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Abstract
Starting with a stochastic differential equation driven by combined Gaussian
and Lévy noise terms we determine the associated fractional Fokker–Planck–
Kolmogorov equation (FFPKE). For constant and power-law forms of an exter-
nal potential we study the interplay of the two noise forms. Particular emphasis
is paid on the discussion of sub- and superharmonic external potentials. We
derive the probability density function solving the FFPKE and confirm the
obtained shapes by numerical simulations. Particular emphasis is also paid to
the stationary probability density function in the confining potentials and the
question, to which extent the additional Gaussian noise effects changes on the
probability density function compared to the pure Lévy noise case.
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1. Introduction

The concept of random forces was introduced by Langevin in lieu of a more explicit, first-
principle derivation of the apparent jittery motion of test particles in thermal environments
where they are incessantly bombarded by neighbouring molecules [1]. Such fluctuations have
become key statistical descriptors for many natural systems in physics, chemistry, biology, but
also in economics etc. Systems in these fields are always affected by external or internal fluc-
tuations, which are termed as ‘noise’. These systems are then typically described by stochastic
differential equations (SDEs). During the past years, interest in the study of these stochastic
systems has increased significantly.

Gaussian white noise, the formal derivative of Brownian motion, is the earliest and most
commonly adopted noise. There exist a vast literature on SDEs driven by Gaussian white noise.
An important framework is the Fokker–Planck–Kolmogorov equation (FPKE), which governs
the deterministic time evolution of the probability density functions (PDFs) corresponding
to the SDE with Gaussian white noise [2]. However, analytical solutions of the FPKE are
available only for some special cases. In other cases, solutions may be constructed by mapping
the FPKE onto an imaginary time Schrödinger equation [3]. Concurrently, numerical methods
are adopted for cases in which analytical solutions are difficult to obtain [4, 5].

Gaussian white noise stands out mathematically due to the universal convergence imposed
by the central limit theorem on all independent, identically distributed (iid) random variables
with finite variance. Practically, however, the Gaussian white noise is somewhat of an ideal
realisation of random noise. Gaussian white noise is always used to describe small random
fluctuations around a mean value, and it is no longer appropriate for systems exhibiting burst
phenomena. In the latter cases Lévy noise often offers a better description. Lévy noise does
not only consist of small perturbations but also of large jumps. In fact it was Mandelbrot who
epitomised the role of Lévy noise as the driving noise for ‘Lévy flights’, random processes
with long-tailed jump length distributions and fractal sample paths [6–10].

While Lévy flights can be described by SDEs driven by Lévy noise [11], a breakthrough was
the formulation of the corresponding fractional FFPKEs [11–20]. These FFPKEs are similar in
structure to the classical second-order FPKE, except for the fractional,αth-order of the highest
derivative instead of the standard second-order [11–16]. The emergence of this fractional-
order derivative makes the FFPKE difficult to solve, and there exist only several special cases
that could be solved analytically [21–24]. Chechkin and coworkers specifically focussed on
the non-stationary and stationary solutions of FFPKEs with different forms of an external,
power-law potential of the form U(x) ∝ |x|c/c [25–29]. Several exact results for Lévy flights
in power potentials were obtained by Dubkov et al [30, 31]. In addition to analytical solutions,
there are works adopted numerical methods to determine the PDF encoded by the FFPKEs
[37, 62, 63]. Based on the solutions, Xu and coworkers studied the effect of Lévy noise to
analyse bifurcation dynamics, stochastic resonance phenomena, first passage time and phase
transitions [32–36, 38].

