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Abstract
We investigate a diffusion process with a time-dependent diffusion coefficient, both
exponentially increasing and decreasing in time, D(t) = D0e±2αt. For this (hypothetical)
nonstationary diffusion process we compute—both analytically and from extensive stochastic
simulations—the behavior of the ensemble- and time-averaged mean-squared displacements
(MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations
derived for the short- and long-time behaviors are shown to be in excellent agreement with the
results of simulations. The diffusive characteristics in the presence of ageing are also
considered, with dramatic differences of the over- versus underdamped regime. Our results for
D(t) = D0e±2αt extend and generalize the class of diffusive systems obeying scaled Brownian
motion featuring a power-law-like variation of the diffusivity with time, D(t)∼ tα−1. We also
examine the logarithmically increasing diffusivity, D(t) = D0 log[t/τ0], as another fundamental
functional dependence (in addition to the power-law and exponential) and as an example of
diffusivity slowly varying in time. One of the main conclusions is that the behavior of the
massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found
for the time-dependent diffusion of the massless particles at short times. The latter manifests
itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged
MSD. The current findings are potentially applicable to a class of physical systems out of
thermal equilibrium where a rapid increase or decrease of the particles’ diffusivity is inherently
realized. One biological system potentially featuring all three types of time-dependent diffusion
(power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we
thoroughly discuss in the end.

Supplementary material for this article is available online
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1. Introduction

1.1. Anomalous diffusion and its models

Brownian motion (BM) features a linear spreading dynamics
of the particles and a Gaussian distribution of their increments.
Physical processes with non-Brownian spreading dynamics
of the particles feature a nonlinear growth of the ensemble-
averaged mean-squared displacement (MSD) [1–13]. In one
spatial dimension, the MSD for anomalous-diffusion pro-
cesses obeys a power law

⟨
x2(t)

⟩
=

ˆ ∞

−∞
x2P(x, t)dx= 2Kβ t

β , (1)

where P(x, t) is the probability density function, β is the anom-
alous scaling exponent, and Kβ is the generalized diffusion
coefficient (with the physical dimensions [Kβ ] = m2/sβ). A
variety of theoretical models of stochastic processes featuring
the nonlinear MSD growth (1) has emerged in the last dec-
ades [5, 7, 10, 13] targeting the underlying physical mech-
anisms and offering the mathematical description for many
experimental and simulations-based observations of anomal-
ous diffusion (often transient). The list is by now too long to
adequately overview all evidence and length/time scales here.
From the biological perspective, for instance, we mention a
number of real systems and models of anomalous diffusion,
including those in living cells, on lipid membranes, and in arti-
ficially crowded media [10–61].

Recently, a number of diffusion models of continuous-time
random walk type [62–73], viscoelastic diffusion [10, 74–76],
fractional BM [5, 77–80], some combinations of continuous-
time random walk and fractional BM [81–83], diffusion based
on the fractional Langevin equation [10, 84], heterogeneous
diffusion processes with the space-dependent diffusivity [85–
94] D(x)∼ |x|ϵ yielding the MSD

⟨
x2(t)

⟩
∼ t

2
2−ϵ (see also the

infinite ergodic theory for such D(x) forms [95], combinations
of D(x)∼ |x|ϵ with fractional BM [96], with multiplicative-
noise [97] processes for colored Gaussian [98] and Lévy noise
[99], diffusion in heterogeneous velocity fields [100], with
potential fields [101] as well as D(x)-diffusion in comb and
fractal structures [102]). The diffusive and nonergodic prop-
erties of heterogeneous systems with exponential D(x) were
also considered [89]. Both under- and overdamped BM at
nonhomogeneous temperature coupled to the diffusivity were
studied [103].

As more examples, the spreading dynamics in crowded and
heterogeneous environments [13, 39, 60, 73, 104–113], dif-
fusion with systematically varying time-dependent diffusivit-
ies D(t) [114–123] (including the dynamics of granular matter
slowing down due to inelastic collisions [119, 124], slowing
downD(t)-dependent diffusion in brain tissues [125–133] (see
also [134] and the magnetic-resonance-imaging-studies of dif-
fusion in general [135, 136]) were examined. The particle-
spreading dynamics in time- and space-fluctuating-diffusivity
landscapes [46, 137–143], in expanding/contracting media
[144, 145], and in the models with diffusing, switching and

random diffusivities (including superstatistical ones) [60, 76,
112, 140, 146–152] was studied as well.

A number of single-trajectory-based algorithms of
assessment-and-ranking and parameter-estimation of real-
izable models of diffusion for a data set of tracer positions
(as recorded in single-particle-tracking experiments [153–
156]) were developed [51, 142, 157–162]. This list includes
the recent Bayesian-statistics-based methods [51, 142, 163,
165], machine-learning approaches [83, 159, 166–171], con-
cepts of recurrent neural networks [162], inference-based
methods [158, 161] and the spectral-density single-trajectory
analysis [160]. We mention here the models with ‘switching’
between different types of (anomalous) diffusion (intermit-
tent processes) [60, 124, 147, 161, 162, 164, 172–175]. The
importance of particle-localization errors onto determination
of ‘apparent’ subdiffusion [176–181] should also be emphas-
ized (see also the recent studies on quantifying error correc-
tions in particle-tracking microrheology [182] and for ergodic
ensembles of colloidal particles [183]). Recent applications
of anomalous diffusion and nonergodicity [185–189] for the
analysis of income growth in gambling are also to be men-
tioned [190]. Finally, for a perspective on nonergodicity and
possible sources of bias in biological, biomedical, behavioral,
and psychological systems we refer to [191].

1.2. Time-dependent diffusivity

For the time-dependent diffusivity of the form

D(t)∼ tβ−1 (2)

the process of so called scaled BM (SBM) is realized, with⟨
x2(t)

⟩
= 2D(t)t≃ tβ , (3)

studied in depth both in the over- and underdamped limits [93,
116–118, 121, 122, 139] as well as recently in the presence
of resetting [123]. The special case of SBM yielding ultraslow
diffusion with the log-like MSD growth was considered too
[120]. We refer here also to the recent review on ultraslow dif-
fusion in heterogeneous materials [199]. Experimentally, the
models of power-lawD(t) were utilized recently, e.g. to ration-
alize water diffusion in brain tissues [130, 131].

The current study unveils the ensemble- and time-averaged
particle displacements and the spreading characteristics of a
Markovian yet nonstationary stochastic process with a time-
dependent diffusivity. As the time-domain analogy of the
modification of heterogeneous diffusion processesD(x)∼ |x|ϵ
to exponentially and logarithmically position-varying diffus-
ivity [89], D(x)∼ e−x and D(x)∼ logx, we here extend the
framework of the canonical SBM model to the diffusivity
exponentially and logarithmically varying in time. Specific-
ally, we consider both increasing and decreasing diffusivities,

D(t) = D0e
±2αt, (4)
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Figure 1. Schematic representation of the dynamics of massive
(m= 1) and massless (m= 0) particles with diffusivities varying
exponentially in time. The predicted transitions in the regimes of
MSD growth are indicated, see also table 1.

and call this process exponential SBM (ESBM), see the
schematic in figure 1, as well as the scenario with

D(t) = D0 log[t/τ0] (5)

called below logarithmic SBM (LSBM). We refer to [192] for
an example of logarithmically slow dynamics3.

