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Abstract
We study the first passage dynamics for a diffusing particle experiencing a spatially varying
diffusion coefficient while driven by correlated additive Gaussian white noise and multiplicative
coloured non-Gaussian noise. We consider three functional forms for position dependence of the
diffusion coefficient: power-law, exponential, and logarithmic. The coloured non-Gaussian noise is
distributed according to Tsallis’ q-distribution. Tracks of the non-Markovian systems are
numerically simulated by using the fourth-order Runge–Kutta algorithm and the first passage
times (FPTs) are recorded. The FPT density is determined along with the mean FPT (MFPT).
Effects of the noise intensity and self-correlation of the multiplicative noise, the intensity of the
additive noise, the cross-correlation strength, and the non-extensivity parameter on the MFPT are
discussed.

1. Introduction

Modern microscopic techniques allow experimentalists to monitor the active or diffusive motion of small
tracers such as virus particles or proteins in the highly heterogeneous environment of living biological cells
[1–6]. Concurrently fluorescence experiments show pronounced localisation of specific signalling proteins
depending on the position of their encoding gene [7]. Together with findings on the spatial distance in bacterial
genomes of a specific gene, controlled by a signalling protein, from the gene encoding this regulator [8, 9] led to
the development of new concepts such as geometry control of biochemical reactions in the small concentration
limit typical for many processes in intracellular gene expression [8–12]. Such studies represent generalisations
of the classical description of molecular chemical reactions at macroscopic concentration levels based on mean
reaction rates [13, 14].

A crucial step in molecular reactions is the diffusion limitation, i.e., the time it takes a molecule to reach
a reaction centre for the first time after its release a given distance away [13]. This first passage time (FPT)
[15, 16] is a general concept finding applications not only in molecular reactions but also in polymer translo-
cation [17], the quantification of the search for food by animals [18] or in the spreading of new diseases such
as SARS or Covid [19, 20]. FPT theory is often used to estimate the escape time from a metastable state, trap
or potential well, or barrier crossing and phase transition rates [21, 22]. In the geosciences the concept of first
passage is at the heart of particle transport in underground aquifers [23] while in finance the first passage to a
given stock value determines actions such as buying or selling [24]. The FPT is used to quantify the efficiency of
transport and search as well as identify optimal search and transport strategies [25] or to characterise stochastic
motion in a heterogeneous environment [26]. The FPT provides information on spatial properties of complex
networks [27] or extreme values of random processes [28] and characteristic observables in non-equilibrium
systems [29]. The FPT provides information complementary to the mean squared displacement in exploring
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the dynamical behaviour of a stochastic motion [30]. Furthermore, it reveals whether a system is following
normal or anomalous diffusion and helps to distinguish different anomalous diffusion mechanisms [31, 32].
Finally we mention recent studies on the effect of multiple searchers and their initial distribution in space on
the FPT dynamics [33–37]. The statistic of a given FPT process can be explored in terms of the full distribution
of FPTs, the FPT density (FTPD) as well as the associated moments, the mean FPT (MFPT) and global MFPT
[10, 12, 15, 38]. In different contexts the FPT problem has been investigated theoretically, experimentally as
well as by simulations [39–47].

While most theories for FPT dynamics are based on homogeneous descriptions, in many cases one can-
not neglect the heterogeneity of the environment. Heterogeneities are inherent in the cytoplasm of biological
cells and membranes [2, 32, 48–52] or in granular media [53] and aquifers [23]. They may also be intrinsic
in disordered systems such as amorphous semiconductors [54] or complex liquids [55]. Here we are inter-
ested in the effects of heterogeneity on the FPT dynamics in such systems. Several recent studies were devoted
to generalising stochastic motion in spatially heterogeneous environments, see, e.g. [56, 57]. The dynami-
cal behaviour of heterogeneous diffusion has been explored using the behaviour of the ensemble and time-
averaged mean squared displacements. Features such as anomalous diffusion, ergodicity breaking, ageing, and
non-Gaussianity have been reported in heterogeneous media [16], see also below.

On top of heterogeneity effects we here also study the resulting FPT dynamics with respect to the noise
driving the stochastic motion. This generalisation of the noise includes both the assumption of non-white
noise–noise correlations and the relaxation of the Gaussian statistic of the noise amplitude. Multiplicative noise
is frequently used in stochastic models to represent random fluctuations in the environment [58]. Heteroge-
neous diffusion processes (HDPs) with finite-ranged coloured non-Gaussian noise with Tsallis’ q-statistical
amplitude were recently considered [56]. Here we analyse this process regarding its FPT dynamics. The result-
ing model is expected to be flexible enough in order to describe FPT dynamics in heterogeneous systems driven
by non-standard noise. Our study thus combines the increasing interest in effects encoded by correlated noise
on stochastic dynamical systems [40–42] with those stemming from HDP statistic and non-Gaussianity of the
driving noise.

When the noise is white and Gaussian HDPs are Markovian, and analytical results can be obtained from
the associated Fokker–Planck equation (FPE) in a given stochastic interpretation [59, 60]. For coloured non-
Gaussian noise, the process is non-Markovian and thus difficult to solve analytically [61]. However, the
problem can be transformed into a two-dimensional Markovian process that describes the joint dynamics
of the stochastic process itself and the noise process. An effective Markov FPE can be obtained from approx-
imative approaches, including path integral methods [62, 63] and the unified coloured noise approximation
[63, 64]. The second-order moment method can be applied to analyse non-Gaussian noise-driven stochas-
tic systems [65]. Studies using coloured non-Gaussian noise found that the departure of the noise from a
Gaussian statistic significantly affects the response of the system, e.g., it enhances the signal to noise ratio in
stochastic resonance, current and efficiency in Brownian motors, trapping in resonant gating, and shifts noise-
induced transition lines [66–68]. Furthermore, the interaction of different types of noises may lead to peculiar
dynamical behaviours [69, 70].

Several studies have considered the FPT problem in multi-state and periodic potentials driven by non-
standard noise [71–80], while the barrier crossing problem in the presence of coloured noise has been con-
sidered in [81]. The FPT behaviour for a stochastic system driven by correlated noises has been explored in
[40, 75, 82]. Although the FPT problem arises frequently in various real systems for which the embedding
medium is often heterogeneous most studies in this area ignore the medium’s heterogeneity. Yet heterogeneity
effects are expected to significantly influence the transport properties. The FPT dynamics for diffusive par-
ticle in heterogeneous medium has been considered to some extent in [47, 83–88]. Given the relevance of
HDPs with spatially varying diffusivity as well as the expected influence of the driving noise, it is imperative to
study the FPT behaviour for particles driven by correlated white Gaussian and non-Gaussian coloured noise
in heterogeneous media.

Here, we study the FPTD and MFPT to HDPs with position dependent diffusivity under the conspira-
tive driving of correlated additive white Gaussian and non-Gaussian coloured noise with adjustable strengths.
We assume that the coloured non-Gaussian noise follows Tsallis’ q-distribution and exhibits an exponential
self-correlation. We consider three functional forms for the diffusivity D(x), power-law, exponential, and loga-
rithmic. Practically, particle tracks are numerically simulated and the FPTs recorded, and from these the FPTD
and MFPT calculated. The influence of the noise intensity and self-correlation of the multiplicative noise, the
intensity of the additive noise, the cross-correlation strength, and the non-extensivity parameter of the q-noise
on the MFPT are examined. The paper is organised as follows. In section 2 we provide details on the governing
equations. In section 3 we present and discuss the results. Specifically, the simulations results for the FPTD and
MFPT are presented, and then the effect of the parameters on the MFPT is analysed. In section 4 we present
our conclusions.
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2. Model description

2.1. Aspects of the model
Before introducing the dynamic equations in our diffusion model for heterogeneous media driven by non-
standard noise we first briefly address the different aspects of the generalised noise source.