Due to the complexity of many real systems, there are situations which need to be addressed
by a combination of more than one kind of noise. For example, in single gene expression there
are both intrinsic noise and extrinsic noises [39–42]. Specifically, the random motion of a
DNA-binding protein was shown to perform Lévy flights in the chemical co-ordinate on the
DNA, but the protein may also normally-diffuse along the DNA, giving rise to an FFPKE
with combined Gaussian and Lévy noises [43], compare also [44]. We also mention that the
Earth’s temperature was proposed to be modelled by a stochastic differential equation with a
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combination of Gaussian and Lévy white noises [45]. The role of thermal and non-Gaussian
noise on the dynamics of driven short overdamped Josephson junctions was studied in [46].
An alternative point of view for combining Lévy white noise with Gaussian white noise is
that the latter represents a measurement noise or a diffusive drift in the setup analogous to
the considerations in [47]. Such sampling noise could correspond to the diffusive drift, for
instance, due to the local wind conditions, of a drone providing aerial footage of randomly
searching animals employing Lévy search statistics [48–53] (see also references therein). In
this context the question we want to answer is whether the presence of the additional Gaussian
noise significantly alters the shape of the PDF, or whether the Lévy noise is tolerant to such a
disturbance.

Duan and his coauthors [54] studied SDEs with Gaussian and Lévy noise. They investigated
mean exit times and escape probabilities in terms of an FFPKE, which is derived in terms of
an infinite series. Different from this approach, we here infer the FFPKE from the underlying
SDE driven by combined Gaussian and Lévy noises via the respective characteristic functions.
It is apparent that both fractional-order and second-order derivatives emerge in the FFPKE in
the joint presence of Gaussian and Lévy noises [43] when the two noises contribute additively
to the dynamics in the underlying SDE. Because of the co-existence of fractional-order and
second-order derivatives, it becomes more difficult to obtain analytical solutions of FFPKEs.
We will present analytical solutions wherever possible, combined with asymptotic behaviours
and numerical solutions, in the force-free case and for different forms of external power-law
potentials U(x) ∝ |x|c/c.

The remainder of this paper is organised as follows. In section 2, the SDE with Gaussian and
Lévy noise and the corresponding FFPKE are introduced. In section 3, the FFPKE for constant
external potential is solved and analysed. It is proved that the solution of the FFPKE possesses
power-law tails. In section 4 the stationary analytical solutions for the FFPKE are derived for
an harmonic external potential. In addition, the power-law asymptotic of the solution of the
FFPKE is inferred. In section 5 the analysis for the quartic oscillator and strongly non-linear
oscillator is studied, including an expansion of the analytical solution and the power-law tails.
In section 6, the existence of the stationary state and the power-law asymptotic of the stationary
PDF are proved. In the last section 7 we conclude this paper. Some additional information is
provided in the appendix.

2. The model

In this section we introduce the model equations analysed in this paper. The starting SDE with
Gaussian white noise and symmetric α-stable Lévy white noise is presented in section 2.1, and
in section 2.2 the derivation of the associated FFPKE is described.

2.1. Starting stochastic differential equation with Gaussian and Lévy white noise terms

The starting SDE with Gaussian white noise and α-stable Lévy white noise reads

dX
dt

= f (X) + ξα(t) + ξ(t), (1)

where f (X) = −dU(X)/dX, and U(X) is the external potential. In the above, ξ(t) is Gaussian
white noise with zero mean, such that 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = 2DGδ(t − s), where DG is
the intensity of the Gaussian white noise. Concurrently, ξα(t) is an external symmetricα-stable
Lévy white noise, whose characteristic function is Z(k) = exp(−DL|k|α) (here and below, x is
the variable in the real space and k stands for the Fourier space), where DL and α (0 < α � 2)
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are the noise intensity and the stability index of the α-stable Lévy white noise, respectively. DL

and α satisfy the relationship DL = σα, where σ is called the scale parameter. The symmetric
α-stable Lévy white noise reduces to Gaussian white noise when α = 2.

