots; other parameters are S(0) = 102 (see short-time regime of the left-column data), μ = 0.1, T = 35 years, δt = 1 day.

Figures 2(A) and (B) illustrate our second key result via demonstrating excellent agreement of the ana-
lytical theory for the nonaged mean TAMSD of GBM (25) and the results of computer simulations. The
linear scaling of the mean TAMSD with the lag time in the limit Δ � T (shown for some GBM traces also
in figures AA2 and 1) is clearly present after averaging. Note that a large set of N = 106 independent GBM
trajectories was used for averaging here, and in most plots with the results of simulations. This very large
statistical ensemble is necessary to compensate for outliers and large-deviation trajectories for this multiplica-
tive and innately highly varying GBM process (such a trace is capable of biasing the mean TAMSD for the
entire ensemble). The size of a proper averaging ensemble was argued to increase exponentially [197] with the
number of points in the time series, N̄, for such processes.

We observe that with increasing volatility σ the magnitude of the TAMSD dramatically increases, see

figure 2(A) for the
〈
δ2(Δ)

〉
variation for GBM. The behavior of the normalized TAMSD, namely of〈

δ2(Δ)
〉/〈

δ2(Δ1)
〉
, shown in figure 2(B) reveals that for smaller σ values the faster-than-linear scaling of〈

δ2(Δ)
〉/〈

δ2(Δ1)
〉

with Δ appears earlier, at lag times Δ ≈ 102 days. For larger volatility values, at σ = 0.3

and 0.4, we (on the contrary) observe a linear growth of
〈
δ2(Δ)

〉/〈
δ2(Δ1)

〉
at intermediate lag times and

a highly accelerated growth at later stages, at Δ→ T. These features are fully consistent with the analytical
GBM-based predictions (25) in all regions of the lag time, see figure 2(B).

4.3. Delayed TAMSD
The behavior of individual realizations δ2

d(Δ)—computed for a single GBM trace for varying delay times
td—versus the lag timeΔ is shown in the right column of figure 3. A key property of the delayed TAMSD [150]
is that the later parts of the FTS contribute progressively stronger at longer delay times. We find that, similar
to the trends of the standard TAMSD shown in figure 1(G), the variation of the magnitudes of δ2

d(Δ) increases
for larger volatilities, see figure 3(H).

The variation of the delayed TAMSD computed at the shortest lag time, δ2
d(Δ1), with delay time td is shown

in figure 4. We focus on the shortest lag time because the magnitudes of the standard and delayed TAMSDs are
statistically most reliable at Δ/T � 1 [150, 155]. Here we find, as expected, also a wider spread of individual
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Figure 4. Initial values of the delayed TAMSD, δ2
d(Δ1), plotted versus the delay time td for μ = 0.1 and varying σ values, as

indicated in the plots (for T = 100 years and the time-step for the delay time being δtd = 1 year). We show N = 25

δ2
d(Δ1)-versus-td dependencies, with the mean TAMSDs

〈
δ2

d(Δ1)
〉

depicted as the thick black curves in each panel. To emphasize

the growth of the spread of δ2
d(Δ1) with σ the vertical scale is chosen the same in all the panels.

δ2
d(Δ1) for larger σ values (due to higher variances and larger fluctuations of the GBM process realized for

larger volatility values). For larger σ values—as the ‘effective drift’ in the GBM solution (11), given by

μσ,eff = μ− σ2/2, (36)

becomes negative—the fluctuations of the Wiener process cannot ensure any sustainable (exponential) price
growth for the resulting stochastic process. For this situation, a finite fraction of GBM traces predict drastically
falling prices S(t) at longer times, a feature of a collapse or bankruptcy, see figure 4(D). In economics, μσ,eff

is often called the expected growth rate [112]. The mean value
〈
δ2

d(Δ)
〉

is, however, again often dominated

by a single large-magnitude trajectory and, thus, only weakly affected by such price drops observed for some
strongly volatile GBM trajectories.

At even larger values of σ used in simulations we find extremely volatile behavior of the resulting S(t) and
of the respective δ2

d(Δ) realizations. This fact, in turn, gives rise to large variations of δ2
d(Δ1) versus the delay

time and, ultimately, to irregularities in the behavior of the mean
〈
δ2

d(Δ1)
〉

versus td (not shown).

In general, we find that
〈
δ2

d(Δ1)
〉

-dependence versus td evaluated for different σ values mainly differs in

magnitude, while keeping the overall functional form of variation with the delay time, figure AA3. Specifically,〈
δ2

d(Δ1)
〉

reveals almost no variation for short-to-intermediate delay times and exhibits a significant increase

of the magnitude at td → T, see figure AA3. The agreement of analytical predictions of equation (27) with the

results of computer simulations for
〈
δ2

d(Δ1)
〉

is excellent for small-to-moderate volatility values.

For an ensemble of N = 106 GBM trajectories used for averaging, only the data for the largestμ andσ values
are considerably lower than the analytical predictions. We ‘scale’ the results of simulations and shift them up in
magnitude for such situations in order to reach the theoretical asymptote. Figure AA3 shows both the original

and ‘scaled’ results of simulations for
〈
δ2

d(Δ1)
〉

. One can argue that for strongly volatile realizations of GBM

at large σ values the magnitude of the mean delayed TAMSD can be influenced by a single extreme-magnitude

trajectory (see figure 4(D) for an example) that dominates the mean
〈
δ2

d(Δ1)
〉

. Even larger ensembles of
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Figure 5. The same log-ratio log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
as in figure AA4 for the same μ and σ values, but shown for varying

trajectory lengths T (see the legend). The curves are the analytical results (27). Parameters: μ = 0.1, σ = 0.2, N = 106. The error
bars are smaller than the symbol size for all data points.