The concept of coloured noise with an exponential noise–noise correlation and thus finite correlation time
has a quite long tradition in the theory of stochastic processes [89–92] and was originally considered in con-
nection with laser physics and magnetic resonance phenomena [92–95]. More recent applications of coloured
noise include population dynamics [96] or neuron models [97]. Exponentially correlated noise is usually gen-
erated by an Ornstein–Uhlenbeck process [57, 98, 99]. Such a noise process depends on two parameters, the
correlation time and the noise intensity. In the limit of zero correlation time, the autocorrelation function
approaches the delta function of white noise [100]. The distribution of coloured noise is typically assumed to
be Gaussian. Coloured noise is thus different from long-range correlated fractional Gaussian noise [101, 102]
or fractional Gaussian noise with different form of tempering [103, 104], all of which are characterised by a
continuous spectrum of time scales.

We model non-Gaussian noise in terms of the Tsallis q-Gaussian or q-distribution [105, 106]. This distri-
bution follows from Tsallis’ non-extensive entropy definition [107, 108] and arises as solution of non-linear
FPEs [109]. Such types of distributions were identified in a wide variety of systems, such as financial markets
[110, 111], granular media [53], or earthquake statistics [112]. The q-Gaussian emerges as a limit of highly
correlated random variables [113]. Such non-extensive characteristics sometimes concurrently also exhibit
long correlations or memory [61], a noise type called coloured non-Gaussian noise. Non-Gaussian coloured
noise can be viewed as a generalisation of the Ornstein–Uhlenbeck noise with a non-extensivity parameter q
indicating the degree of departure from the Gaussian statistic [62, 67].

Different concepts exist to describe heterogeneous media including two or multiple different, quenched
layers with different diffusivities, e.g., considered in the modelling transport of proteins between the cell cyto-
plasm and the interior of the nucleus [114, 115] or the bacterial nucleoid [11, 46], facilitated diffusion including
diffusion in one and three dimensions [116, 117], motion in the bulk and ER of live cells [118, 119], lipid
motion in protein-crowded membranes [51, 120], particle diffusion with pronounced boundary interactions
[121–123], patchy landscapes with different diffusivities [124–127] as well as in quenched, rugged energy
landscapes [128, 129], and the ‘diffusing diffusivity’ model [86, 130–136], in which the stochastic motion
is modulated by a time-dependent, stochastic diffusion coefficient. In many other situations, the diffusion
coefficient may vary systematically as some prescribed function D(x), i.e., in ‘deterministic heterogeneity’
[59, 137–139]. A prime example for the latter behaviour is the diffusivity landscape mapped out in mam-
malian HeLa and NLFK cells, in which the local diffusivity of the tracers follows a quite clear increase from the
cell boundary towards the cell nucleus [6], see also the study for bacteria cells in [140]. Concrete functional
forms for D(x) in theoretical studies are typically taken as power-law dependencies as well as logarithmic and
exponential variations [59, 141–144]. Whether the medium heterogeneity is deterministic or random, it can
significantly influence the FPT dynamics [47, 59, 87, 88, 145].

2.2. Dynamic equations
In the following we consider the system of dynamic equations for the one-dimensional particle displace-
ment x(t) driven by correlated multiplicative coloured non-Gaussian noise η(t) (‘q-noise’ [68]) and additive
Gaussian noise ε(t),

dx(t)

dt
=

√
2D(x) × η(t) + ε(t), (1)

dη(t)

dt
= − 1

τ

d

dη
Vq(η) +

1

τ
ξ(t). (2)

In the Ornstein–Uhlenbeck-type process (2) encoding the coloured noise η(t) the driving term ξ(t) rep-
resents Gaussian white noise of zero mean and autocorrelation function 〈ξ(t)ξ(s)〉 = 2Dδ(t − s). Similarly,
〈ε(t)ε(s)〉 = 2Qδ(t − s) for the noise ε(t). However, these two noises are not independent of each other but cor-
related in the form 〈ε(t)ξ(s)〉 = 〈ξ(t)ε(s)〉 = 2λ

√
DQδ(t − s) whereλ quantifies the cross-correlation strength

taking on value in the interval [−1, 1]. In the limit λ = 0 the two noise sources are uncorrelated, while for
−1 � λ < 0 and 0 < λ � 1 the two noise sources are negatively and positively correlated, respectively. D and
τ are the noise intensity and characteristic time (self-correlation time) of the multiplicative coloured non-
Gaussian noise η(t). Moreover Q is the strength of the additive Gaussian noise ε(t), and the q-noise potential
Vq(η) is given by

Vq(η) =
1

β(q − 1)
log

[
1 + β(q − 1)

η2

2

]
(3)
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with β = τ/D. The non-extensivity parameter q indicates the departure from Gaussian behaviour (q = 1).
Note that when Q = 0 andλ = 1 the system is driven purely by non-Gaussian coloured noise. It is important to
note that equations (1) and (2) constitute Brownian dynamics which is a simplified form of Langevin dynamics
corresponding to the overdamped limit in absence of inertia effects [146].

Finally the diffusion coefficient in equation (1) is position dependent, and we will explore the FPT dynam-
ics for three forms of the functional dependence of the diffusivity: power-law, exponential and logarithmic.
Concretely, for the power-law form D(x) = D0|x|α with scaling exponent α several recent studies considered
diffusivities with either constant or variable power-law exponent [57, 142]. To avert trapping of the particle
due to the singularity at the origin x = 0 (zero or diverging diffusivity, depending on the value of α) in our
simulations we consider the diffusivity of the form

D(x) =

{
D0(a + |x|α), for α > 0,

D0/(a + |x|α), for α < 0,
(4)

with sufficiently small offset a [59, 142]. The exponent α assumes real values. The diffusivity is a constant for
α = 0, which implies a homogeneous diffusion process. For α > 0, the diffusivity increases with increasing
|x|, and conversely for α < 0. For the exponential and logarithmic dependencies we consider diffusivities of
the form

D(x) =
D2

0

2
exp(−2αx) (5)

and

D(x) =
D2

0

2
log(x2 + 1), (6)

respectively. We interpret the stochastic integral corresponding to the Langevin equation (1) in the
Stratonovich sense [59]. This interpretation is permitted as long as we do not require the system to reach
equilibrium, e.g., on a finite domain or in a confining external potential while coupled to a thermostat
[60, 139, 147]. Moreover, the motion of tracers in biological cells, spreading patterns of animals or humans,
or dynamics in financial mathematics are typically far from equilibrium. Other conventions for the stochastic
interpretation such as Itô and Hänggi-Klimontovich can be included in the numerical analyses [60]. It should
be pointed out that, although the multiplicative term in equation (1) represents the diffusion profile, it can be
viewed as an effective potential profile.