We investigate the short- and long-time scaling behavior for
the MSD (1) and the time-averaged MSD (TAMSD) defined
in equation (7) below both for under- and overdamped motion.
The aspects of ageing for D(t) of the form (2) were examined
analytically and by simulations in [122] using the MSD,
the TAMSD, and the ergodicity breaking parameter (denoted
below as EB) and we generalize this approach to (4) and (5)
here. We uncover the properties of aged ESBM below as well.

We consider the spreading dynamics of particles with D(t)
of the form (4), with the time-local fluctuation-dissipation rela-
tion [97, 103, 115] assumed to hold. Thus, time variations of
the temperature T (t) and diffusivity D(t) are coupled to that
of the friction coefficient γ(t) of the particle of mass m via

D(t) = kBT (t)/[mγ(t)], (6)

where kB is the Boltzmann constant. This condition of the local
thermal equilibrium implies that the internal relaxation in the
system occurs on time scales much shorter than a typical time
scale of temperature variation.

1.3. Structure of the paper

The paper is organized as follows. In section 2 we present
the Langevin equation in the underdamped limit for D(t) =
D0e2αt. We describe the approximations employed and define
relevant observables. In section 3.1 we present the main res-
ults for theMSD andmean TAMSDobtained from the analytic
calculations and computer simulations, while the behavior of
the EB parameter is considered in section 3.2. We also dis-
cuss the underlying mathematical features and physical con-
sequences of the main findings. The main scaling relations

3 Throughout the text, we reserve β for the MSD scaling exponent, parameter
α denotes the rate of diffusivity variation for the case D(t)∼ e±2αt, and τ 0

is a typical time-scale for the D(t)∼ log[t/τ 0] scenario.

for the MSD and TAMSD in all the scenarios are summar-
ized in table 1. In section 4 the findings for all three scenarios
(D(t) = D0e2αt, D(t) = D0e−2αt, and D(t) = D0 log[t/τ0]) are
discussed and future developments of diffusion models with
time-varying D(t) are outlined. The details of analytical deriv-
ations and auxiliary figures are presented in Apps. A, B, and
C (available online at stacks.iop.org/JPD/54/195401/mmedia).
Finally, in section 5 we discuss the relevance of these non-
stationary diffusion models to the description of water diffu-
sion in gray- and white-matter tissues of the human brain. This
deeply complex biological system with intricate behaviors on
multiple scales serves as a motivation for the current theoret-
ical analysis.

2. Physical observables and simulation scheme

2.1. MSD, TAMSD, EB parameter, and ageing

The TAMSD—the physical observable central, for instance,
to quantify the dynamics in the single-particle-tracking
experiments—is defined (in one spatial dimension) as [5, 10]

δ2(∆) =
1

T−∆

T−∆ˆ

0

[x(t+∆)− x(t)]2 dt. (7)

Here ∆ is the lag time (setting the averaging window along
the time series) and T is the total length of the trajectory.
After averaging over N statistically independent realizations
of a process, the mean TAMSD at a lag time∆ is computed as

⟨
δ2(∆)

⟩
=

1
N

N∑
i=1

δ2i (∆). (8)

For an ergodic diffusive process, the MSD (1) and the
TAMSD (7) are identical in the limit ∆/T≪ 1 [5, 10]. Here,
the quantitative measure of ergodicity [184–186, 189] is the
EB parameter based on the fourth moment of the particle dis-
placement [10, 62, 77],

EB(∆) =

⟨(
δ2(∆)

)2
⟩
−
⟨
δ2(∆)

⟩2

⟨
δ2(∆)

⟩2 =
⟨
ξ2(∆)

⟩
− 1. (9)

Here, the normalized TAMSD

ξ(∆) = δ2(∆)
/⟨

δ2(∆)
⟩

(10)

quantifies relative deviations via dispersion of the distribu-
tion of individual TAMSD realizations around their mean (8)
divided by the mean TAMSD squared. For an ergodic system
of diffusing particles at any finite lag time ∆ the relation

lim
T→∞

EB(∆)→ 0 (11)

holds and in the limit ∆≪ T each individual TAMSD realiz-
ation approaches the MSD at the same (lag) time,

3
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Table 1. Summary of the asymptotic results for the D(t) = D0e
±2αt and D(t) = D0 log[t/τ0] diffusion scenarios regarding the MSD and

mean TAMSD (for the nonaged and aged conditions) at short, intermediate, and long times. The conclusion regarding WEB—the
equivalence of the MSD and the TAMSD in the limit of short (lag) times and long trajectories, given by equation (12)—is provided in the
last column.

Time-dependent
diffusivity scenario

MSD
TAMSD Short time Intermediate time Long time WEB

Massive
D(t) = D0e

2αt

nonaged

⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈D0γ0t
2, eq. (A6)

≈D0γ0∆
2, eq. (A11)

≈ 2D0t, eq. (A8)
≈ 2D0∆(1+αT), eqs.
(A12), (A14), (A15)

≈D0γ0t
2, eq. (A9)

eqs. (A10), (A15)
No

Massive
D(t) = D0e

2αt

aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈D0γ0t
2, eq. (A18)

≈D0γ0∆
2, eq. (A19)

eq. (A17)
eq. (A20)

eq. (A17)
eqs. (A20), (A21)

No

Massless
D(t) = D0e

2αt

nonaged

⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈ 2D0t, eq. (A25)
≈2D0∆

e2αT

2αT , eq. (A27)

D0
α

(
e2αt− 1

)
, eq. (A23)

eq. (A26)
≈ D0

α
e2αt, eq. (A24)

eqs. (A26), (A29)
Yes

Massless
D(t) = D0e

2αt

aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈2D0te
2αta , eq. (A30)

≈2D0∆
e2αT

2αT e
2αta , eqs. (A27),

(A31)

eq. (A30)
eq. (A31)

eq. (A30)
eq. (A31)

Yes

Massive
D(t) = D0e

−2αt

nonaged

⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈D0γ0t
2, eq. (B3)

≈D0γ0∆
2, eq. (B8)

≈ 2D0t, eq. (B5)
≈ 2D0∆(1−αT), eqs.
(B9), (B10)

≈ D0
α
, eq. (B4)

eq. (B10)
No

Massive
D(t) = D0e

−2αt

aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈D0γ0t
2, eq. (B12)

≈D0γ0∆
2, eq. (B15)

≈2D0te
−2αta , eq. (B13)

eq. (B16)
≈ D0

α
e−2αta , eq. (B14)

eq. (B16)
No

Massless
D(t) = D0e

−2αt

nonaged

⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈ 2D0t, eq. (B21)
≈ 2D0∆

2αT , eq. (B22)

D0
α

(
1− e−2αt), eq. (B19)

eq. (B20)
≈ D0

α
, eq. (B23)

≈ D0
α
, eq. (B24)

Yes

Massless
D(t) = D0e

−2αt

aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈2D0te
−2αta , eq. (B25)

≈ 2D0∆
2αT e

−2αta , eq. (B26)
eq. (B25)
eq. (B26)

eq. (B25)
eq. (B26)

Yes

Massive
D(t) = D0 log

[
t
τ0

]
nonaged

⟨
x2(t)