GBM traces could be required to encounter such large-magnitude trajectories in simulations and to mitigate

the observed disparity of theory-versus-simulations in the magnitude of
〈
δ2

d(Δ1)
〉

, as detected at larger σ in

figure AA3.
The behavior of the log of the mean delayed TAMSD normalized to the standard TAMSD computed at

Δ = Δ1, namely log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
, the universal quantity introduced in reference [150], is shown

in figure AA4. The simulations reveal the linear regime of equation (7) for this log-ratio at td � T, as expected,

and also confirm a faster-than-linear growth of log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
at intermediate-to-long delay

times. Excellent agreement with the theoretical result (27) is observed in our computer simulations for the
log-ratio of the normalized delayed TAMSD in the entire range of delay times, see figure 5. This is our third
key result.

In figure 5 we present the detailed results for log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
for GBM evaluated as func-

tion of the delay time td for varying trace lengths T. We find that for longer traces the magnitude of

log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
drops and the region with a faster-than-linear scaling becomes more pronounced,

extending into a larger domain of delay times, at td � T. These two trends for the behavior of the delayed
TAMSD are fully supported by our analytical results, equation (27). We also mention that for longer tra-
jectories the variation of μ and σ has a considerably smaller effect on the scaling behavior of the log-ratio

log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
computed at short delay time td, see figure AA5.

4.4. Ergodicity breaking
Note that the ‘time-rearrangement trick’ (B9) can also be useful [151] for evaluating higher moments of GBM,
such as the fourth time-averaged moment that contributes to the ergodicity breaking parameter [154, 155],

EB(Δ) =

〈(
δ2(Δ)

)2
〉/〈

δ2(Δ)
〉2
− 1. (37)

Computer-generated GBM trajectories reveal a similar scaling for

〈(
δ2(Δ)

)2
〉

and
〈
δ2(Δ)

〉2
with Δ

and, thus, a roughly lag-time-independent value of EB. For trajectory length of T = 35 years we find
EBGBM(Δ) ≈ 5T/2, as shown in figure AA6. A detailed analytical study of EB for arbitrary trace length and
GBM-model parameters, the simulations-based EB analysis for GBM as well as its applicability to real FTS is
the subject of a separate investigation [151].

From simulations we can conclude that GBM is a nonergodic process featuring a finite—rather than
vanishing—value of the EB parameter in the limit of long trajectories and short lag times, see figure AA6
at Δ/T � 1. Note that the nonergodicity of GBM studied in reference [113] differs in its definition from
equation (37). The latter was extensively applied in recent years for assessing weak ergodicity breaking for the
in-silico-generated trajectories of various stochastic anomalous-diffusion processes [157–164].
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Figure 6. Log of the delayed TAMSD for the historical FTS plotted versus delay time td, shown in log-log scale. The GBM-based
result (27) is the dashed curve (for μ = 0.1 and σ = 0.2), the short-time asymptote (7) is the dotted line. All FTS shown start on
January 2, 1962 and end ca middle 2020.

5. Analysis of historical FTS

With these theoretical concepts and results (in particular, regarding the δ2
d,i(Δ)), we proceed now to the analysis

of historical FTS. For real data we compute the same observables as for the simulated GBM trajectories and
examine to what extent the GBM-model predictions are applicable.

5.1. Data acquisition
The acronyms of the companies, stocks and cryptocurrencies analyzed below are, respectively, {BA: Boeing
Comp., CAT: Caterpillar Inc., DIS: The Walt Disney Comp., GE: General Electric Comp., IBM: International
Business Machines Comp., KO: Coca-Cola Comp., MCD, McDonald’s Corporation, S & P 500: Standard &
Poor’s 500} and {BTC, BitCoin, ETH, Ethereum, LTC, LiteCoin}. The data for the companies and cryptocur-
rencies were downloaded from the Yahoo-Finance web-page (https://finance.yahoo.com) with time-step of
δt = 1 day. The data at the end of day-trading sessions are used in the analysis (closure prices)9. The corpo-
rations chosen feature long FTS (without any rebranding, splitting, merging, etc). The FTS of stock-market
indices and cryptocurrencies used in the analysis are presented in figures AA8 and AA9, respectively.

5.2. Universal behavior of the delayed TAMSD
5.2.1. Companies/indices

For the chosen FTS of stock-market prices, the log-ratios of the normalized delayed TAMSDs,

log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
, demonstrate the universal behavior via collapsing onto a single master curve as functions

of td/T, see figure 6. The most pronounced feature is the fact that at short-to-intermediate delay times—in
crisis-free times, when the GBM-model itself is applicable—the FTS yield the delayed TAMSD that follows the

linear GBM-conform law (7) [150]. The deviation of log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
as function of td from this law at

later delay times FTS is also in excellent agreement with the GBM-based prediction (27)10. The latter is valid
at all values of lag and delay times yielding our fourth key result. We stress here that all data points were used
in the analysis, without any pre-selection, both for the crisis-containing and crisis-free times.