Note that the q-noise (2) is a generalisation of the Ornstein–Uhlenbeck process which renders the sys-
tem non-Markovian. The statistical properties of the noise process η(t) were discussed in [62, 68]. By solv-
ing the corresponding FPE the stationary distribution Pst

q (η) can be obtained. Pst
q (η) is well defined only for

q ∈ (−∞, 3) while for q � 3 it is not normalisable and thus not a valid PDF. To show this, we note that for
q ∈ (1, 3) the stationary distribution reads

Pst
q (η) =

1

Zq

[
1 + β(q − 1)

η2

2

]−1/(q−1)

, η ∈ (−∞∞), (7)

with normalisation factor Zq =
[
π/(β(q − 1))

]1/2
Γ
(
1/[q − 1] − 1/2

)
/
[
Γ
(
1/[q − 1]

)]
, where Γ indicates

the Gamma function. For q = 1 we then get

Pst
1 (η) =

1

Z1
exp

(
−βn2/2

)
, (8)

with normalisation factor Z1 =
√
π/β. This expression corresponds to the regular Ornstein–Uhlenbeck

process4.
Moreover for q ∈ (−∞, 1) the stationary PDF is given by

Pst
q (η) =

⎧⎪⎨
⎪⎩

1

Zq

[
1 −

( η

w

)2
]1/(1−q)

, if |η| < w,

0, otherwise,

(9)

with normalisation factor Zq =
√
π/(β(1 − q))Γ(1/(1 − q) + 1)/Γ(1/(1 − q) + 3/2). Here w = [(1 −

q)β/2]−1/2 is a cutoff value. Thus the stationary distribution indeed exists only for q < 3—since for q � 3, Zq

diverges or it is negative and consequently Pst
q (η) < 0 and thus not a PDF. The Ornstein–Uhlenbeck process,

4 Note that the Ornstein–Uhlenbeck process can directly be recovered from equation (2) by setting q = 1. First differentiating equation (3)
with respect to η, which produces η/[1 + β(q − 1)η2/2], then setting q = 1 yields dVq/dη = η; thus the drift term in equation (2) is
−η/τ .
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i.e., the process giving rise to Gaussian coloured noise, is recovered in the limit q → 1. For 1 < q < 5
3 the dis-

tribution is fat-tailed while q < 1 yields cut-off distributions. The first moment vanishes, 〈η(t)〉 = 0, while the
second moment is finite only when q < 5

3 , for which it reads 〈η(t)2〉 = 2D/[τ(5 − 3q)].
Here, we use a discrete representation based on fourth-order Runge–Kutta-type integration to simulate the

particle trajectories. Appendix A presents the numerical discretisation scheme. Particles are released from the
origin and then their FPTs to x = L = 10 are recorded. The motion is terminated when the particle reaches
x = L while at the point x = −L = −10 they are reflected.

3. Results and discussions

We now proceed to the analysis of the FPT problem for the stochastic process defined by equations (1) and (2)
using numerical simulations.

3.1. Position-dependent diffusivity of power-law form
Figure 1 shows the FPTD for different values of the non-extensivity parameter q, and with varying noise–noise
coupling strength λ and scaling exponent α of the position-dependent diffusion coefficient varied horizontally
and vertically between the panels, respectively. The curves of the PDFs are non-monotonic and have max-
ima at short times, indicating that the probability of reaching the absorbing boundary is more concentrated
around short FPT. For q = 1.0, the peak value moves to the right and the FPTD broadens with increasing λ.
For q = 0.1 and 1.5, the FPTDs are almost the same for λ = 0 and 0.5 but we see a broadening when λ = 1.
The MFPT increases with increasing λ, see the vertical lines in the colours representing the respective MFPT.
When λ = 0 or 0.5 the height of maxima is higher and lower for q = 1.0 and 0.1, respectively, compared to
the one for q = 1.5. Concurrently, for λ = 1 the height of maxima is higher and lower for q = 1.5 and 1.0,
respectively compared to the one for q = 0.1, and the PDFs exhibit longer right tails. We note that the tails
may be attributed to extreme values or outliers. As shown by the MFPTs represented by the vertical lines it
is such long FPT events that define the MFPT. In a finite number of measurements the empirical or typi-
cal MFPT is thus expected to be shorter than the MFPT obtained from a sufficiently large sample, see also
the discussion in [148].

For fixed λ and q, the PDFs in figure 1 exhibit almost the same behaviour, but the heights of their maxima
and the widths vary with α. Long FPTs may arise due to slow or retarded motion of the particles or due to
back-and-forth movement causing a delay. In contrast, short FPTs imply more directed movement. These
observations correspond to the idea of geometry-controlled dynamics, i.e., the most likely FPT is close to the
time 〈x2(t0)〉 = L2 for passing (almost) directly from the initial position to the absorbing boundary [10, 12].
Using the closed form for the MSD [56]

〈x2(t)〉 = Γ
(
p + 1

2

)
√
π

[√
D0Dq

2

p

(
2 − q

5 − 3q

)]2p

tp, (10)

where p = 2/(2 − α), this means that the most likely FPT for such ‘direct trajectories’ [10, 12] scales like
t0 	 L2/p. Naively, we would expect α to affect the FPTD strongly, but for finite noise–noise cross-correlation
coupling the influence ofα appears to be mitigated. The case ofα = 0 and q ≈ 1, represented by the red dashed
line in the middle panels, corresponds to the FPTD of homogeneous Brownian motion-driven correlated mul-
tiplicative coloured Gaussian and additive white noises. We note that departure from Gaussianity significantly
influences the FPT behaviour.

The coefficient of variation (CV) measures the relative variation within a data set, i.e., the dispersion of the
distribution. It is the ratio of the standard deviation to the mean, for the FPTs t this implies

CV =

√
〈t2〉 − 〈t〉2

〈t〉 , (11)

where the denominator is the MFPT. A low CV value means relatively little variation within the distribution
while a high CV implies larger variation. Generally, when CV exceeds unity, meaning that the standard devi-
ation is larger than the mean, the underlying distribution is ‘broad’ in the sense that the average (here the
MFPT) is not representative of the actual behaviour of a single realisation, see the discussion in [10, 12, 149].

If sampled from a normally distributed population an unbiased estimator for the CV is

CV� =

(
1 +

1

4n

)
× CV, (12)

where n is the sample size (i.e., the number of observations). For distributions deviating from the normal dis-
tribution more accurate estimators may be used. In particular, for log-normally distributed data, the estimator

5
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Figure 1. FPTD for different values of the non-extensivity parameter q (q = 0.1: black dash-dotted line; q = 1: red dashed line;
q = 1.5: green solid line). The noise–noise coupling strength λ varies across the figure as λ = 0, 0.5, and 1 from left to right,
while α varies from top to bottom as α = −1, 0, and 1. In all panels we use the parameters D = 0.5, Q = 0.5, D0 = 0.01,
τ = 0.1, and M = 1 × 104. The initial position of the particles is at the origin. The dashed vertical lines in the corresponding
colours represent the respective MFPT.

becomes

CVLN =
√

exp
(
s2
LN

)
− 1, (13)

where s2
LN is the variance of the logarithm of the data. A 95% confidence interval of CV is given by

CV ± tα�,n−1 SE(CV�), (14)

where SE(CV�) = CV(1 + 1/(4n))/
√

2n is the standard error of CV corrected for bias. Here tα� ,n−1 is the
upper (1 − α/2)-critical value for the t-distribution with (n − 1) degrees of freedom, and α� represents the
level of significance with confidence level given by (1 − α�).