⟩⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈ D0γ0(∆t)2

1+γ0τ0
, eqs. (C8)

≈D0γ0(∆t)
2, eq. (C10)

≈D0γ0∆
2, eq. (C18)

eq. (C6)
eq. (C15)

≈2D0 log
[

t
τ0

]
t, eq. (C14)

≈2D0 log
[
∆
τ0

]
∆, eq. (C20)

Yes
No

Massive
D(t) = D0 log

[
t
τ0

]
aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈ D0γ0t
2

1+γ0τ0
, eq. (C22)

≈D0γ0t
2, eq. (C23)

≈D0γ0∆
2, eq. (C29)

eq. (C26)
eq. (C30)

≈2D0 log
[

t
τ0

]
t, eq. (C26)

eq. (C30)

Yes
No

Massless
D(t) = D0 log

[
t
τ0

]
nonaged

⟨
x2(t)

⟩⟨
δ2(∆)

⟩ ≈ D0(t−t0)
2

τ0
, eq. (C32)

≈2D0 log
[
T
τ0

]
∆, eq. (C36)

eq. (C31)
eq. (C36)

≈2D0 log
[

t
τ0

]
t, eq. (C33)

eq. (C35)

Yes

Massless
D(t) = D0 log

[
t
τ0

]
aged

⟨
x2a(t)

⟩⟨
δ2a(∆)

⟩ ≈ D0(t−t0)
2

τ0

log
[

ta
τ0

]
log

[
t
τ0

] , eq. (C40)

≈2D0 log
[
T
τ0

]
∆ log[ta/τ0]

log[T/τ0]
,

eq. (C41)

eq. (C38)
eq. (C39)

eq. (C38)
eq. (C39)

Yes

4
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δ2(∆)→
⟨
x2(∆)

⟩
. (12)

This definition of ergodicity in the Khinchin–Boltzmann sense
is less strict than the classical ‘mixing’ definition [6, 185, 193].
The latter implies exponential divergence of trajectories with
the same starting point in phase-space4.

For ESBM with

D(t) = D0e
2αt (13)

we solve the stochastic Langevin equation for the massive
(m= 1) and massless potential-free particles [119–122],

m
d2x(t)
dt2

+ γ(t)
dx(t)
dt

=
√

2D(t)γ(t)η(t). (14)

This system is driven by the Gaussian noise η(t) with zero
mean ⟨η(t)⟩= 0 and unit variance

⟨η(t)η(t ′)⟩= δ(t− t ′). (15)

The friction coefficient is set to depend on time as

γ(t) = γ0e
−2αt (16)

and the temperature is set to be constant,

T (t) = T0, (17)

in order to satisfy relation (6). Note also that a model with a
time-dependent temperature and different dependence of fric-
tion on time is also possible for the diffusivity (13) with con-
dition (6) still satisfied.

4 The general definition of ergodicity based on a metric for any physical
observable was employed already by Mountain and Thirumalai [194–196]
(and introduced even earlier in [197]). To recapitulate the main conclusions,
the ‘order parameter’ Ω similar to EB (9) was used [194–196] as a quantit-
ative measure of sampling of the configuration space by the particles and of
the related (non)-ergodicity (applied, e.g. to supercooled liquids and binary
mixtures of soft interacting spheres). For the energy-fluctuation metric, e.g.
the definition was based on the total energies of the particles Ei averaged over
the trajectory length T, namely

Ei(T) =
1

T

ˆ T

0
Ei(s)ds. (38)

For a finite classical system ofN particles with conservative forces, the energy-
related ergodicity parameter was defined as the ensemble-average [194–196],

ΩE(T) =
1

N

N∑
i=1

Ei(T)− 1

N

N∑
j=1

Ej(T)

2

. (39)

This quantity vanishes for an ‘effectively ergodic’ [198] dynamics at finite
observation times T [194–196] provided the time-scale of internal relaxation
or dynamics is τint ≪ T. The rate of exploration of the configurational space
and of the convergence to ergodicity is given by the ‘diffusion constant’, DE,
with the fundamental decay law with the trajectory length T given as

ΩE(T)/ΩE(0)∼ 1/(DET). (40)

The typical ‘mixing time’, τmix, depends on the temperature T of the system
via DE as follows [194–196] τmix(T )∼ 1/DE(T ).

From the velocity–velocity correlation function,
⟨v(t1)v(t2)⟩, the MSD and the mean TAMSD are expressed
as [7]

⟨
x2(t)

⟩
= 2
ˆ t

0
dt1

ˆ t

t1

dt2 ⟨v(t1)v(t2)⟩ (18)

and

⟨
δ2(∆)

⟩
=

´ T−∆

0 dt
[⟨
x2(t+∆)

⟩
−
⟨
x2(t)

⟩
− 2A(t,∆)

]
T−∆

,

(19)
respectively, where we defined [121]

A(t,∆) =

ˆ t

0
dt1

ˆ t+∆

t
dt2 ⟨v(t1)v(t2)⟩ . (20)

In the presence of ageing—when the recording of the time
series starts after a given time ta after the preparation of a
system—the aged MSD and aged TAMSD are given by, cor-
respondingly [7, 10, 122],

⟨
x2a(t)

⟩
= 2
ˆ ta+t

ta

dt1

ˆ ta+t

t1

dt2 ⟨v(t1)v(t2)⟩ (21)

and

δ2a(∆) =
1

T−∆

ta+T−∆ˆ

ta

[x(t+∆)− x(t)]2 dt. (22)

The correlator ⟨v(t1)v(t2)⟩ used in (21) is nonaged [122].

2.2. Discretization scheme

After the discretization of the trajectory into T/δt steps, in
the computer algorithm the time-step of integration was set to
δt= 1 (unless explicitly specified otherwise). Thus, at a time
instance tn+ 1 the following discrete forward-type Itô’s scheme
for the velocity and position of the particle is solved,

v(tn+1) = v(tn)+
√

2D(tn)γ(tn)η(tn)
√
tn+1 − tn

− γ(tn)v(tn)(tn+1 − tn), (23)

and

x(tn+1) = x(tn)+ v(tn)(tn+1 − tn). (24)

Below, we present the results in terms of the dimensionless
displacements and time; the values of the model parameters
(D0, α, γ0, T, etc) are also given in the figure captions without
their physical units (for simplicity).
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Figure 2. MSD, mean TAMSD, and the spread of individual
TAMSD trajectories for the massive particles with D(t) = D0e

2αt.
The ballistic asymptote (A6) and the linear asymptote (A8) are the
dashed lines at short and intermediate-to-long times,
correspondingly. Parameters: m= 1, D0 = 1, γ0 = 10−2, α= 10−7,
T = 105. MSD involves averaging over N= 500 time series, while
N= 30 TAMSD trajectories are shown in the plot to visualize the
degree of their spread.

3. Main results for D(t) = D0e2αt

In the main text, for the MSD and TAMSD we present the
key results of analytical calculations and computer simula-
tions for D(t) = D0e2αt (sections 3.1 and 3.2). The detailed
derivations for rapidly varying diffusivities D(t) = D0e2αt and
D(t) = D0e−2αt as well as for a slowly varying form D(t) =
D0 log[t/τ0] are given in Apps. A, B, and C, correspondingly
(together with supplementary figures for ESBM and LSBM).