A severe drop of the delayed TAMSDs at the end of some trajectories in figure 6 is the result of the three latest
economic crises; this region with rapidly falling prices is (naturally) in disagreement with GBM predictions.
We quantify these deviations below via analyzing the data in log-linear scale, for only later segments of the FTS
and for smaller delay-time increments, δtd. The pronounced deviations from the GBM predictions at later
delay times are, naturally, due to the respective drastic crisis-induced price drops. In figure 7 we relate the delay

9 Note that multiple manipulative instruments are ubiquitously used—such as share repurchase (stock buyback), share splitting [and
also reverse stock split], stock dilution, etc.—that lead to ”recalibration” of the respective stock prices. The ”close” market data (from
https://finance.yahoo.com) we used are normalized for splits, but not for dividends, repurchases, or dilutions. The exact and specific
mechanisms of stock-price increase expected, e.g., after a stock-split event—due to a wider ”pool” of interested buyers—which leave,
however, the fundamental value of a given company unaffected, are beyond the scope of the current study.

10 Note that this consistency of stock-price variations and growth with the GBM model for a set of traditional stocks we examined
over a period of several decades does not exclude a possibility of bankruptcy of a random stock. Such a scenario is also realizable for
a multiplicative process of GBM: once the price of a stock/option hits zero, it stays zero forever.
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Figure 7. Log of the rescaled delayed TAMSD plotted versus the actual date of FTS, shown in log-linear scale. The GBM-based
asymptote (27) is the dashed curve, plotted for μ = 0.1 and σ = 0.2. The step of the delay time is δtd = 1 year (that is about 252
business days per one fiscal year [for classical stocks]). The starting date of the analyzed FTS data is 1962, the results are shown
starting from 1980. The economic crises of 1997–1999 and 2008–2009 are indicated by the dotted vertical lines.

Figure 8. The same as in figure 7, but for the FTS for a period of the last year only, plotted in terms of log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
versus the actual calendar date (recalculated from the respective td values), with the delay-time step of δtd = 5 days. The drop in
the magnitude at the start of the 2020 economic decline triggered by Covid-19 pandemic is clearly visible from ca March 2020.

times td to the actual calendar date of the respective FTS. This way, we relate the time of drops in δ2
d,i(Δ) to the

respective economic perturbations/crisis, compared to plots versus the td itself, as in figure 6.
In figure 7 we demonstrate a quantitative agreement with the theoretical GBM-based predictions (27) for

the actual historical FTS in crisis-free times. We also find that the drops of log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
versus td

indeed corresponds to the periods 1997–1999 and 2008–2009 (the Russian/Asian and financial crises, respec-
tively). The ongoing 2020 world-wide economic decline triggered by the ongoing Covid-19 pandemic is also
visible for the later parts of the analyzed FTS, as indicated in figure 8. The latest stock-price variations are par-
ticularly well visible and pronounced when the delayed TAMSD data are presented for the last prior-to-crisis
months only and with the minimal step of δtd = 1 day in order to resolve daily fluctuations (results not shown).
Naturally, rapid variations of the log-ratio of the delayed TAMSDs at later parts of FTS are then resolved much
better, as compared to the case of δtd = 1 year shown in figure 7.

After the 2008–2009 crisis with a partial ‘resetting’ [165, 166] of many stock-market indices to a certain
extent we observe that some indices started to continue their (exponential) GBM-like price growth again,
thereby reloading the price-explosion spring (results not shown). Note also that choosing the end point of
FTS well after the peak of a financial crisis smears out the crisis-induced drop of prices when evaluating the

TAMSD and reduces the deviations from the GBM log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
∼ td/T asymptote, see equation (7).

This happens as typically higher prices occur at later stages in the FTS. This is why no decrease is visible, for

instance, in the S & P 500 long-time data when plotted in terms of log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
versus td in October

1987, at the time of S & P 500 crash, see figure AA7 (and also the results of reference [150]).
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Figure 9. Delayed TAMSDs calculated for the stocks- and cryptocurrency-data plotted versus the delay time td . The time periods
of the FTS used for the determination of optimal drift and volatilities are 1962–2020 and 2014–2019, for the classical stocks and
cryptocurrencies (BitCoin), respectively. The optimal annualized volatility found from equation (C5) and the value of drift found
from the single-parameter fit of δ2

d,i(Δ) are listed in the legend. The two vertical dashed lines shown on the td-axis at the end of
1995 and 2017 help to assess the positions, respectively, of the 1997–1999 financial crisis for the stocks and of the crash late
December 2017 for BitCoin. These lines define the range of the delayed-TAMSD data used to obtain the parameter μ from the
respective fits to the data, see appendix C for details.

5.2.2. Cryptocurrencies
Some ‘digital’ assets, such as BitCoin and other cryptocurrencies, see figure AA9, are extremely speculative,
volatile, and nontransparent [146] in their price-formation strategies. Their FTS can potentially feature super-
exponential [147] price evolution in crisis-free times and at ‘bull-market’-conditions. This is a snow-ball-
like, heating-up, herd-driven [83] phase of price ‘explosion’ characteristic of financial pyramids (with no ‘real
value’ supporting the growth). Our current preliminary analysis of some cryptocurrencies quite surprisingly,
however, indicates a good agreement with GBM-like variation for δ2

d,i(Δ), see figure 9, but with significantly
elevated values of drift and volatility, see appendix C for the detailed description of the data-driven algorithms
of determination/extraction of the GBM model parameters.