The CV for the FPTD as a function of the non-extensivity parameter q is shown in figure 2. The lowest and
highest values are reached when q = 1 and 0.9, respectively. CV first remains fairly constant, with a shallow
descent before spiking to its maximum q = 0.9, dropping to the minimum value at q = 1, and then increasing
to what appears like a plateau. While for q < 0.9 the CV value is almost the same for all values, the plateau
value at q > 1.0 depends somewhat on the noise–noise coupling strength λ. To see the dependence on the
diffusivity scaling exponent α note the different ranges of CV in the three panels. In particular the maximum
at q = 0.9 increases with increasing α. The overall behaviour is, however, quite similar for all α. In all cases
we note that CV reaches values far above unity. Consequently the MFPT is far less than the standard deviation
and thus not a sufficient measure to account for the full FPT statistic, apart from the case q ≈ 1.0, i.e., the
Gaussian case. The CV suggests a broad FPTD for q �= 1, which is indeed observed in figure 1.

Figure 3 depicts the variation of the MFPT with the non-extensivity parameter q for different values of the
diffusivity scaling exponent α and the noise–noise coupling strength λ. For λ = 0 or 0.5 (panel (a)) the MFPT
first shows a fairly gradual growth and then drops to a minimum at q = 0.9, before then increases with growing
q. For |λ| = 1 (panel (b)) the MFPT exhibits an additional spike at q = 1 and has a minimum for q > 1. For
fixed q, the MFPT is lowest and highest for α = 1 and −1, respectively, compared to the MFPT when α = 0.

6



J.Phys.Complex. 2 (2021) 045012 (23pp) N M Mutothya et al

Figure 2. CV (11) for the FPTD as a function of the non-extensivity parameter q for different values of the noise–noise coupling
strength λ. The diffusivity scaling exponent α varies across the figure as α = −1, 0, and 1. The solid lines with the circle, square,
pentagon, and triangle are for λ = −1, 0, 0.5 and 1, respectively. In all panels the parameters are D = 0.5, Q = 0.5, D0 = 0.01,
τ = 0.1, and M = 1 × 104. The initial position of particles is at the origin. Error bars according to relation (14) are also displayed
but are of the size of the symbols.

Figure 3. MFPT as a function of the non-extensivity parameter q for various values of the diffusivity scaling exponent α and the
noise–noise coupling strength λ. In all panels we chose the parameters D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104.
The initial position of the particles is at the origin.

For q < 0.7 the MFPT remains fairly constant, for q � 1.1 the MFPT increases, while for 0.7 < q < 1.1 the
behaviour of the MFPT varies in dependence on λ. For q � 0.7 the MFPT is larger than for q > 1.1. Depending
on λ the non-Gaussianity q leads to a low or large MFPT. The MFPT exhibits minimum which can be viewed
as a resonant activation-like phenomenon. Coloured non-Gaussian noise can be approximated as Gaussian
noise (i.e., Ornstein–Uhlenbeck process) with effective noise correlation time τ eff and effective noise intensity
Deff given by τ eff = 2(2 − q)τ/(5 − 3q) and Deff = [2(2 − q)/(5 − 3q)]2D. Both effective noise strength and
effective noise correlation time increase with growing q, but they have opposite effects on the diffusion of
a particle. The effective noise strength accelerates the diffusion of a particle, while the effective correlation
time retards the diffusion. When |q − 1| is sufficiently small, the coloured non-Gaussian noise departs from
Gaussian noise only slightly, but exhibits some of the main trends of non-Gaussian noise. A negative α value
inhibits some particles from reaching the absorbing boundary, while a positive α-value promotes particles
reaching the absorbing boundary. 95% confidence intervals for the MFPT under different values for q, α, and
λ are presented in table 1 in appendix B.

Figure 4 presents the MFPT as a function of the noise–noise coupling strength λ for different values of the
non-extensivity parameter q and the diffusivity scaling exponent α. When q = 0.1 or 1.5 the MFPT remains
fairly constant, with gradual growth as function of |λ| for all α. The MFPT for q = 0.1 is larger than the one
for q = 1.5. For the Gaussian case q = 1.0 the MFPT increases with increasing |λ|, i.e., it has a minimum for
vanishing noise–noise coupling. A strong growth is seen when λ is close to unity, and the MFPT for q = 1.0
crosses the value for q = 1.5 and 0.1. The effect of noise coupling is significant when both the multiplicative

7
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Figure 4. MFPT as a function of the noise–noise correlation strength λ for various values of the non-extensivity parameter q. In
all panels D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The bottom panels show a zoom into the region around
λ = 0.95. The initial position of the particles is at the origin.

Figure 5. MFPT as function of the self-correlation time τ of the non-Gaussian coloured noise under variation of the
non-extensivity parameter q and the diffusivity scaling exponent α. In all panels D = 0.5, Q = 0.5, D0 = 0.01, λ = 0.5, and
M = 1 × 104. The initial position of the particles is at the origin.

and additive noises are Gaussian (q = 1), but the effect diminishes when the multiplicative noise departs from
Gaussian behaviour.

Figure 5 displays the dependence of the MFPT on the self-correlation time τ of the non-Gaussian coloured
noise for different non-extensivity parameters q and diffusivity scaling exponent α. For the Gaussian case
q = 1.0 the MFPT is insensitive to τ . For q = 1.5, with growing τ the MFPT decreases to a plateau, that has
the same value for all q, which means that the increase of τ—up to some limiting value—accelerates particles
to reach the absorbing boundary. For q = 0.1 the MFPT first increases somewhat forα = −1 then decreases to
a minimum value, before slightly increasing to the common plateau. The MFPT is a non-monotonic function
of τ with a minimum, indicating, as mentioned before, a resonant activation-like phenomenon, see also the
discussion in [150]. When a small τ is fixed, departure from a Gaussian behaviour leads to large MFPT values.
It is also seen that when τ is small, α influences the behaviour of the MFPT.
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Figure 6. MFPT as function of the intensity D of the multiplicative non-Gaussian coloured noise and strength Q of the additive
Gaussian white noise. The non-extensivity parameter q varies horizontally across the figure as q = 0.1, 1.0, and 1.5, while the
diffusivity scaling exponent α varies vertically in the figure as α = −1, 0, and 1. In all panels we chose D0 = 0.01, λ = 1, τ = 0.1,
and M = 1 × 104. The initial position of the particles is at the origin.

Figure 6 presents the combined effects of the intensity D of the multiplicative non-Gaussian coloured noise
and strength Q of the additive Gaussian white noise on the MFPT when the non-extensivity parameter q is
varied horizontally across the figure (q = 0.1, 1.0, and 1.5) and the diffusivity scaling exponent α varied ver-
tically (α = −1, 0, and 1). In panels (a), (d), and (g) (i.e., when q = 0.1) the MFPT first increases rapidly and
then decreases gradually after passing through a maximum. The MFPT is a non-monotonic function of D,
but it remains fairly constant, with gradual growth with growing Q. The MFPT is large when 0.2 < D < 0.5
and low when D is close to zero. The nonmonotonic dependence of the MFPT on the noise intensity D with
a maximum as exhibited in panels (a), (d), and (g) is a signature of a noise enhanced stability (NES)-like
phenomenon. We attribute this NES to the temporary presence of a metastable state due to the stochastic
potential profile. Enhancement of the stability of a metastable state by noise has indeed been observed in sev-
eral other systems [151–153]. In panels (b), (e), and (h) (when q = 1) the MFPT decreases with growing D
or Q. The descent is more shallow with growing D than with growing Q, but it becomes more with increas-
ing α. The highest and lowest MFPT are reached when both D and Q are close to zero and one, respectively.
When q = 1 increasing D or Q accelerates the approach to the boundary at x = L. In panels (c), (f), and (i)
(q = 1.5) the MFPT descends with decreasing D or Q. In both panels (c) and (f) the descent is rapid and
shallow with growing D and Q respectively, while in panel (i) the descent is rapid and shallow with growing
Q and D respectively. The MFPT is short when both D and Q are large which means increasing both D and
Q accelerate the particle to reach the boundary. The interplay of D and Q significantly influences the MFPT.
We note that figures 5 and 6 reveal that D and τ (both parameters for the non-Gaussian noise) conspire in
reducing the MFPT.