3.1. MSD and mean TAMSD for D(t) = D0e
2αt

3.1.1. Massive particles. In figure 2 the particle displace-
ments in the underdamped limit are shown. Both the MSD and
mean TAMSD for the massive particles start ballistically with
time, consistent with the theoretical predictions of equations
(A6) and (A11). The variation of the MSD and the mean
TAMSD with α is presented in figures 3 and AA1, respect-
ively. At moderate values of α for intermediate lag times—
roughly, from a characteristic time∼1/γ0 of momentum relax-
ation to the diffusivity-variation time∼1/α—a region of linear

growth of
⟨
x2(t)

⟩
and

⟨
δ2(∆)

⟩
is observed, consistent with

the analytical predictions (A8) and (A12), respectively.
At long times the MSD is ballistic again, in agreement with

(A9), see figures 2 and 3. We find that for very small α val-
ues, such that αT≪ 1 and almost no implications of the time-
dependent diffusivity effectively present, the mean TAMSD
starts ballistically following ≈ D0γ0∆

2, as equation (A11)
predicts, while at intermediate and long times the standard dif-
fusion law ⟨

δ2(∆)
⟩
≈ 2D0∆ (25)

is detected. For larger values of the parameter α, such that
αT≫ 1, in the entire region of lag times a ballistic growth
of the TAMSD is observed, see figure AA1. Under these

Figure 3. Ballistic-to-linear and linear-to-ballistic transitions in the
MSD growth for the massive particles with D(t) = D0e

2αt, as
obtained from computer simulations for varying α values (as
specified in the legend, α= 10−7,10−5,10−3,10−2). The
asymptotes (A6) and (A8) are the dashed lines. Parameters: m= 1,
D0 = 10−5, γ0 = 10−2, T = 106, N= 200.

conditions, the value of the lag time from which the lin-
ear TAMSD growth is expected to occur shifts progressively
toward larger values, so that they can be even larger than the
total length of the trajectory investigated (see equation (A16)).
In the region of time where the nonaged and aged MSDs
of the massive particles with D(t) = D0e2αt turn from the
intermediate-time linear to the long-time ballistic growth, the
MSD increases with time faster than ballistically, see figures 3,
4 and AA3(a).

Note that to observe all regimes of diffusion the traject-
ory should be long enough, i.e. T≫ 1/α, whereas for rather
largeα valueswe indeed only detect the initial ballistic regime,
see figure AA2. The amplitude spread of individual TAMSD
realizations is found to be very small at short lag times, but
increases toward the end of the trajectories, as it generally
should (also for standard BM [10]). This effect is due to
worsening statistics as the lag time approaches the trajectory
length [10]. Note that as ∆→T for some parameters the mean
TAMSD drops in magnitude, as seen in figure AA2.

Considering the ageing dynamics of ESBM for the massive
particles with D(t) = D0e2αt, for the aged MSD (21) we
find that the time dependence of

⟨
x2a(t)

⟩
changes neither at

short nor at long times. This is predicted theoretically (see
equation (A18) and figure 4) and supported by the simula-
tions (see figure AA3(a)). The latter also demonstrates that the
regime of linear diffusion (A8) vanishes for long ageing times
ta (the limit of strong ageing). The evolution of

⟨
x2a(t)

⟩
for

varying ta predicted theoretically and obtained from the simu-
lations are in excellent, quantitative agreement (when plotted
for the same parameters, as in figures 4 and AA3(a)).

The behavior of the aged mean TAMSD,
⟨
δ2a(∆)

⟩
, as

obtained from our computer simulations for the massive
particles with D(t) = D0e2αt is presented in figures AA3(b)
and AA4(a),(b). We find that for very small α values, at
αT≪ 1, the effects of ageing are almost invisible: at short

lag times∆≲ 1/γ0 the
⟨
δ2a(∆)

⟩
magnitude starts ballistically

according to (A11) and at intermediate-to-long lag times the
standard diffusion law (A12) is observed, as shown in figure

6
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Figure 4. Aged MSD
⟨
x2a(t)

⟩
for D(t) = D0e

2αt of the massive
particles for the same parameters as in figure AA3, as obtained from
the analytical expressions (A17). The dashed line is the ballistic
asymptote (A18) (which describes both the short- and long-time
behavior).

AA4(a). For largerα values the magnitude of
⟨
δ2a(∆)

⟩
at long

times increases substantially for larger ta values; the overall⟨
δ2a(∆)

⟩
versus ∆ behavior remains nearly ballistic at short

times and turns linear at long lag times, see figure AA3(b). For
a gradually increasing ta value, the threshold lag-time value
∆⋆ after which the linear regime of the aged TAMSDgrowth is
observed also increases, see the estimation of equation (A22).

Ultimately, for even larger values ofα for long ageing times
ta the transition from the linear to the ballistic behavior of⟨
δ2a(∆)

⟩
is delayed so dramatically, that for the length of

the trajectory examined in our computer simulations of figure
AA4(b) the long-lag-time linear behavior is not present at all.
These general features of the behavior of the aged TAMSD
agree well with our theoretical predictions of equations (A19),
(A20) and (A21), see figures AA3(b) and AA4(b). The mag-

nitude of
⟨
δ2a(∆)

⟩
at intermediate lag times is well described

by equation (A20) at αT≪ 1 (see figure AA3(b)), while for
larger α values (when this condition does not hold any longer)

the magnitude of
⟨
δ2a(∆)

⟩
is, as expected, not well captured

by the theory, with its linear slope is still correctly predicted
(see figure AA4(b)).

3.1.2. Massless particles. The results of computer simula-
tions in the overdamped limit of equation (14) demonstrate that
the short-time evolution of

⟨
x2(t)

⟩
for the massless particles

is linear in time, see equation (A25). The MSD in the region
of intermediate-to-long times grows exponentially with dif-
fusion time, in agreement with the theoretical prediction of
equations (A23) and (A24), as shown in figure 5. The variation

of
⟨
δ2(∆)

⟩
with the lag time obtained in simulations agrees

with the analytical prediction (A26). In the limit of short lag
times and long trajectories, the mean TAMSD grows linearly
with ∆, in agreement with equation (A27). In this limit, the
system behaves nonergodically: the magnitudes of

⟨
x2(∆)

⟩
and

⟨
δ2(∆)

⟩
differ by a large factor given by equation (A28).

Toward the end of the trajectory, the MSD and mean TAMSD

Figure 5. MSD and mean TAMSD for the overdamped ESBM (for
the massless particles) with D(t) = D0e

2αt obtained by computer
simulations. The full theoretical predictions (A23) and (A26) are the
solid black curves, while the short-time asymptotes for the MSD
(A25) and mean TAMSD (A27) are shown as the white dashed
lines. Parameters: m= 0, D0 = 10−5, γ0 = 10−2, α= 10−5,
T = 106, and N= 200.

become equal, as predicted theoretically, see equation (A29).
Note that the exponential growth of the MSD and the linear
growth of the TAMSD are reminiscent of those known for
geometric BM [202, 203], a paradigmatic stochastic process
(effectively, exponentiated BM) modeling important features
of price fluctuations (and respective returns) of the stock mar-
kets and option prices, see the fundamental studies [204, 205].