We denote p(x, t|x0, t0), ZX(k, t − t0|x0, t0) and KX(k, t − t0|x0, t0) as the transition PDF,
characteristic function, and cumulant generating function of the solution X of equation (1).
The relationship among them is

F[p(x, t|x0, t0)] = ZX(k, t − t0|x0, t0) = exp(KX(k, t − t0|x0, t0))

= E [exp(ik[X(t) − X(t0))|X(t0) = x0], (2)

where k is the conjugate variable of x − x0 (namely, X(t) − X(t0)). Here F is the Fourier
transformation defined as

f̂ (k) = F[ f ] =
∫ ∞

−∞
dx exp(ikx) f (x). (3)

Similarly, for a given time lag δt > 0 we define the corresponding quantities for the increment
processes, δX(δt) = X(t + δt) − X(t) in the form

F[p(x + δx, t + δt|x, t)] = δZX(k, δt|x, t) = exp(δKX(k, δt|x, t))

= E[exp(ik[X(t + δt) − X(t)])|X(t) = x], (4)

where k is the conjugate variable of δx.
It is known that ξα(t) is the formal time derivative of the symmetric Lévy stable pro-

cess Lα(t). The characteristic function about the increment δL of the process Lα(t) is
δZL(k, δt) = exp

[
−δt × DL|k|α

]
. Then we get the corresponding cumulant generating func-

tion δKL(k, δt) = δt[−DL|k|α], according to equation (4). In addition, Gaussian white noise
is the formal time derivative of Brownian motion B(t), and the characteristic function for the
increment δB is δZB(k, δt) = exp

[
−δt × DGk2

]
. Thus, we can get the corresponding cumulant

generating function δKB(k, δt) = δt[−DGk2] through equation (4).
For the SDE (1) with a single noise type the corresponding FPKE is well known. For pure

Gaussian noise the corresponding FPKE is the classical second-order FPKE [2]

∂

∂t
p(x, t|x0, t0) = − ∂

∂x

(
f (x)p(x, t|x0, t0)

)
+ DG

∂2

∂x2
p(x, t|x0, t0). (5)

Conversely, for the SDE with pure symmetric α-stable Lévy white noise the corresponding
FFPKE reads [11, 14–16, 21, 24]

∂

∂t
p(x, t|x0, t0) = − ∂

∂x

(
f (x)p(x, t|x0, t0)

)
+ DL

∂α

∂|x|α p(x, t|x0, t0), (6)

which is an FFPKE. Here the definition of the Riesz fractional derivative dα

d|x|α is [25, 57, 58]

dα f (x)
d|x|α =

⎧⎪⎨
⎪⎩
−Dα

+ f (x) + Dα
− f (x)

2 cos(πα/2)
, α �= 1

− d
dx

H f (x), α = 1
, (7)

where
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Dα
+ f (x) =

1
Γ(n − α)

dn

dxn

∫ x

−∞

f (ξ)
(x − ξ)α−n+1

dξ

Dα
− f (x) =

(−1)n

Γ(n − α)
dn

dxn

∫ ∞

x

f (ξ)
(ξ − x)α−n+1

dξ (8)

are the left and right Riemann–Liouville derivatives with n = 1 for 0 < α < 1, and n = 2 for
1 < α � 2. Besides, H is the Hilbert transformation operator

(9)

Here is the integral in the principal value sense.

2.2. The fractional Fokker–Planck–Kolmogorov equation

We now show the derivation of the FFPKE corresponding to the SDE (1) with
Gaussian and symmetric α-stable Lévy white noise. We will start from the Chap-
man–Kolmogorov–Smoluchowski equation for Markov processes,

p(x, t + δt|x0, t0) =
∫ ∞

−∞
dyp(x, t + δt|y, t)p(y, t|x0, t0), ∀δt > 0, (10)

where p(x, t + δt|x0, t0) and p(y, t|x0, t0) are the PDF at time t + δt and t, with the initial condi-
tion X(t0) = x0, respectively. Moreover p(x, t + δt|y, t) is the transition PDF from p(y, t|x0, t0)
to p(x, t + δt|x0, t0). Equation (10) can be rewritten in the equivalent form

p(x, t + δt|x0, t0) =
∫ +∞

−∞
dy
∫ +∞

−∞

dk
2π

exp
(
−ik(x−y) + δKX(k, δt|y, t)