3.2. Exponential position dependence of the diffusivity
Here, we consider the situation when the diffusion coefficient has the exponential position dependence (5)
[142].
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Figure 7. FPTD for different values of the non-extensivity parameter q (q = 0.1: black dash-dotted line; q = 1: red dashed line;
q = 1.5: green solid line). The noise–noise coupling strength λ varies horizontally across the figure as λ = 0, 0.5, and 1 while the
diffusivity exponent α varies vertically as α = 0, 1, and 10. In all panels we chose D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and
M = 1 × 104. The thin vertical lines in the corresponding line types and colours represent the respective MFPT. The initial
position of the particles is at the origin.

Figure 7 shows the FPTD for different values of the non-extensivity parameter q, with variation of the
noise–noise coupling strength λ and the diffusivity exponent α horizontally and vertically across the figure,
respectively. The curves of the PDFs are non-monotonic with maxima at short times. The FPTDs exhibit long
right tails and broaden with increasing λ. Concurrently, the MFPT increases with growing λ. The MFPT is to
the right of the peak of the FPTD, implying that the tail of long FPTs dominate the MFPT value. For a fixed
q and λ the FPTDs exhibit similar behaviours but the peaks and the MFPT vary with α. An exception to this
observation is noted in figure 7(h) for q = 1, where the PDF has two peaks. The peaks of PDFs and the MFPT
vary with q, α, and λ.

Figure 8 shows the CV of the FPTD as function of the non-extensivity parameter q for different values of
the noise–noise coupling strength λ. For α = 0, when λ = 0, 0.5, or 1 the CV first decreases to a minimum
value and then increases to what appears like a plateau with growing q. When λ = −1 the CV first remains
fairly constant slightly above one, drops to a minimum value, and then increases to a plateau below one with
increasing q. q less or greater than the critical value yields CV values significantly exceeding one. Forλ = −1, 0,
and 0.5 the CV is minimal when q = 1 and it is less than one, while for λ = 1 it is minimal when q = 0.9. The
case that α = 0 represents a homogeneous environment, but figures 2(b) and 8(a) show a somewhat different
trend, which can be attributed to the diffusion coefficient, which is D0(a + 1) and D2

0/2 in the former and
latter cases, respectively. For α = 1 the CV first remains fairly constant, with gradual growth, then steps up
at q = 0.9, and drops to a minimum value at q = 1, before increasing to a plateau with growing q. When
1.0 � q � 1.1 the CV is less than one, otherwise the CV significantly exceeds one. When α = 10 the CV for
λ = −1 and 1 first remains fairly constant with gradual growth, drops to a minimum value at q = 0.9, and
then decreases gradually to a constant for λ = −1 and increases to a plateau for λ = 1 with growing q. For
λ = 0 and 0.5 the CV first increases gradually, drops to the minimum value at q = 1, then remains constant
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Figure 8. CV of the FPTD as function of the non-extensivity parameter q for different values of the noise–noise coupling strength
λ. The value of the diffusivity exponent α is varied across the panels as α = 0, 1, and 10. Solid lines and symbols represent
λ = −1 (circles), λ = 0 (squares), λ = 0.5 (pentagrams), and λ = 1 (triangles). In all panels we chose D = 0.5, Q = 0.5,
D0 = 0.01, τ = 0.1, and M = 1 × 104. The initial position of the particles is at the origin. Error bars are of the size of the symbols.

Figure 9. MFPT as a function of the non-extensivity parameter q for various values of the diffusivity exponent α and the
noise–noise coupling strength λ. In all panels we chose D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The initial
position of the particles is at the origin.

for λ = 0 and increases to a plateau for λ = 0.5, with growing q. In all cases the CV is lower than unity at the
critical q. Note that when the CV significantly exceeds unity, this indicates a large variation in the FPTD, i.e.,
the MFPT may not be a good representative of single trajectory FPTs.

Figure 9 displays the MFPT as a function of the non-extensivity parameter q for various values of the
diffusivity exponent α and noise–noise coupling strength λ. The MFPT is a non-monotonic function of q
and exhibits a minimum, which again indicates a resonant activation-like phenomenon. With increasing q
the MFPT first increases gradually, before descending to the minimum value and then increases or remains
fairly constant. For |λ| = 1 and α = 0, and for λ = −1 and α = 1, after its minimum the MFPT increases to a
maximum value and then descends to what appears like a plateau. For λ = 0 and 0.5 the MFPT is lowest when
q is close to one (i.e., when the noise tends to coloured Gaussian noise), while for |λ| = 1, depending on α, the
lowest MFPT occurs either when q = 0.9 or 1. For fixed α and λ the interplay between effective noise intensity
and the effective noise correlation time of the multiplicative noise influence the MFPT. Both the effective noise
intensity and the effective noise correlation time increase with increasing q. 95% confidence intervals for the
MFPT for different values of q, α, and λ are presented in table 2 in appendix B.

Figure 10 depicts the MFPT as function of the noise–noise coupling strength λ for different values of
the non-extensivity parameter q, while the diffusivity exponent α varies across the figure. In all panels the
minimum MFPT occurs whenλ = 0. The MFPT increases with increasing |λ|, except for q = 1.0 whenα = 10,
where the MFPT decreases with increasing λ. For α = 0 the MFPT is approximately symmetric in λ with
respect to λ = 0. In contrast, for α = 1 and 10 the MFPT is lower for negative λ compared to positive λ. When
α = 1 or 10, for negative λ the MFPTs for q = 1 and 1.5 are almost the same. When α = 0 and λ is close to

11



J.Phys.Complex. 2 (2021) 045012 (23pp) N M Mutothya et al

Figure 10. MFPT as a function of the noise–noise coupling strength λ for various values of the non-extensivity parameter q. The
diffusivity exponent α is varied across the figure. In all panels we chose D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104.
The initial position of the particles is at the origin.

unity, the MFPT for q = 1 exhibits a rapid growth. For fixed |λ| long and short MFPTs occur when q = 0.1
and 1.0, respectively. Generally non-Gaussianity q �= 1 leads to a large MFPT. The noise coupling inhibits some
particles from reaching the absorbing boundary, but the effect of q and α can modify this behaviour, as seen
in figures 10(c) and (f) when q = 1.0.