The dependencies of the trajectory-specific quantifier log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
for the FTS of the ‘classical’

stocks and of three cryptocurrencies versus the GBM predictions for log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
evaluated

for the {drift, volatility} pairs determined from the data are shown in figure 9, both as functions of the delay
time td. The highly speculative nature of the ‘contemporary’ cryptocurrencies gets reflected in much larger
respective drift and volatility values, as compared to the ‘classical’ stocks, see figures BB2 and BB3. The direct
comparison in terms of the variation of the delayed TAMSD versus the delay time—demonstrates an expected
much steeper growth of the log-ratio for the cryptocurrencies in the same range of delay times, as visible in
figure 9. Despite this, the general trends of the growth of δ2

d,i(Δ) with the delay time for the cryptocurrencies
are well-described by the standard-GBM theoretical model.

We stress that such a comparison is performed in the same range of lag times implies similar time-scales for
all the stocks and currencies examined here. The ‘agility’ and also the anticipated ‘life-time’ of a given stock or
asset (or a class of those) are, however, inherently specific. Evidently, the market of cryptocurrencies is much
more dynamic and speculative than that of ‘classical’ assets/commodities (some of them with a century-long
history, such as that of trading and pricing gold). This determines, or at least affects, the characteristic ‘internal’
time-scale and also sets an ‘effective temperature’ that ‘heats up’ the growth and overall dynamics of a given
stock or asset, an issue deserving future investigations.

6. Discussion and conclusions

6.1. Summary of the main results
We presented the time-averaging-based analysis of the historical FTS of stock-price evolution. We first com-
pared the analytical GBM-based predictions and reported the results of extensive GBM-based computer sim-
ulations. Our main focus was on the behavior of the novel observable, the delayed TAMSD [150]. This single-
trajectory quantifier—the term ‘inherited’ from the data analysis in single-particle-tracking experiments—is

demonstrated here to reveal a universal behavior for the log-ratio log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
at the shortest lag

time Δ = Δ1 as a function of the delay time td. This universality in the entire range of delay times (in crisis-free
times) complements the initial analysis at td � T in reference [150].
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Additionally, our FTS-analysis revealed a transition from a linear to a faster-than-linear growth regime

for log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
as function of the delay time td, in full agreement with GBM-based predictions (in

crisis-free times). Certain deviations from this ‘ideal’ GBM-like behavior found for the delayed TAMSD in real
FTS were shown to be clearly attributable to market collapse associated with the dramatic price drop during
respective financial crises.

One more novel element of the current analysis compared to reference [150] is the procedure of determi-
nation and optimization of the GBM-model parameters and direct fit of δ2

d,i(Δ) versus delay time, as detailed
in sections C2 and C3 of appendix C. We compared several methods to extract σ and μ and employed finally
the most rational and consistent approach, see the results of figure 9. We found that the historical FTS for

the highly speculative BitCoin demonstrated the extreme growth in magnitude of the log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
within a few years of delay time td. The similar-in-magnitude growth is achieved by the classical stocks only
within≈30 . . . 40 years. This once again indicates a bubble-like nature and lack of sustainability of BitCoin and
other cryptocurrencies. This parameter-determination procedure enabled us to fit and quantitatively compare
the TAMSDs for individual historical FTS, that is the fifth key result of our study.

6.2. Extensions and future developments of GBM-based models
A more detailed analysis, that would potentially include some generalized GBM-based models featuring super-
exponential MSD growth, 〈

S2(t)
〉
∼ eσ

2
μ×tβ , (38)

with β > 1, a ‘scaled-GBM’ process recently introduced in reference [167]. The nonlinear nature of another
type was included in the models with the return rate and volatility growing nonlinearly with the price, such
that

∼ σS(t)mdW(t) (39)

enters the right-hand side of equation (9) (see equation (24) in reference [139]). This simple nonlinear gener-
alization of GBM accounts for a positive feedback and herding behavior (a price-driven model of speculative
bubbles). Certain bursts of volatility accompany the approach to and the transition across the ‘bubble point’
in this kind of models. Anomalous behavior of the markets, particularly with a superexponential price growth
[147, 148] at and near the bubble corresponds to m > 1 choice in equation (39).

For the standard GBM model, the parameters μ and σ are assumed to have constant values, while in reality
they can be complicated functions of time, price, and numerous other factors. Often, the real markets reveal,
e.g., an increased volatility when the prices drop [168, 169], nonlinear price-volatility correlations [93, 170],
anticorrelations of returns and future volatility values [171], the periods of persistent volatility [172, 173],
correlations of the trading volumes and intraday volatility [175], and rich dynamics of (nonstationary) intraday
price increments [174, 176]. The effects of ‘volatility clustering’—with large price changes being followed by
large ones (and vice versa)—and possible long-term memory in volatility are the general ‘stylized facts’ [177]
for some FTS. We refer to references [32, 33, 36, 178] for the models of stochastic volatility and to reference
[179] for the analysis of finely and coarsely defined volatilities. This feature is treated, i.a., in the models of
generalized autoregressive conditional heteroscedasticity (GARCH) [44, 119, 149, 180–184] and autoregressive
moving average (ARMA) (see also references [185, 186] for the integrated, actual, and realized volatility as
well as higher moments of volatility [185]; the multifractal analysis of financial markets is presented recently
in reference [187]). Large volatilities—peaking at the time of big financial crashes [169]—imply rapid price
chances and risky trading [173, 188]. In particular, the future values of volatility of an asset are hard to assess:
this leads to often imprecise predictions and necessitates modified BSM models [38, 39, 88, 189] via including,
e.g., ‘implied volatility’ concepts [190].