Therefore, the behavior of the MSD and mean TAMSD
for ESBM for the massive and massless particles with D(t) =
D0e2αt demonstrates that the long-time diffusion is dramat-
ically different in the limit of underdamped and overdamped
motion. Similar conclusions were made [121] for the case of
canonical SBM [116] with a power-law variation of the diffu-
sion coefficient with time, equation (2).

For the massless particles with D(t) = D0e2αt the age-
ing effects are much more pronounced than those for the
massive particles, compare the results of computer simula-
tions in figures 6 and AA3(b), respectively. Namely, for zero-
mass particles the magnitudes of the aged MSD and aged
TAMSD grow exponentially with the ageing time ta. Specific-
ally, the analytical expressions (A30) and (A31) quantify the
∆-independent universal rescaling for the ratio of the aged and
nonaged spreading characteristics,

⟨
x2a(∆)

⟩
⟨x2(∆)⟩

=

⟨
δ2a(∆)

⟩
⟨
δ2(∆)

⟩ = e2αta , (26)

which are in excellent agreement with the results of simula-
tions, see figure 6. The analytical expressions for the nonaged
MSD and the mean TAMSD for zero-mass particles entering
equation (26) are given by (A23) and (A26). Overall, for the

massless particles the increase of
⟨
δ2a(∆)

⟩
with the ageing

time ta is considerably stronger than that of
⟨
δ2a(∆)

⟩
for the

massive particles with D(t) = D0e2αt.
As follows from figure 6 and equation (26) the phenomenon

of weak ergodicity breaking (WEB) also prevails for aged
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Figure 6. Aged MSD
⟨
x2a(t)

⟩
and aged mean TAMSD

⟨
δ2a(∆)

⟩
obtained by computer simulations of the massless particles with
D(t) = D0e

2αt plotted versus the lag time ∆ for varying ageing time

ta. The magnitudes of
⟨
x2a(t)

⟩
and

⟨
δ2a(∆)

⟩
were divided by the

rescaling ‘ageing’ factor e2αta (derived in equations (A30) and
(A31), as shown on the y-axis) to yield the universal theoretically
expected curve, equation (26). The values of ta are given in the
legend. Parameters: m= 0, D0 = 10−5, α= 10−3, T = 104, and
N= 103.

ESBM describing the dynamics of the massless particles with
D(t) = D0e2αt, with the MSD-to-TAMSD interrelation being
similar to equation (A28) for the nonaged situation.

3.2. EB for D(t) = D0e
2αt

3.2.1. Massive particles. The simulations for the massive
particles with D(t) = D0e2αt show that the EB parameter (9)
at short lag times ∆ does not grow linearly with ∆ at a fixed
trajectory length T, see figure AA5. EB attains rather large val-
ues at short lag times and the overall EB(∆)-variation is quite
weak. At a fixed lag time EB scales inversely proportional to
the trace length,

EB(T)∼ 1/T, (27)

as demonstrated in figure AA6. This feature is similar to that
for a number of other stochastic diffusion processes, both of
normal and anomalous nature [10]. For comparison, in figure
AA7 we present the EB variation versus the lag time for the
case of time-independent diffusivity, at α= 0.

For larger values of α the EB behavior with the lag time
is more complicated, see figure AA8. Namely, after the ini-
tial decrease of EB with the trajectory length, roughly as
EB(T)∝ 1/T, at lag times ∆≳ 1/α the EB parameter starts
(rather unexpectedly) increasing with T and it saturates at a
plateau toward the very end of the trajectory, at ∆→T. The
height of this plateau decreases as the lag time increases, see
figure AA8.

3.2.2. Massless particles. For the massless particles with
D(t) = D0e2αt for the sameα values we, however, still observe
an EB(T)∼ 1/T decrease at a fixed lag time, see figure AA9.
At∆≳ 1/α the EB parameter stops decreasing, saturating at a
pronounced plateau. The height of this EB plateau increases as
the lag time increases, see figure AA9, a clear characteristic of
a progressively less ergodic diffusion. We remind the reader

that, as given by equation (9), when the dispersion of indi-
vidual TAMSDs stays nearly unchanged for a constant lag time
at varying trace lengths T, a plateau-like behavior of EB(T) is
expected.

At ∆≳ 1/α the EB parameter starts experiencing the
effects of ever growing diffusivity with time, D(t) = D0e2αt,
and as a result at a fixed lag time ∆ with an increasing length
T of the trajectory the system does not reveal a progressively
more ergodic behavior (with a decreasing EB value), but rather
at α∆≳ 1 the EB parameter as a function of T attains a nearly
constant, stationary value (see figure AA10 avialble online
at (stacks.iop.org/JPD/54/195401/mmedia)). This behavior is
consistent with a roughly linear EB(∆) growth at short-to-
intermediate lag times (in the region of lag times ∆≲ 1/α).
Specifically, the functional variation of EB(∆) is similar to
that known for BM [10, 77],

EBBM(∆)≈ 4∆/(3T), (28)

but the observed magnitude of EB for ESBM with D(t) =
D0e2αt is considerably larger, see figure AA10. At later lag
times, for ∆ values in the range 1/α≲∆≲ T, a nearly con-
stant EB value is detected. Toward the very end of the traject-
ory, the magnitude of EB reveals a sharp growth to the ter-
minal value of EB = 2, see figure AA10. This later part of the
EB(∆)-behavior for ESBMwith D(t) = D0e2αt is reminiscent
of that for the EB parameter for the Ornstein–Uhlenbeck pro-
cess (computed analytically and enumerated by simulations in
[200] (for the equilibrium initial conditions of the harmonic-
ally confined particles), see also [201]).

We therefore observe that for the massive particles with
D(t) = D0e2αt the initial decrease of the EB parameter with T
reverses into a transient increase at T≳ 1/α (see figure AA8),
while for the massless particles performing the same ESBM
the EB parameter exhibits a plateau region in this range of
trace-lengths. For short trajectories, when T≲ 1/α and the
effects of a time-growing diffusivity are not yet manifest-
ing themselves, the EB decreases with T similarly both for
massive and massless particles.

4. Summary and discussion of the main results

In this study we presented the results of the analytical and
computer-simulations-based analysis of anomalous and non-
ergodic diffusion (also in the presence of ageing) for the case
of time-dependent diffusivity of the antagonistic formsD(t) =
D0e±2αt (exponentially fast variation) and D(t) = D0 log[t/τ0]
(ultraslow logarithmic variation). Other than power-law, expo-
nential, and logarithmic forms of the diffusivity variation in
time can clearly be proposed for physical systems featuring
other functional dependencies of D(t). We summarize the key
asymptotic results for the MSD and mean TAMSD for these
three cases below as well as in table 1.

4.1. Case D(t) = D0e
2αt

4.1.1. Massive particles. For the case of ESBMwithD(t) =
D0e2αt the behavior of the nonaged system of the massive
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particles is ergodic. Namely, we find the equivalence of the

MSD
⟨
x2(t)

⟩
and the mean TAMSD

⟨
δ2(∆)

⟩
at short times

(see equations (A6) and (A11)), as illustrated in figures 2, 3,

andAA1. At log times
⟨
δ2(∆)

⟩
can experience a drop inmag-

nitude, as seen in figure AA2, while the MSD remains diffus-
ive at long times, see figure 3.