Figure 11 displays the dependence of the MFPT on the self-correlation time τ of the multiplicative coloured
noise for various values of the non-extensivity parameter q, while the diffusivity exponentα varies horizontally
across the figure. For q = 1.0, the MFPT remains constant with increasing τ , but when α = 10 and τ is small
the MFPT exhibits gradual growth. Concurrently, for q = 0.1 and q = 1.5 the MFPT first decreases and then
remains constant (matching the MFPT for q = 1.0) with increasing τ . For fixed, small τ the MFPT is long,
and short for q = 0.1 and 1.0, respectively. Moreover the MFPT drops with increasing α. For large τ values
the MFPTs for all q coincide, which means that non-Gaussian and Gaussian coloured noise leads to almost the
same MFPT. When τ is small, departure from Gaussianity inhibits some particles from reaching the absorbing
boundary, and the effect is more pronounced when q < 1 compared to q > 1.

Figure 12 presents the conspirative effect of the noise intensity D of the multiplicative non-Gaussian
coloured noise and the strength Q of the additive Gaussian white noise on the MFPT. Here the non-extensivity
parameter q is varied horizontally (q = 0.1, 1.0, and 1.5) while the diffusion exponent α is varied vertically
(α = 0, 1, and 10). In panel (a) the MFPT is large when D and Q are both close to zero. The MFPT in panel
(a) decreases gradually with increasing D while it is a non-monotonic function of Q (particularly for D close
to one), first increasing gradually to a maximum value and then descending with increasing Q, a signature
of an NES-like phenomenon. The MFPT decreases gradually with increasing D while it is a non-monotonic
function of Q, first increasing gradually to a maximum value and then descending with growing Q, which is
similar to the resonant activation phenomena. In the other panels the MFPT increases significantly when Q
becomes small. The effect of D is more moderate, but generally the MFPT increases with decreasing D. With
the increase of D or Q particle is accelerated to reach the absorbing boundary.

3.3. Logarithmic position dependence of the diffusivity
We now turn to the final case in which the diffusion coefficient has the logarithmic dependence (6) on the
position [142].
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Figure 11. MFPT as function of the self-correlation time τ of the multiplicative coloured noise, for various values of the
non-extensivity parameter q. The diffusivity exponent α varies across the panels. In all panels we chose D = 0.5, Q = 0.5,
D0 = 0.01, λ = 0.5, and M = 1 × 104. The initial position of the particles is at the origin.

Figure 12. MFPT as function of the multiplicative non-Gaussian coloured noise intensity D and strength Q of the additive
Gaussian white noise. The non-extensivity parameter q is varied horizontally as q = 0.1, 1.0, and 1.5 while the diffusivity scaling
exponent α is varied vertically as α = 0, 1, and 10. In all panels we chose D0 = 0.01, λ = 1, τ = 0.1, and M = 1 × 104. The
initial position of the particles is at the origin.

Figure 13 shows the FPTD for different values of the non-extensivity parameter q and the noise–noise
coupling strength λ (λ = 0, 0.5, and 1). The FPTDs exhibit long right tails and broaden with increasing λ. The
PDFs are non-monotonic with peaks (maxima) at short times which indicates that short FPTs are more likely
than long ones, but note that the MFPTs represented by the vertical lines are to the right of the peaks implying
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Figure 13. FPTD for different values of the non-extensivity parameter q (q = 0.1: black dash-dotted line; q = 1: red dashed line;
q = 1.5: green solid line). The noise–noise coupling strength λ varies across the figure as λ = 0, 0.5, and 1. In all panels we chose
D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The thin vertical lines in the corresponding line style and colours
represent the respective MFPT. The initial position of the particles is at the origin.

Figure 14. CV of the FPTD as function of the non-extensivity parameter q for different values of the noise–noise coupling
strength λ. The solid lines with symbols represent the values λ = −1 (circles), λ = 0 (squares), λ = 0.5 (pentagrams), and λ = 1
(triangles). In all panels we chose D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The initial position of the particles is
at the origin. The error bars are of the order of the symbols.

that the long FPTs in the tail eventually dominate the MFPT. Thus, the FPT of a single trajectory may not be
well represented by the MFPT.

Figure 14 shows the dependence of the CV of the FPTD on the non-extensivity parameter q. For all values
of the noise–noise coupling strength λ the CV shows a similar shape: it first remains fairly constant and then
increases rapidly to a maximum value at q = 0.9. It drops sharply to a minimum value at q = 1 and then
increases with increasing q. Note that the curves for different λ actually show distinct crossings. Except for q
close to one, the CV is greater than unity, implying high variation and broad distributions—in agreement with
the observations of figure 13.

Figure 15 shows the MFPT as a function of the non-extensivity parameter q for different values of the
noise–noise coupling strength λ. The MFPT increases with increasing |λ|, i.e., for a fixed small q, the MFPT
is highest and lowest when |λ| = 1 and 0, respectively. The MFPT shows a non-monotonic dependence on
q, with an increase in q the MFPT first remains fairly constant, with gradual growth and descent for λ =

0, 0.3, 0.5, 0.8, and |λ| = 1 respectively, descends to a minimum value, before increasing to what appears like a
plateau exhibiting a resonant activation-like phenomenon. The minimum value increases with increasing |λ|.
Departure from Gaussianity leads to long MFPTs, i.e., it inhibits some particles from reaching the absorbing
boundary. We also note that for |λ| < 1 the MFPT is long and short when q < 1 and q > 1, respectively. 95%
confidence intervals for the MFPT under different values for q and λ are presented in table 3 appendix B.

Figure 16 presents the MFPT as function of the noise–noise correlation λ for different values of the non-
extensivity parameter q. The minimum MFPT is realised when λ = 0. For all q values the MFPT increases with
increasing |λ|. When λ is close to one and q = 1.0 the MFPT grows strongly with increasing λ. Generally, the
MFPT is fairly symmetric about λ = 0. Both q and λ are relevant parameters for the variations of the MFPT.
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Figure 15. MFPT as function of the non-extensivity parameter q for different values of the noise–noise coupling strength λ. In
all panels we chose D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The initial position of the particles is at the origin.

Figure 16. MFPT as a function of the noise–noise correlation strength λ for various values of the non-extensivity parameter q.
We chose the parameters D = 0.5, Q = 0.5, D0 = 0.01, τ = 0.1, and M = 1 × 104. The panel on the right shows a zoom into the
region around λ = 1.0. The initial position is at the origin.

Figure 17. MFPT as function of the self-correlation time τ of the multiplicative coloured noise for various values of the
non-extensivity parameter q. The parameters are chosen as D = 0.5, Q = 0.5, D0 = 0.01, λ = 0.5, and M = 1 × 104. The initial
position of the particles is at the origin.

When |λ| is close to one departure from Gaussianity leads to short MFPT, i.e., it accelerates particles reaching
the boundary, otherwise departure from Gaussianity leads to long MFPT.
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Figure 18. MFPT as function of the noise intensity D of the multiplicative non-Gaussian coloured noise and the strength Q of
the additive Gaussian white noise. The non-Gaussianity parameter q is varied across the figure as q = 0.1, 1.0, and 1.5. In all
panels we chose D0 = 0.01, λ = 1, τ = 0.1, and M = 1 × 104. The initial position of the particles is at the origin.

Figure 17 displays the dependence of the MFPT on the self-correlation time τ for different values of the
non-extensivity parameter q. For q = 1.0 the MFPT remains constant over most of the τ range probed here,
while for q = 0.1 and q = 1.5 it first decreases with increasing τ and then shows only smaller variations. We
see that the non-Gaussianity (q �= 1) impacts the MFPT mainly for small values of τ . For a fixed small τ
non-Gaussianity leads to long MFPTs which arise from long FPT events.