Specifically, the description of the ‘Joseph’, ‘Noah’, and ‘Moses’ effects—accounting, respectively, for long-
time correlations (or nonindependence), nonfinite variance (or ‘fat tails’), and time-dependence (or non-
stationarity) in the distributions of increments of a stochastic process—for the FTS-analysis was presented
in reference [176]. A pronounced nonstationarity of the variance of increments for the daily stock-market
prices was also demonstrated [174, 175]. The distinct, U-shape-like, stark volatility variations obtained from
the high-frequency-data analysis—shown to be universal for a number of indices and currencies [174, 175],
being also positively correlated with the respective trading volumes—are inherent to the intraday volatility
and stocks-trading activity. This time-dependent diffusion [174] is vital for understanding the rich and com-
plicated dynamics of daily evolution of stock prices and trading volumes. Particularly high volatilities were
also observed at the start of the morning trading sessions [175]. The related effects on longer time scales, with
higher returns on Mondays and during the first weeks of January (connected to larger price variations), are
also documented [138].
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The ‘diffusion coefficient’ or volatility was also shown to depend on time and currency exchange rate, with
several intervals during the day when the standard deviation of increments revealed distinct, multiple power-
law-like scaling behaviors with time, also featuring drastic variations of the intraday-volatility magnitude
[174, 191, 192]. This can gives rise to ‘spurious’ [174] non-Gaussianity in the distributions of price increments,
including Laplace-like forms [193]. Such non-Gaussian features were ubiquitously observed [194, 195] when
averaging over longer time-scales was employed and simple/standard time-independent model parameters
were used in the fitting analysis. Note that this complicated but repeatable intraday dynamics of the GBM-
model parameters favors ensemble-averaging-based analysis [192, 196]—with a large set of daily trading data
composing a statistical ensemble of (independent) realizations,—as compared to the methods of time averag-
ing, such as those employed in the current study. The standard GBM model with constant drift and volatility
should, thus, be essentially modified to account, e.g., for a power-law variation of volatility [174, 191, 192],
σ(t) ∼ tγ , advocating for a new multiplicative stochastic process of ‘scaled’ GBM [167].
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Abbreviations

BM Brownian motion

GBM Geometric BM

FTS Financial time series

BSM model Black–Scholes–Merton model

MSD Mean-squared displacement

TAMSD Time-averaged MSD

Appendix A. Supplementary figures

Here, we present some auxiliary figures supporting the claims in the main text.

Appendix B. Alternative TAMSD derivation

Expression (25) can also be computed via starting with the integrand in (1) after ensemble averaging,

〈
[S(t +Δ) − S(t)]2

〉
=

〈
S2(t +Δ)

〉
− 2 〈S(t +Δ)S(t)〉+

〈
S2(t)

〉
, (B1)
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Figure AA1. Verification of the log-normal GBM distribution by our computer-simulation scheme. The analytical results of
equation (34) is the dashed curve, the results of simulations is the solid line. Parameters: the number of independent trajectories
used for ensemble averaging is N = 106, the drift and volatility parameters are μ = 0.1 and σ = 0.2, respectively, and the trace
length is T = 2 years (the time-step is one day).

Figure AA2. Some representative GBM trajectories (left panels [A, C, E, G]) and their respective individual TAMSDs (right
panels [B, D, F, H]) computed from the traces shown for systematically varying lengths of partial trajectories, T, as a function of
the lag time. The linear asymptote (35) (plotted with no prefactors) is the dashed lines in the panels of the right column. The
values of σ are listed in the plots, while μ = 0.1 and S(0) = 102. The time step of trace-length variation is δT = 1 year, while the
time step for computing δ2

i (Δ) along each trajectory is δt = 1 day (the lag-time resolution).

with S(t) following equation (11). The terms without cross-correlations can be computed using that W(t)
samples the normal distribution N (0, t). Using (19), the moment of order 2n of W(t) is given by

〈
W2n(t)

〉
= 2nΓ(n + 1/2)π−1/2 × tn, (B2)

where Γ(x) is the gamma function. The first nonzero moments are
〈

W2(t)
〉
= t,

〈
W4(t)

〉
= 3t2,

〈
W6(t)

〉
=

15t3, etc. Summing the terms in the Taylor expansion
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Figure AA3. Comparison of theoretical predictions (27) with the results of computer simulations (the curves and data symbols,

respectively) for the mean delayed TAMSD of GBM at the shortest lag time,
〈
δ2

d(Δ1)
〉

, computed for σ = {0.1, 0.2, 0.3, 0.4} (as

indicated in the plot) and μ = 0.1. The trajectory length is T = 100 years and other parameters are same as in figure 2. For all
data-points the enumerated error bars are smaller than the symbol size. The results of simulations for the largest σ values are
shifted upwards in magnitude (scaled) to match with the theory (see main text for description).

Figure AA4. Comparison of the theoretical prediction (27) for GBM (shown as the solid curve) in its dependence on td with the

results of computer simulations for log
[〈

δ2
d(Δ1)

〉/〈
δ2(Δ1)

〉]
for the data of figure AA3, computed for μ = 0.1, σ = 0.2, and

T = 100 years. The linear parameter-free asymptote (7) in the limit td � T is shown as the dashed line [150].