For the aged system of the massive particles with D(t) =
D0e2αt the magnitude of the short-time ballistic MSD

⟨
x2a(t)

⟩
does not change with ta, see equation (A18) and figures 4 and

AA3(a). The magnitude of the aged mean TAMSD
⟨
δ2a(∆)

⟩
is ballistic at short times (at ∆≲ 1/γ0) and turns linear at
intermediate-to-long times with the magnitude that increases
with the ageing time ta. This enhanced TAMSD magnitude is
quantified by equation (A15) and it is shown in figure AA3(b).

The results of computer simulations for
⟨
δ2a(∆)

⟩
of other

values of α are also shown in figure AA4. We find that for
very small α values, such that αT≪ 1, the effect of ageing for
αta ≪ 1 is negligible, see figure AA4(a). For longer ageing
times ta the region of the initial ballistic, ageing-independent

growth
⟨
δ2a(∆)

⟩
∼ D0γ0∆

2 extends in the region of longer lag

times. Due to this, the respective
⟨
δ2a(∆)

⟩
increases with ta as

well, see figures AA3(b) and AA4(b) and equation (A20). For
the aged system ofmassive particles withD(t) = D0e2αt in the
limit ∆/T≪ 1 we observe no phenomenon of WEB, with the
magnitudes of the aged MSD and aged mean TAMSD being
equal at short (lag) times, see figures 4, AA3, and AA4.

4.1.2. Massless particles. For the nonaged system of the
massless particles diffusing with D(t) = D0e2αt the mag-
nitudes of the MSD and mean TAMSD differ strongly in
the limit of short (lag) times, compare equations (A25) and
(A27). This fact is indicative of the presence of WEB, as
demonstrated in figure 5 and table 1. We emphasize here the
overall general trend of the MSD-to-TAMSD equivalence for
the short-time underdamped diffusion versus the existence of
WEB and the disparity in MSD-vs-TAMSD magnitudes for
the short-time overdamped diffusion withD(t) = D0e±2αt and
D(t) = D0 log[t/τ0].

For short times the
⟨
x2(t)

⟩
and

⟨
δ2(∆)

⟩
grow linearly

with time, while at intermediate-to-long times (at t≳ 1/α)
the MSD scales exponentially, see equation (A24). This is in
stark contrast to the at-most ballistic growth of the MSD pre-
dicted and observed for ESBM of the massive particles with
D(t) = D0e2αt, as shown in figure 4.

Likewise, the magnitudes of the aged MSD
⟨
x2a(t)

⟩
and

aged mean TAMSD
⟨
δ2a(∆)

⟩
for the situation m= 0 relate

to their nonaged analogues in the very same proportions, see
equations (A30) and (A31). The behavior of the overdamped
ESBM system with D(t) = D0e2αt is thus nonergodic in the
presence of ageing as well. We emphasize that the magnitude

of
⟨
δ2a(∆)

⟩/⟨
δ2(∆)

⟩
grows exponentially with the ageing

time ta, see equation (A31) and figure 6. For the nonaged and

Figure 7. MSD for D(t) = D0e
−2αt for the massive particles

(evaluated for the parameters as in simulations-based figure BB1
(D0 = 1, γ0 = 10−2, and T = 106)) and plotted according to the full
analytical expression (B2). The values of parameter α are provided
in the legend. The short-time ballistic asymptote (B3), the
intermediate-time linear diffusion law (B5), and the long-time
stationary plateau of the MSD (B4) are the dashed horizontal lines
(for the respective α values).

aged situations (for the long enough trajectories, at αT≫ 1) at
short (lag) times the magnitude of the mean TAMSD is much
larger than that of the MSD. The respective proportionality
factor is the exponential function of the trajectory length T, as
given by the theoretical predictions (A28) and confirmed by
the results of simulations presented in figures 5 and 6.

4.2. Case D(t) = D0e
−2αt

4.2.1. Massive particles. The MSD for the massive
particles with D(t) = D0e−2αt is predicted theoretically by
equation (B2) and presented in figure 7. Specifically, we find
that after the initial ballistic regime (B3) at short times, the
system features a linear growth of the MSD (B5) at interme-
diate times (in the regime 1/γ0 ≲ t≲ 1/α), and, ultimately, at
long times the MSD saturates to a plateau (with the magnitude
given by equation (B4)). These analytical predictions are in
quantitative agreement with the findings from our stochastic
computer simulations, as demonstrated in figure BB1 (for the
same model parameters as in figure 7; see also figure BB2).
According to the MSD and mean TAMSD expressions (B3)
and (B8), respectively, and as demonstrated by the simulations
in figure BB3, at short (lag) times the MSD and mean TAMSD
are equal in magnitude and thus the ergodicity is preserved for
ESBM with D(t) = D0e−2αt.

For the aged MSD
⟨
x2a(t)

⟩
of the massive particles with

D(t) = D0e−2αt the analytical expression (B11) is obtained.
The transitions from the ballistic evolution of the MSD (B12)
to the ageing-renormalized linear growth of

⟨
x2a(t)

⟩
(B13),

and, later, from the linearly growing
⟨
x2a(t)

⟩
to the ageing-

renormalized plateau given by equation (B14) are predicted.
The aged MSD behaviors are illustrated in figure 8 (see also
figure BB3 for the results of computer simulations). The

behavior of the aged mean TAMSD
⟨
δ2a(∆)

⟩
at short and

intermediate times is quantified by equations (B15) and (B16),
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Figure 8. Aged MSD for D(t) = D0e
−2αt for the massive particles

as obtained from the general analytical expression (B11). The
short-time ballistic asymptote (B12), the intermediate-time linear
aged asymptote (B13), and the long-time ageing-renormalized
plateau value (B14) are shown by the dashed lines. The values of the
ageing time are given in the legend. Parameters: m= 1, T = 107,
D0 = 1, γ0 = 10−2, α= 10−5.

withe the magnitude of the aged TAMSD decreasing with
the ageing time. The overall behavior of the aged system of
massive particles is ergodic at short times, see figure BB3 and
also table 1.

4.2.2. Massless particles. For the massless particles per-
forming ESBM with D(t) = D0e−2αt the MSD starts linearly
at short times and reaches a plateau at long times, see equations
(B21) and (B23), respectively. The magnitudes of the MSD⟨
x2(t)

⟩
and of the mean TAMSD

⟨
δ2(∆)

⟩
in the limit of short

(lag) times differ according to equations (B21) and (B22) and
thus ergodicity in this system is weakly broken, as clearly vis-
ible fromfigure 9. For the overdamped limit ofD(t) = D0e−2αt

at short (lag) times the mean TAMSD is (much) smaller than
the MSD (that is in contrast to the case with D(t) = D0e2αt),

see figure 9. The proportionality of
⟨
x2(t)

⟩
and

⟨
δ2(∆)

⟩
is

quantified by equation (B22), with the prefactor scaling as a
power-law-function of the trajectory length T. For ESBMwith
D(t) = D0e−2αt the intermediate-time MSD behavior and the
long-time MSD plateau are found to be the same in the under-
and overdamped limits, compared figures 7 and 9.