)
× p(y, t|x0, t0), (11)

where k is the conjugate variable of x − y. Letting δt = 0 in equation (11) the following
equation holds,

p(x, t|x0, t0) =
∫ +∞

−∞
dy
∫ +∞

−∞

dk
2π

exp (−ik(x − y)) p(y, t|x0, t0). (12)

Subtracting relation (12) from (11) produces

p(x, t + δt|x0, t0) − p(x, t|x0, t0) =
∫ +∞

−∞
dy
∫ +∞

−∞

dk
2π

exp (−ik(x − y))

×
[
exp

(
δKX(k, δt|y, t)

)
− 1

]
p(y, t|x0, t0), (13)

where the δKX(k, δt|y, t) can be obtained using formula (4) and the SDE (1),

δKX(k, δt|y, t) = ik f (y)δt − δtDL|k|α − δtDGk2. (14)

With this expression equation (13) can be rewritten, after expanding exp(δKX(k, δt|y, t)) in a
Taylor series around δt,
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p(x, t + δt|x0, t0) − p(x, t|x0, t0)

=

∫ +∞

−∞
dy
∫ +∞

−∞

dk
2π

exp (−ik(x − y))
(
δKX(k, δt|y, t) + O(δt2)

)
× p(y, t|x0, t0)

=

∫ +∞

−∞
dyF−1[δKX(k, δt|y, t)]p(y, t|x0, t0) + O(δt2), (15)

where the term F−1[δKX(k, δt|y, t)] means the inverse Fourier transformation of δKX(k, δt|y, t)
that can be calculated as

F−1[δKX(k, δt|y, t)] = f (y)δt(−1)δ′(x − y) − δtDL(−Δ)α/2δ(x − y)

− δtDG(−Δ)δ(x − y). (16)

Inserting result (16) into (15) we get

p(x, t + δt|x0, t0) − p(x, t|x0, t0) = −δt
∂

∂x

(
f (x)p(x, t|x0, t0)

)
+ δtDL

∂α

∂|x|α p(x, t|x0, t0)

+ δtDG
∂2

∂x2
p(x, t|x0, t0) + O(δt2). (17)

In the limit δt → 0 we arrive at the FFPKE

∂

∂t
p(x, t|x0, t0) = lim

δt→0

p(x, t + δt|x0, t0) − p(x, t|x0, t0)
δt

= − ∂

∂x

(
f (x)p(x, t|x0, t0)

)
+ DL

∂α

∂|x|α p(x, t|x0, t0)

+ DG
∂2

∂x2
p(x, t|x0, t0). (18)

Namely, for the SDE (1) with Gaussian and symmetric α-stable Lévy white noise, the
corresponding fractional FPK equation is

∂

∂t
p(x, t|x0, t0) = − ∂

∂x

(
f (x)p(x, t|x0, t0)

)
+ DL

∂α

∂|x|α p(x, t|x0, t0)

+ DG
∂2

∂x2
p(x, t|x0, t0). (19)

Equation (19) reduces to equation (5) when DL = 0 and to equation (6) when DG = 0. The
FFPKE (19) can be directly inferred from the continuous time random walk theory with a
combined jump length distribution [15, 43, 44, 59].

In the next section the FFPKE (19) with a constant potential U(x) = const, a ‘subharmonic’
potential U(x) = |x|c with 0 < c < 2, a harmonic potential U(x) = x2/2, or a ‘superharmonic’
potential U(x) = x2m+2/(2m + 2) with m = 1, 2, . . . . will be studied. In our calculation the
initial condition p(x, t|x0, t0) = p(x, t|0, 0) = δ(x) is considered. The symbol p(x, t|0, 0) is
replaced by the short-hand notation p(x, t), which is the PDF at time t. We also introduce the
symbol ZX(k, t) as the characteristic function corresponding to p(x, t).
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3. Fractional FPK equation with constant external potential

We start with analysing the FFPKE (19) for the zero-force case corresponding to a constant
external potential. Analytical solutions are available for some special cases, and the power-law
asymptotic of the solution is proved. Both solutions and power-law asymptotic are corroborated
by numerical results.