〈
eσW(t)

〉
= 1 +

(
1

2
σ2t

)
+

1

2

(
1

2
σ2t

)2

+
1

6

(
1

2
σ2t

)3

+ · · · (B3)

we get 〈
eσW(t)

〉
= e( 1

2 σ
2t). (B4)

Clearly, equation (B4) also follows from

〈
eσW(t)

〉
=

∫ ∞

−∞
eσW(t)P1(W(t), t)dW(t) = e( 1

2 σ
2t). (B5)

This yields the second moment of GBM as

〈
S2(t)

〉
= S2

0 e(2μ−σ2)t
〈

e2σW(t)
〉
= S2

0 e(2μ+σ2)t , (B6)

with the time-shifted moment being

〈
S2(t +Δ)

〉
= S2

0 eσ
2
μ(t+Δ). (B7)

Following the same strategy, for the mixed term in (B1) describing cross-correlations of S(t) and S(t +Δ) we
get

〈S(t +Δ)S(t)〉 = S2
0 e

2
(
μ− σ2

2

)
t
e
(
μ− σ2

2

)
Δ 〈

eσ(W(t)+W(t+Δ))
〉
. (B8)

Adding σ(W(t) − W(t)) to the last exponent in (B8) and using the independence of increments of respective
Wiener processes for nonoverlapping time intervals, we arrive at

〈
eσ(W(t)+W(t+Δ))

〉
=

〈
eσ(W(t+Δ)−W(t))

〉 〈
e2σW(t)

〉
. (B9)
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Figure AA5. Theoretical predictions (27) shown for varying parameters μ and σ of the GBM model (for the trace length of 15
and 80 years, respectively, as indicated in the legends).

Using (B4) and the distribution of increments W(t +Δ) − W(t) ∼ N (0,Δ) (another independent variable),
we get

〈S(t)S(t +Δ)〉 = S2
0 eσ

2
μt+μΔ. (B10)

Thus, for the TAMSD integrand of GBM—putting together (B6), (B7), and (B10)—we arrive at the same
expression (24), 〈

[S(t +Δ) − S(t)]2
〉
= S2

0

(
eσ

2
μΔ − 2eμΔ + 1

)
eσ

2
μt . (B11)
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Figure AA6. Higher time-averaged moments

〈(
δ2(Δ)

)2
〉

and
〈
δ2(Δ)

〉2

for GBM and the recalculated EB parameter (37)

obtained from the results of GBM-based computer simulations (see the legend for notation of the curves). The parameters of the
GBM model are μ = 0.1 and σ = 0.2, with the trace length increasing from panel (A) to panel (C). The horizontal dashed line at
5T/2 is added as a reference.

Appendix C. Data-driven assessment of model parameters

Here, we describe the fitting procedures to extract the values of the GBM-model parameters from the histor-
ical FTS, see figures AA8 and AA9. In particular, we employ certain fitting and optimization algorithms to
determine the stock-specific values of drift μ and volatility σ, used later, e.g., to fit the variations of the delayed
TAMSD as a function of the delay time td.

C1. Optimal ‘valley’ in the {μ, σ}-plane
C1.1. Evaluation algorithm

Our fundamental measure, the log-ratio of the delayed versus standard TAMSD for all the FTS studied here
reveals (in the limit td � T and short lag timesΔ � T) a universal parameter-free simple [150] variation given
by equation (7). The entire variation of the delayed TAMSD given by (27), however, nontrivially depends on
the stock-specific drift μ and volatility σ which should be found to fit the whole curve δ2

d,i(Δ) versus td. A
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Figure AA7. The same as in figure 6, with the same notations for the asymptotic curves, but evaluated for S & P 500.

Figure AA8. Price evolution of the companies/indices listed in section 5.1 (given in US-Dollars), shown in log-linear scale.

Figure AA9. Price evolution of some cryptocurrencies in US-Dollars illustrated in log-linear scale.

straightforward two-parameter fit of the variation of

yd(Δ1) = log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
(C1)

versus td for a given index or stock to find the values of drift and volatility values often yields unsatisfactory
results as to the accuracy and consistency of the fit (results not shown). Such a fit is particularly problematic
for the FTS encompassing a period of a financial crisis or severe price drops.
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Figure BB1. Sums of the squared residuals (C2) for BA shown as the density plots (or height maps) in the {μ,σ}-plane. The
analyzed time periods are from 1962 till 1980, 1990, 1995, and 2000 (for the plots from top to bottom, respectively), as indicated.

A more rational way to examine the discrepancies between the theoretical GBM-based predictions and
real-data results is to compute the sum

∑
td

[
yd,data (Δ1) − yd,model(Δ1)

]2
(C2)

over all possible values of the delay time td (all contributing with equal weights), for systematically varying μ

and σ values. The delay time in equation (C2) is sampled with the time-step of δtd = 1 day, with the minimal
td equal to one day (the ‘resolution’ of the FTS used in this study) and the maximal td being equal to the preset
cutoff time for a given FTS. We compute the squared differences between the log-ratios (C1) for the FTS versus
the analytical GBM-based solution for all possible pairs of μ and σ in the preset range (with the discretization
step of 0.005) and sum the deviations over all realizable values of td. The delayed TAMSDs in (C1) are computed
at Δ1 = 1 day, where statistical averaging over time is most reliable.