Likewise, in the presence of ageing, for themasslessESBM
particles with D(t) = D0e−2αt the aged MSD

⟨
x2a(t)

⟩
and the

aged mean TAMSD
⟨
δ2a(∆)

⟩
differ in the same proportions

as in the nonaged situation, see equations (B25) and (B26),
correspondingly. Therefore, at these conditions we observe
WEB in the limit of short (lag) time as well, see figure
BB4. For the ageing ESBM with D(t) = D0e−2αt the MSD
magnitude is found to be reduced by the same exponential
factor (B25) for the massive and massless particles, compared
figures 8 and BB4. For the aged TAMSD the reduction of the

ratio
⟨
δ2a(∆)

⟩/⟨
δ2(∆)

⟩
is also exponential for the massless

particles, see equation (B26). The collection of the main res-
ults is presented in table 1.

Figure 9. MSD
⟨
x2(t)

⟩
and mean TAMSD

⟨
δ2(∆)

⟩
for the

massless particles with D(t) = D0e
−2αt. Full analytical predictions

(B19) and (B20) are shown as the solid black curves. The short-time
MSD asymptote (B21), short-lag-time TAMSD asymptote (B22),
and the long-time MSD plateau (B23) are shown as the dashed lines.
Parameters: m= 0, D0 = 1, α= 10−3, T = 104, and N= 103.

4.3. Case D(t) = D0 log[t/τ0]

4.3.1. Massive particles. For the massive particles with
D(t) = D0 log[t/τ0] we find that the MSD at short times grows
ballistically, whereas at long times the logarithmic correc-
tion to the standard diffusion law is found, see equations (C8)
and (C14) as well as the results of figures CC2 and 10. The
mean TAMSD follows the ballistic asymptote (C18) in the
limit of short and the logarithmically corrected linear-diffusion
asymptote given by equation (C20) in the limit of long lag
times.

For LSBMof themassive particles withD(t) = D0 log[t/τ0]
the aged MSD starts with the same ballistic behavior at short
times, equation (C23), and turns into the log-linear depend-
ence (C26) at long times, with rather weak effects of the actual
value of the ageing time ta on the magnitude of

⟨
x2a(t)

⟩
, see

the theoretical results in figure 11 and the findings of com-
puter simulations in figure CC3. The aged mean TAMSD at
short (C29) and intermediate-to-long (C30) lag times is in the
leading order equal in magnitude to the aged MSD, so that
the ergodicity is maintained in the aged system of massive
particles with D(t) = D0 log[t/τ0]. Thus, similarly to the cases
of D(t) = D0e±2αt, in this case the behavior of both the non-
aged and aged system ismostly ergodic at short times, contrary
to that of the massless particles with a dramatic disparity in the
magnitudes of the MSD and mean TAMSD, see also table 1.

4.3.2. Massless particles. For the massless particles with
D(t) = D0 log[t/τ0] the nonaged MSD

⟨
x2(t)

⟩
at short times is

ballistic, see equation (C32) as well as figure CC4. In contrast,

at short lag times the mean TAMSD
⟨
δ2(∆)

⟩
exhibits a lin-

ear growth quantified by equation (C36), see figure CC4. The
system thus exhibits WEB in this regime. The log-like ‘weak’
correction to the diffusion law for D(t) = D0 log[t/τ0] pre-
dicted analytically (C33) is verified by computer simulations
in figure CC5 (see also figure 10). The logarithmic rescaling of

the
⟨
x2a(t)

⟩
and

⟨
δ2a(∆)

⟩
predicted analytically by equations
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Figure 10. Analytical MSD for the case of massive particles with
D(t) = D0 log[t/τ0] obtained by numerical integration of
equation (C6) (shown as the data points), with the asymptotic
diffusion law at short times (C8) and the long-time log-linear
prediction (C14) (both shown as the dashed black curves). The inset
demonstrates the validity of the log-like correction to the standard
diffusion law, as specified in equation (C34). Parameters: D0 = 1,
τ 0 = 10 and 100 (see the legend), γ0 = 0.01.

(C40) and (C41) is quantitatively confirmed by computer sim-
ulations, as shown in figure CC6.

Likewise, in the presence of ageing for the massless
particles with D(t) = D0 log[t/τ0] the magnitudes of the aged
MSD

⟨
x2a(t)

⟩
given by equation (C38) and of the aged mean

TAMSD
⟨
δ2a(∆)

⟩
in (C39) are not equal, and the system

exhibits WEB, as quantified by (C42). For the massless
particles with D(t) = D0 log[t/τ0] the log-like enhancement
of the magnitude of

⟨
x2a(t)

⟩
is observed, see equation (C40),

while for the massive particles the log-linear diffusion law
(C14) for

⟨
x2a(t)

⟩
remains almost unaffected by the duration

of ageing, compare figures CC6(a) and 11.

5. Water time-dependent diffusion in the brain
slows down with time

In this section, we discuss one biophysical application of
the models with time-dependent diffusivity of power-law-like,
exponential, and logarithmic functional forms, namely, the
diffusion of water molecules in brain tissues.

5.1. Observations and definitions

Shortly, white matter of the brain mainly consists of myelin-
ated axons (a high content of fatty lipids in the myelin sheath
surrounding an axon), while gray matter is mainly composed
of neurons. Water diffusion in white matter of a ‘normal’
human brain takes place considerably faster along the axonal
tracts, while gray matter lacks such oriented fiber structures
and features more isotropic diffusion [135]. Water diffusion
in neural tissues—inherently restricted and anisotropic due to
the presence of axonal bundles or neurofibrills—is affected by
compartmentalization effects on the µm-scale (the diameter of
a typical axon) [135].

Historically, the time-dependent diffusion D(t) in differ-
ent brain regions in vivo for a time range from 40 to 800 ms

Figure 11. Aged MSD for the massive particles with
D(t) = D0 log[t/τ0] obtained via numerically integration of (C21)
for varying values of the ageing time ta as given in the legends (the
data points). The short-time asymptote (C22) and the long-time law
(C14) are the dashed curves. Parameters: D0 = 1, τ 0 = 10 and 100
(see the legends), and γ0 = 0.01.

was observed [125] and qualitatively understood as diffusion
in porous media and with semipermeable barriers or com-
partments [206]. The quality of diffusion-weighted magnetic-
resonance imaging (dMRI) acquisition rapidly improves in
recent years and enables the investigation of in vivo meso-
scopic effects and quantification of axonal fibers connectivity
and alignment [127].

One should distinguish the physical/apparent or cumulative
[132] diffusion coefficient

D(t) =MSD(t)/(2t) (29)

and the coefficient of instantaneous diffusion,

Dinst(t) =
1
2
∂MSD(t)/∂t. (30)

The latter relation actually leads to the D(t) definition similar
to that for the TAMSD (7), namely [127]

D(t) =
1
t

ˆ t

0
Dinst(t

′)dt ′. (31)

The homogenization procedure used in the data analysis
also yields nonzero, time-dependent higher-order cumulants
(the so called diffusional kurtosis) [132]. The latter meas-
ures the residual inhomogeneity of the medium and indicates
incomplete coarse-graining [132] of disordered microstruc-
ture as well as water exchange between neighboring compart-
ments [132]. Performing coarse-graining in disordered sys-
tems at multiple scales—as typically required for biological
tissues, at a progressively increasing diffusion length ld(t)—
yields the notion of time-dependent non-Gaussian diffusion
[130]. The absence of a stationary diffusivity value is con-
sistent with observation of anomalous diffusion at respective
length- and time-scales, also indicating the absence of medium
homogenization on this scale [130].
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Figure 12. (a) dMRI scan showing regions of cortical gray matter
featuring power-law-like variations of the diffusion coefficient, see
equation (32). In red domains the cumulative D(t) was averaged,
with the power-law exponent ϑ≈ 1/2 being measured for different
individual gray-matter regions. The image is reproduced from [132],
with permission of Elsevier. (b) The regions of white matter where
cumulative D(t) of the form (37) was observed [128] for
diffusion-tensor eigenvalues transverse to the main white-matter
tracts. The image is reproduced from [128], with permission of
Elsevier.