3.1. Analytical solutions

For the FFPKE (19) with the external potential U(x) = const the analytical solution in the
Fourier space of this equation is derived. The analytical solutions in real space are obtained for
the special cases α = 2 and α = 1.

The FFPKE (19) with U(x) = const reads

∂

∂t
p(x, t) = DL

∂α

∂|x|α p(x, t) + DG
∂2

∂x2
p(x, t). (20)

After applying the Fourier transformation (3), equation (20) turns into

∂

∂t
ZX(k, t) = −DL|k|αZX(k, t) − DGk2ZX(k, t), (21)

which has the solution

ZX(k, t) = exp
(
−
(
DL|k|α + DGk2

)
t
)
. (22)

By the inverse Fourier transformation we get the PDF p(x, t) in the real space. This transfor-
mation is not straightforward, and we can only implement it for the two special cases α = 2
and α = 1. 9

For the special case α = 2 the analytical solution (22) in Fourier space becomes ZX(k, t) =
exp(−(DLk2 + DGk2)t) = exp(−(DL + DG)k2t). The PDF p(x, t) in real space can be obtained
by the inverse Fourier transformation as the Gaussian

p(x, t)|α=2 =
1

2
√

(DL + DG)πt
exp

(
− x2

4(DL + DG)t

)
(23)

with the effective diffusivity DL + DG.
For the special case α = 1 the analytical solution (22) becomes ZX(k, t) =

exp
(
−[DL|k|+ DGk2]t

)
. The corresponding PDF p(x, t) in the real space yields from

the inverse Fourier transformation,

p(x, t)|α=1 =
1

4
√

DGπt

[
exp

(
(DLt + ix)2

4DGt

)
erfc

(
DLt + ix
2
√

DGt

)
+ c.c

]
, (24)

where c.c is the complex conjugate of the first part in the curly brackets on the right hand
side of relation (24), and the function erfc(x) is the complementary error function. Two special
examples are worthwhile considering:

9 Note that the inverse Fourier transform for arbitrary Lévy stable density can be achieved in terms of Fox H-functions
[15, 64, 65].
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(A) If only Gaussian noise exists, that is, DL = 0, relation (24) reduces to the Gaussian
distribution

p(x, t)|α=1 =
1

2
√

DGπt
exp

(
− x2

4DGt

)
, DL = 0. (25)

Although the symbol p(x, t)|α=1 continues to be used here in accordance with the expression
of the formula (24) α has no effect on the result due to DL = σα and DL = 0.

(B) If DG → 0 expression (24) turns into the well-known Cauchy distribution

p(x, t)|α=1 =
1
π

DLt
D2

Lt2 + x2
, DG → 0. (26)

3.2. Power-law asymptotic around the tails of the PDF

The asymptotic behaviour of the PDF p(x, t) at large x are determined by the first non-analytical
term in the series expansion of the exponent in expression (22) [25],

p
(
|x| →∞, t

)
∼ −

∫ +∞

−∞

dk
2π

exp (−ikx)
(
DL|k|αt + DGk2t

)

= −
∫ +∞

−∞

dk
2π

exp (−ikx)
(
DL|k|αt

)
=

DLt sin
(
πα/2

)
Γ (α+ 1)

π|x|1+α
. (27)

In equation (27) we use the value of the following improper integral∫ ∞

0
dt tα+2me−it = (−1)m+1ie−i(απ/2)Γ(α+ 2 m + 1), m = 0, 1, 2, . . . . (28)