C1.2. ‘Classical stocks’

The procedure (C2) gives one point in the {μ,σ} plane, see the example of such contour plot for the stock-
prices of BA in figure BB1. We find that for all the indices studied the model-versus-data discrepancy quantified
by (C2) increases for small σ and small μ values (not shown). In the opposite domain, for large μ and large
σ values, the discrepancy increases as well, although often less steeply. At intermediate values of μ and σ an
‘optimal valley’ featuring minimal model-versus-data deviations is often realized, as illustrated in figure BB1.
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Figure BB2. The same as in figure BB1 but for the three main cryptocurrencies. The maximal td listed in the plots is the value
used to compute the deviations in equation (C2). The log-ratios are always calculated from the full FTS available, while the
maximal delay times or the corresponding maximal years in the analyzed data are fixed (the respective values are listed in the
plots). The data are taken till the last day of the ‘max years’ denoted in the graphs.

We find that for the ‘classical stocks’ the position of this optimal valley in the {μ,σ}-plane often does not
change strongly upon varying the terminal point of a given FTS and the delay time td (a company-universal
‘signature’). These plots are the ‘fingerprints’ reflecting certain functioning principles employed by a given
company (in terms of the deterministic μ-based and stochastic σ-based features of resulting variations of its
stocks price). The depth of the minimum in figure BB1 for a given valley is an index-specific feature; the depth
along the valley often is only weakly sensitive to the variations of μ and σ along the ‘valley’ (results not shown).

C1.3. Cryptocurrencies

In figure BB2 the optimal {μ,σ}-valleys for the three main cryptocurrencies are shown. Their S(t)-dynamics
is much more rapid and volatile as compared to the classical stocks: the valleys are significantly shifted toward
larger values of drift and volatility. In this plot, the data up to the end of 2017 are only considered in the
analysis because after this data a number of crashes on the cryptocurrency markets happened and, as a con-
sequence, the results cannot be expected to follow the GBM model. The latter data were, thus, excluded from
the analysis of optimal μ and σ values for the cryptocurrencies. This speculation-driven shift of the valley for
the cryptocurrencies toward larger μ and σ is also clearly visible in figure BB3. Note that, as cryptocurrencies
are traded 24/7, the delay times given in figures BB2–BB4 were recalculated (via multiplying by ≈252/365) to
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Figure BB3. Optimal valleys for drift and volatility for the classical stocks (bottom curves) and cryptocurrencies (top curves).
The maximal years and the longest delay times used to compute (C1) and (C2) are provided in the legend.

Figure BB4. Shape of the ‘optimal valleys’ for the cryptocurrencies for a varying termination date of their FTS, as indicated in
the inset.

make them comparable to those for classical stocks (traded for ≈252 days per year). One fiscal year and one
td-year contain, therefore, different numbers of calendar days for classical stocks and cryptocurrencies.

We find that, contrary to the classical and well-established stocks, as shown in figure BB1, for a highly
speculative dynamics behind the price evolution of the cryptocurrencies the terminal date of their FTS entering
the analysis of equation (C2) indeed changes the location of the optimal {μ,σ}-valley. Specifically, when the
latest data for BitCoin or BTC are included in the analysis, the position of the optimal valley shifts toward lower
drift and volatility values, see figure BB4. This likely is a manifestation of a ‘cooling down’ effect after the crash
in late December 2017 (as well as several later drops of the BitCoin price in the period 2018–2020) that made
cryptocurrencies generally less promising for speculative short-term ‘in-and-out’ investments during those
periods. In contrast, the optimal valleys for the ‘heating-up’ phase in the dynamics of the cryptocurrencies
(with the terminal years being 2015 and 2016 in figure BB4) are located in the range of considerably larger
values of drift and volatility (artificial price ‘heating-up’ as a preparation for a later crash of the pyramid and
to extraction of profits).

These features of the {μ,σ}-plots in figures BB2 and BB3 may be viewed as some speculative instruments
enabling ‘big players’ to control, manipulate, and direct the market, while ‘small players’ can only react to
trends/news. Such small investors act delayed, the disadvantage vital for highly volatile markets of cryptocur-
rencies. Additional (natural or artificial) delays in the BitCoin selling scheme—like those occurred during the
super-hype with sky-rocketing BitCoin prices in late December 2017, with lag times of up to a week(!) [198]
required to complete the transactions—further impede small investors from timely monetizing their profits.

The minimum in the optimal {μ,σ}-valley is often attained for an infinite set of μ-and-σ pairs, with a
certain functional connectivity. This ‘over-determination’ or ‘degeneracy’ of parameters, not surprising for a
two-parameter fit, suggests a better strategy, where one parameter is determined directly from the data (μ),
while another one (σ) is then found from the computed ‘optimal valleys’, see appendix C2.

C2. Fitting δ2
d,i(Δ) data and optimal {μ, σ}-valley

The value of μ can be found via direct linear fit of log[Si(t)] versus t for a given stock in the same time domain
as used previously to calculate δ2

d,i(Δ). In virtue of a roughly exponential price evolution of S(t) (if described
by GBM and after neglecting the σ-containing term in (11)), one can estimate the effective drift μσ,eff (36)
and using the landscape of the ‘optimal valley’ find the company-specific value of volatility. In figure BB5 the
linear fit of log[S(t)] for CAT is presented. Note here a considerable arbitrariness in the length of the FTS used
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Figure BB5. Fitting log-prices for the FTS of CAT (panel A) for extracting the effective drift, μσ,eff , used later on in the optimal-σ

fit of log
[
δ2

d(Δ1)
/
δ2(Δ1)

]
versus td (panel B). The dashed vertical line in panel (B) is the maximal delay time up to which the

theory-versus-data residuals (C2) were computed. The standard errors for determining drift and volatility are also provided in the
plots.