Figure 18 presents the conspirative effect on the MFPT of the noise intensity D of the multiplicative non-
Gaussian coloured noise and the strength Q of the additive Gaussian white noise, where q varies across the
figure (q = 0.1, 1.0, 1.5). In panel (a) the MFPT decreases with increasing D but increases with growing Q. The
MFPT is short when D is close to one. In the Gaussian case, panel (b), the MFPT decreases with increasing Q but
remains fairly constant, with gradual descent, with variation of D. In panel (c) the MFPT first increases and then
decreases with increase of both D and Q. The effect of D in accelerating particles to the absorbing boundary is
more pronounced when the noise departs from Gaussian behaviour. Q changes its role, it accelerates particle
to the absorbing boundary when q > 1 and inhibits particles when q < 1. We note that when q > 1, D and Q
conspire to shorten the MFPT, while they act antagonistically when q < 1.

4. Conclusions

We numerically studied the FPT problem of stochastic motion in a one-dimensional heterogeneous sys-
tem based on fourth-order Runge–Kutta simulations. The Langevin equation for this system involves the
multiplicative position-dependent diffusion coefficient D(x) for which we chose the Stratonovich interpre-
tation. The process is driven by coloured non-Gaussian q-noise η(t), whose dynamics is defined as an Orn-
stein–Uhlenbeck-type process with q-noise potential Vq and white Gaussian driving noise ξ(t). The dynamic
equation also contains an additive white Gaussian noise ε(t), that is coupled to the noise ξ(t) via a noise–noise
coupling of strength λ. For D(x) we considered a power-law form as well as an exponential and logarith-
mic form. We studied in depth the FPT statistics as function of all model parameters. Specifically we observe
clear crossover behaviours when the non-extensivity parameter q is close to the Gaussian value, q = 1, as
well as q = 0.9. Especially for the CV of the FPTP we find values significantly exceeding unity, imply-
ing that the MFPT is in fact a bad estimate for the FPT-behaviour, matching recent findings on the full
FPTD in even simple settings [10, 12, 34, 47]. Both departure from Gaussian behaviour of the multiplica-
tive coloured noise and the noise–noise coupling lead to long FPT events. The MFPT as a function of the
non-Gaussian parameter q and the correlation time τ of the coloured noise exhibits resonant activation-like
phenomena. Also, depending on q the parameters D and Q can collaborate or act on particle in the oppo-
site directions. The wealth of the dynamics encoded in this generalised heterogeneous diffusion process is a
versatile starting point for the analysis of stochastic dynamics in complex, heterogeneous systems and non-
Markovian dynamics. The model reported here particularly allows the study of tradeoff effects between the
non-Gaussianity, correlations in the noise, and the noise–noise coupling, with respect to the inhomogeneity of
the diffusion coefficient.

In future work it will be of interest to modify the deterministic dependence of the diffusion coefficient D(x)
for patchy diffusivity distributions in both the annealed and quenched limits, to more closely mimic diffusion
and first-passage in disordered systems. While such an extension will require numerical simulations to obtain
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the associated statistics, the results reported here will be useful as a benchmark for specific systems governed by
different types of noises. It would also be interesting to include switching types of potentials [154] and consider
explicit environmental noise, e.g., in population dynamics and competition [58, 155]. Another possible line of
generalisation is to include a time dependence of the diffusion coefficient and study how this affects the first
passage behaviour.
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Appendix A. Numerical discretisation scheme

Here we use a discrete representation based on the fourth-order Runge–Kutta-type integration scheme to
simulate the particle trajectories and record the FPT. We first rewrite the stochastic equations (1) and (2) in
the form

dx(t)

dt
= f (x(t), η(t)) , (A1)

dη(t)

dt
= h

(
η(t), q

)
+

1

τ
ξ(t), (A2)

where f (x(t), η(t)) =
√

2D(x(t)) × η(t) and h(η, q) = − 1
τ

[
2η(t)

2+η(t)2 (q−1)β

]
. We generate sets of standard nor-

mal random variables Z1k = {z1k(i)} and Z2k = {z2k(i)} where k = 0, 1, 2, 3, 4. z1k(i) and z2k(i) are normally
distributed random variables with zero mean and unit variance. We then compute

Rk(i) =
√

2DΔt × z1k(i),

Sk(i) =
√

2QΔt
(
λz1k(i) +

√
1 − λ2z2k(i)

)
.

Then, the numerical iteration scheme reads

x(i + 1) = x(i) +
Δt

6
× [F1(i) + 2F2(i) + 2F3(i) + F4(i)] + S0(i), (A3)

η(i + 1) = η(i) +
Δt

6
× [H1(i) + 2H2(i) + 2H3(i) + H4(i)] +

R0(i)

τ
, (A4)

where

F1(i) =
√

2D [x(i) + S1(i)] × (η(i) + R1(i)/τ) (A5)

F2(i) =

√
2

{
D

[
x(i) +

Δt

2
× F1(i) + S2(i)

]}

×
(
η(i) +

Δt

2
× H1(i) +

R2(i)

τ

)
(A6)

F3(i) =

√
2

{
D

[
x(i) +

Δt

2
× F2(i) + S3(i)

]}

×
(
η(i) +

Δt

2
× H2(i) +

R3(i)

τ

)
(A7)
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Table 1. 95% confidence interval for the MFPT when function form for the coefficient is the power-law (4).

λ = 0 λ = 0.5 λ = 1.0

q α = −1 α = 0 α = 1 α = −1 α = 0 α = 1 α = −1 α = 0 α = 1

0.1 58 ± 9 53 ± 9 47 ± 8 60 ± 9 54 ± 9 48 ± 8 68 ± 10 59 ± 9 50 ± 9
0.2 59 ± 9 54 ± 9 48 ± 8 61 ± 9 55 ± 9 48 ± 8 69 ± 10 59 ± 9 52 ± 9
0.3 59 ± 9 55 ± 9 49 ± 9 61 ± 9 55 ± 9 50 ± 9 70 ± 10 59 ± 9 53 ± 9
0.4 60 ± 9 55 ± 9 50 ± 9 62 ± 10 56 ± 9 51 ± 9 69 ± 10 60 ± 10 54 ± 9
0.5 60 ± 10 55 ± 9 52 ± 9 62 ± 10 58 ± 9 51 ± 9 68 ± 10 61 ± 10 54 ± 9
0.6 60 ± 10 54 ± 9 51 ± 9 61 ± 10 55 ± 9 52 ± 9 66 ± 10 58 ± 10 52 ± 9
0.7 54 ± 9 50 ± 9 47 ± 9 56 ± 10 51 ± 9 48 ± 9 58 ± 10 52 ± 9 49 ± 9
0.8 34 ± 7 32 ± 7 31 ± 7 36 ± 8 33 ± 7 31 ± 7 37 ± 8 33 ± 7 31 ± 7
0.9 4 ± 2 4 ± 2 3 ± 2 4 ± 2 3 ± 2 3 ± 2 5 ± 2 4 ± 2 3 ± 2
1.0 7.8 ± 0.1 7.7 ± 0.1 7.7 ± 0.1 9.4 ± 0.2 9.1 ± 0.2 8.5 ± 0.2 210 ± 13 153 ± 10 93 ± 6
1.1 10 ± 1 10 ± 1 8 ± 1 12 ± 1 12 ± 1 9 ± 1 58 ± 4 34 ± 2 21 ± 2
1.2 15 ± 2 15 ± 2 12 ± 2 18 ± 2 16 ± 2 12 ± 2 44 ± 4 28 ± 3 19 ± 3
1.3 21 ± 3 20 ± 3 16 ± 3 24 ± 4 21 ± 4 16 ± 3 46 ± 5 31 ± 4 22 ± 4
1.4 26 ± 4 23 ± 4 19 ± 4 29 ± 5 25 ± 4 20 ± 4 48 ± 6 34 ± 5 25 ± 4
1.5 29 ± 5 27 ± 5 28 ± 5 32 ± 5 28 ± 5 22 ± 4 51 ± 7 37 ± 6 28 ± 5

Table 2. 95% confidence interval for the MFPT when function form for the diffusion coefficient is the exponential
(5).