5.2. Realizable D(t) forms and physical rationale

Mathematically, the two-compartment-based model was
rationalized [207] to quantify water diffusion in the brain
using some concepts of the Kärger exchange-diffusivity model
[208]. On the time scales longer than the correlation time for a
single compartment of the medium, theD(t) follows an inverse
power law of the universal form [126, 128, 131–133]

D(t) = D∞ +Aϑ × t−ϑ. (32)

Here D∞ is the long-time diffusivity and

ϑ= (d+ p)/2< 1 (33)

is the dynamical scaling exponent (which is half the sum of the
spatial dimensionality of the compartments d and the structural
exponent p). The latter describes inhomogeneities of a dis-
ordered microstructure of the medium [132] defining its uni-
versality class [130]. Experimentally, for dMRI of water dif-
fusion in the brain [134], the compartmentalized microstruc-
ture of gray-matter tissues was shown to yield inverse-power-
law cumulative D(t) described by (32), see figure 12(a). As
dMRI measures the cumulative D(t), the power-law depend-
ence observed in experiments is never faster than D(t)∼ 1/t
[209].

The theoretical basis for D(t) of the form (32) with ϑ= 1/2
was developed [210] for any space dimension d using the
concepts of spatially restricted motion of the molecules by
disorderly positioned and oriented semipermeable membrane-
like barriers. The long-time diffusivity in (32) is assumed the-
oretically and measured experimentally to dominate the over-
all diffusivity magnitude yielding the long-time Gaussian dif-
fusion, whereas small time-dependent corrections to it are
treated as perturbations, resulting in non-Gaussian diffusion at
that time scale. The time-dependent diffusivity itself is indic-
ative of not yet-complete coarse-graining procedure.

For human cortical gray matterD(t) was measured to reveal
a weak and rather noisy dependence at up to 100 ms, with
ϑ≈ 0.68 (see, e.g. figure 3(b) in [132]). Note that experi-
mental limitations on the dMRI-accessible time-range hamper
the determination of the exact functional form ofD(t) decreas-
ing with time as well as the actual exponent ϑ. Accessing
short-time data could help the analysis to unambiguously cla-
rify the precise functional dependence of D(t) (power-law or
exponential decay, or a superposition of these two D(t) forms)
[209].

For dMRI, the typical scale of medium heterogeneities is
controlled by the diffusion length,

ld(t)∼
√

MSD(t)∼ 1, . . . ,50 µm, (34)

corresponding to diffusion times td ∼ 1, . . . ,103 ms [130].
In neuronal tissues, the clinically employed dMRI diffu-
sion times are td ∼ 10, . . . ,102 ms [127]. More heterogeneous
samples lead to a slower approach to stationarity and, thus,
smaller values of the dynamical exponent ϑ [130] for D(t) in
(32).

Totally regular environments give rise to a quick, exponen-
tial relaxation of the instantaneous diffusivity to its long-time
value [127, 130],

Dinst(t) = D∞ +Aexp × exp−t/tc , (35)

and the value of the p exponent in (33) goes to infinity [130].
Exponential decay can occur forDinst(t), but for the cumulative
D(t) was not yet observed experimentally in the brain [209].
Note, however, that to quantitatively distinguish between the
two decreasing D(t) forms (32) and (35) the dMRI measure-
ments in a broader time-range are necessary [130]. In contrast,
in the presence of strong fluctuations/irregularities the expo-
nent p decreases, yielding a slower approach ofD(t) to station-
arity (due to overall smaller ϑ). For ϑ > 1 one gets [126–128]

D(t) = D∞ +A1 × t−1 (36)

and in this case water molecules are fully confined.
Finally, the diffusivity in the ‘borderline case’ ϑ= 1

acquires mathematically a logarithmic dependence on time, in
addition to a power law, namely [126–129, 132]

D(t) = D∞ +Alog × log[t/tc]/t. (37)

The diffusivity slowly approaching the macroscopic limit fol-
lowing (37) was proposed [127–129] to arise experimentally
in water diffusion in white matter in vivo. A cumulativeD(t) of
this form was observed for diffusion tensor eigenvalues trans-
verse to main white-matter tracts [128]. It was proposed [128]
that systematic ∼logt-like deviations in D(t) from the ∼1/t
scaling occur as a consequence of short-range disorder in the
extra-axonal space.

From the mathematical perspective, depending on one-
or two-dimensional disorder, effectively, one gets different
dynamical exponents in Dinst(t): namely, it is a ∼t−1/2 scal-
ing for one dimension (along white-mater fibers or along ran-
domly oriented dendrites and axons in gray matter) and a
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∼t−1 scaling for two dimensions (transverse to white-matter
tracts) [209]. These dependencies in the Dinst(t) translate to
∼t−1/2 and ∼(logt)/t functional forms in the cumulative D(t),
as follows from the definition, see equation (31) (we thank D
Novikov for clarification [209]). Ball-like structural swellings
irregularly occurring along axons modify the standard diffu-
sion law [132] along them, from that in one dimension to that
in the presence of interruptions and quasi-two-dimensional
swollen regions. We emphasize also a large innate polydis-
persity existing for axon calibers [211].

5.3. Quantitative diagnostics based on D(t)-properties

From the diagnostic perspective, the dMRI is a sensitive tech-
nique for the detailed in vivo measurement of microstructural
features of various biological tissues (both healthy and patho-
logical) on the µm-scale [133]. Recent evidence of diffusion
along major human-white-matter axonal tracts revealed non-
Gaussian and nontrivially time-dependent diffusion [133]. In
gray-matter tissues, D(t)-diffusion was also observed, mak-
ing some diffusion features along axons and dendrites uni-
versal for neuronal tissues. The functional D(t) form (32) was
recently shown to be most sensitive to variations of the axon
diameter/caliber along the fiber on the microscale (construct-
ing thereby a heterogeneous landscape along a given tract)
[133].

This fact offered the physical-biological rationale for
restrictions of and impediments for water diffusion [133]
shownmathematically [207] to yieldD(t) of the form (32). The
parameters in (32) were demonstrated to be altered in patients
with neurodegenerative diseases, such as multiple sclerosis
[133]. Specifically, the value of the bulk diffusivity D∞ was
shown to increase in such pathological tissues, while the factor
Aexp was revealed to decrease measurably and systematic-
ally, as compared to that in the healthy tissue [133]. These
two model parameters are, thus, rather sensitive indicators for
detecting certain pathological tissue regions and (hopefully)
proposing a pertinent physical mechanism for such abnormal-
ities in tissue functioning in terms of permeability by water,
also shedding new light onto possible pathological mechan-
isms of formation of multiple-sclerosis lesion [133].
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