Figure BB6. Single-parameter fit of the delayed TAMSD for the FTS of CAT to extract effective volatility if μ = 0 is assumed. The
vertical dashed line indicates the latest delay time for the TAMSD-data used for the fit by the GBM results.

for the fit and certain uncertainties with regard, e.g., to the value of log[S(t)] rapidly changing in magnitude.
This procedure gives reasonable estimates and errors for the optimal μ and σ for some of the FTS examined.

However, for the value of μ estimated this way no uniquely corresponding value of σ can sometimes be
found from the {μ,σ}-contour plots. Moreover, the contour plots of GBM-versus-data residuals (C2) for all
the indices studied (results not shown) indicate that estimating σ from the data first and finding the respective
value of μ afterward can be a more appropriate procedure, see appendix C3. Note that some more ‘local’ esti-
mates for μ of GBM can be obtained via fitting log[S(t)] not for the whole FTS-data available, but rather, e.g.,
only for a crash-free time-domain (provided the GBM model is applicable there). Lastly, one can in principle
set μ = 0 and (for most indices) find the corresponding volatility via a one-parameter fit, see figure BB6 for
CAT.
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Figure BB7. Cross-sections of the drift-volatility valleys (as those in figure BB1) for the classical stocks shown versus the annual
drift μ for the annual volatility 〈σann〉 found from the analysis of log-returns, equation (C5).

C3. Assessment of parameters using log-returns
A more strict and also previously used [199] procedure is to determine σ first using the concept of time-local
log-returns. The latter, defined at discrete times tn along a given FTS S(t) as

r(tn) = log[S(tn)/S(tn−1)], (C3)

presents a standard quantifier of price fluctuations of a stocks index. The log in (C3) ‘removes’ the expected
exponential growth of price in time (supposing S(t) develops according to GBM). For small price variations the
log-returns (C3) approach the standard returns, rn. The cross-sectional standard deviation of returns defines
the dispersion of individual returns with respect to the mean for a given period of time, the averaging window.
During periods of market stress [145], the dispersion should increase due to higher volatilities of rapidly fluc-
tuating prices, but the herding behavior has, in contrast, an opposite impact: people tend to follow the trends
thus reducing the dispersion [145, 200].

The average volatility 〈σ〉 for all N̄ points used in the analysis of a given FTS is given through the trajectory-
average return defined as

〈r〉 = 1

N̄ − 1

N̄∑
n=2

r(tn) (C4)

by [199]

〈σ〉 =

√√√√ 1

N̄ − 1

N̄∑
n=2

[
r(tn) − 〈r〉

]2
. (C5)

We calculate 〈σ〉 from the daily FTS withΔt = 1/252 (for≈252 trading days per year [for the classical stocks]).
The annual volatility is then

〈σann〉 = 〈σ〉 /
√
Δt =

√
252 〈σ〉 . (C6)

Clearly, via using (C5) one can also compute the volatility for each year of the FTS-data separately if, e.g.,
time-dependent annual features of the price-evolution dynamics are to be considered.

Plotting the variation of the squared residuals (C2) versus μ for the volatility value found from (C5) for
each of the FTS we easily find a unique value of the drift parameter μ, as illustrated in figure BB7 (due to the
existence of a clear minimum for the curve). This method provides a direct, rational, and unique way to find
the optimal pair of drift-and-volatility for a given FTS and in an arbitrary time-domain making the current
method superior to the approaches discussed in appendices C1 and C2).

The parabolic-looking curves in figure BB7 represent the cross-sections of the two-dimensional plots of
figure BB1 for the same index/company after one has set the volatility to σ = 〈σ〉 given by equation (C5) for
each of the stocks. The parameters μ and σ are bound to the time unit used in data-based computation and
simulations11. We observe, e.g., that a sharper minimum for IBM in figure BB7 symbolizes a smaller ‘tolerance’

11 If time is in years (as in most of our simulations in section 4, or t = 1/252 being one day), then μ is the yearly (‘per annum’) interest
rate and σ is the annual volatility (for classical stocks). Thus, if not stated otherwise, we always refer to the annual values of μ and σ to
compare the outcomes to the results of GBM simulations. The volatility—defined as the standard deviation of log returns, distributed
normally withN ((μ− σ2/2)t;σ2t) for GBM, equation (34)—scales with

√
time window. To compute ‘annual’ volatility, we can calculate

the standard deviation from the yearly log-returns for sample size N = 60 (for a 60 years-long FTS), or from the daily log-returns for the
same data with the sample size N = 15 120 days and then scale the value with

√
252 (for ‘classical’ stocks), as in equation (C6).
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of this index (in a given time domain) to deviations of parameters. Namely, upon variation of the drift param-
eter the GBM-based predictions for the delayed TAMSD quickly deviate from the determined minimum. This
sharp minimum corroborates the behavior of the squared residuals (C2) for IBM when visualized as the density
plots in the {μ,σ}-plane (not shown).
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