λ = 0 λ = 0.5 λ = 1.0

q α = 0 α = 1 α = 10 α = 0 α = 1 α = 10 α = 0 α = 1 α = 10

0.1 39 ± 8 9 ± 2 9 ± 1 53 ± 9 16 ± 3 19 ± 4 114 ± 13 121 ± 11 49 ± 8
0.2 40 ± 8 9 ± 2 9 ± 1 54 ± 9 17 ± 4 19 ± 4 113 ± 14 121 ± 11 51 ± 8
0.3 42 ± 8 9 ± 2 9 ± 1 55 ± 3 17 ± 4 20 ± 4 113 ± 14 122 ± 11 53 ± 8
0.4 43 ± 8 10 ± 2 9 ± 1 57 ± 10 17 ± 4 21 ± 4 111 ± 14 124 ± 11 56 ± 9
0.5 45 ± 9 10 ± 2 9 ± 1 59 ± 10 17 ± 4 22 ± 5 111 ± 14 125 ± 11 58 ± 9
0.6 46 ± 9 10 ± 2 9 ± 2 60 ± 10 17 ± 4 22 ± 5 107 ± 14 122 ± 11 59 ± 9
0.7 47 ± 9 9 ± 2 9 ± 1 59 ± 11 17 ± 4 23 ± 5 97 ± 14 119 ± 11 57 ± 9
0.8 41 ± 9 9 ± 1 9 ± 1 49 ± 10 14 ± 3 19 ± 4 74 ± 13 102 ± 9 49 ± 8
0.9 13 ± 5 7.8 ± 0.3 7.8 ± 0.3 15 ± 6 9 ± 1 9 ± 1 23 ± 7 74 ± 4 25 ± 3
1.0 7.7 ± 0.1 7.7 ± 0.1 7.7 ± 0.1 8.9 ± 0.1 9.3 ± 0.8 8.6 ± 0.2 279 ± 17 40 ± 2 6 ± 1
1.1 8 ± 0.3 7.7 ± 0.1 7.7 ± 0.1 9.5 ± 0.5 9 ± 0.2 8.1 ± 0.2 174 ± 11 35 ± 2 7 ± 1
1.2 10 ± 1 7.7 ± 0.1 7.7 ± 0.1 13 ± 2 9 ± 1 9 ± 1 123 ± 9 43 ± 4 10 ± 2
1.3 12 ± 2 7.7 ± 0.1 7.7 ± 0.1 17 ± 3 10 ± 1 9 ± 1 115 ± 10 54 ± 5 13 ± 3
1.4 15 ± 3 7.7 ± 0.1 7.7 ± 0.2 21 ± 4 10 ± 1 10 ± 1 115 ± 11 62 ± 6 15 ± 3
1.5 16 ± 3 7.7 ± 0.1 7.7 ± 0.2 23 ± 4 11 ± 1 10 ± 2 114 ± 11 69 ± 7 17 ± 4

F4(i) =

√
2

{
D

[
x(i) +

Δt

2
× F3(i) + S4(i)

]}

×
(
η(i) +

Δt

2
× H3(i) +

R4(i)

τ

)
(A8)

H1(i) = − 2(η(i) + R1/τ)/τ

2 + (η(i) + R1/τ)2 × (q − 1) × β
(A9)

H2(i) = − 2
[
η(i) + Δt

2 × H1(i) + R2(i)
τ

]
/τ

2 +
[
η(i) + Δt

2 × H1(i) + R2(i)
τ

]2 × (q − 1) × β
(A10)

H3(i) = −
2
[
η(i) + Δt

2 × H2(i) + R3(i)
τ

]
/τ

2 +
[
η(i) + Δt

2 × H2(i) + R3(i)
τ

]2
× (q − 1) × β

(A11)

H4(i) = − 2
[
η(i) + Δt

2 × H3(i) + R4(i)
τ

]
/τ

2 +
[
η(i) + Δt

2 × H3(i) + R4(i)
τ

]2 × (q − 1) × β
, (A12)

for i = 1, 2, . . . .
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Appendix B. 95% confidence interval for the MFPT

The tables in this appendix present 95% confidence intervals for the MFPT. The specific values of the non-
Gaussianity parameter q, the diffusivity scaling exponent α, and the noise–noise coupling strength λ are
indicated in the tables. Other parameters are fixed: D = 0.5, Q = 0.5, D0 = 0.01, and τ = 0.1. To determine
the confidence interval we first simulated 10 samples each of 1 × 104 FPT observations, calculated pooled
mean and standard deviation, and then determined the confidence interval.

Table 3. 95% confidence interval for the MFPT when function form for the
coefficient has the logarithmic expression (6).

q λ = 0 λ = 0.3 λ = 0.5 λ = 0.8 λ = −1 λ = 1

0.1 43 ± 8 45 ± 8 50 ± 9 70 ± 10 115 ± 13 108 ± 13
0.2 44 ± 8 48 ± 8 52 ± 9 69 ± 10 112 ± 13 109 ± 13
0.3 45 ± 8 47 ± 8 53 ± 9 72 ± 11 112 ± 13 106 ± 13
0.4 47 ± 8 50 ± 9 55 ± 9 72 ± 11 109 ± 13 106 ± 13
0.5 49 ± 9 50 ± 9 55 ± 9 74 ± 11 106 ± 13 101 ± 13
0.6 52 ± 9 52 ± 9 57 ± 10 73 ± 11 99 ± 13 97 ± 13
0.7 52 ± 9 51 ± 9 55 ± 10 68 ± 11 87 ± 12 87 ± 12
0.8 44 ± 9 42 ± 8 43 ± 9 50 ± 10 60 ± 10 58 ± 10
0.9 10 ± 3 11 ± 4 10 ± 4 12 ± 5 17 ± 4 16 ± 5
1.0 7.7 ± 0.1 8.1 ± 0.1 8.9 ± 0.1 12.9 ± 0.3 310 ± 18 278 ± 17
1.1 8 ± 0.3 8.5 ± 0.4 9.3 ± 0.4 14 ± 1 426 ± 21 173 ± 12
1.2 10 ± 2 11 ± 2 13 ± 2 19 ± 2 256 ± 15 121 ± 9
1.3 13 ± 2 15 ± 3 17 ± 3 25 ± 4 189 ± 13 114 ± 10
1.4 16 ± 3 17 ± 3 20 ± 4 30 ± 5 168 ± 13 113 ± 10
1.5 18 ± 3 19 ± 4 23 ± 4 34 ± 5 158 ± 12 113 ± 11
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