Equation (27) shows that p(x, t) is a power-law function for larger x, and the power-law
exponent is −(α+ 1). Taking the logarithm on both sides of relation (27) we get

lim
|x|→∞

log10 p(x, t) = log10
DLt sin(πα/2)Γ(α+ 1)

π
− (α+ 1)log10|x|. (29)

This result shows that log10 p(|x| →∞, t) is a linear function of log10|x| with the slope −(α+
1), i.e., we can represent the power-law relationship between p(x, t) and large x through log–log
plots. Then, in the numerical results parts (figure 1 to figure 3), an auxiliary line with slope
equal to the power-law exponent is included to verify the power-law relationship in (29).

The asymptotic decay of the tails of pure Lévy processes is p(x) � |x|−(1+α) [21, 27]. Com-
paring the power-law asymptotic of the pure Lévy process and the process (27) combining
Gaussian and Lévy noises we conclude that the asymptotic of the combined noise case asymp-
totically only depends on the Lévy noise index. This can be easily understood in view of the
independence of these two kinds of noise, as well as the absence of the heavy-tailed asymptotic
of the pure Gaussian case. As we will see, the intermediate x-behaviour does carry signatures
of the Gaussian noise.

At the end of this subsection we briefly dwell on the mean squared displacement and frac-
tional moments for the considered FFPKE (20) and the influence of both types of noise on these
quantities. First, due to the power law decay (29) of the PDF the mean squared displacement
does not exist, and one has to characterise the diffusion process with fractional moments 〈|x|q〉.
For pure BM and pure LFs the fractional moments scale as tq/2 for any q and tq/α for q < α < 2,
respectively [22], displaying the superdiffusive behaviour of LFs. It was shown in [66, 67] that

8
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Figure 1. PDF p(x, t) obtained from the FD, Monte Carlo (MC) simulations, and the
analytical solution for DL = 0.1, DG = 1, t = 0.2, and U(x) = const. (a) α = 0.5 and
(b) the corresponding log–log plot; (c) α = 1.0 and (d) the corresponding log–log plot;
(e) α = 1.5 and (f) the corresponding log–log plot.

for the combined Lévy–Brownian process governed by the FFPKE (20) fractional moments
behave as tq/2 at short times (pure Brownian behaviour) and as tq/α at long times, that is, it
displays pure Lévy behaviour in the long time limit. Such a crossover from normal to superdif-
fusive scaling is a particular case of the phenomenon called ‘accelerating superdiffusion’. For
the details of this and other phenomena in a general context of the distributed order fractional
kinetics we refer the reader to [66–70].
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Figure 2. PDF p(x, t) with DL = 0.1 and different values DG = 0.1, 1.0, 5.0, 10.0, at
time t = 0.2. (a) Linear–linear plot; (b) log–log plot.

3.3. Numerical results

Comparisons between the analytical solution of p(x, t), results from Monte Carlo (MC) simu-
lations of the underlying SDE, and the result obtained from the finite difference method (FD)
are presented in figure 1 for the special cases α = 0.5, α = 1.0, and α = 1.5 for t = 0.2. In
this figure the analytical solutions in the real space are calculated through the inverse Fourier
transformation of equation (22). The FD is used to solve the FFPKE (20). In figure 1 panels
(a), (c), and (e) show linear scales, while the corresponding panels (b), (d), and (f) display the
results in log–log scale. The auxiliary lines indicate that the power-tails of the PDF p(x, t) is
fully consistent with result (27).

Figure 2 shows the PDF for DL = 0.1 and different values of DG. Panel (a) shows the results
on linear scales and panel (b) is the corresponding log–log plot. Figure 2(a) indicates that a
larger noise intensity DG leads to lower peaks of the PDF while the PDF is getting broader
around the origin. Interestingly, as predicted by the theoretical result (29), the tails for all cases
are identical and thus only depend on the noise intensity DL and stability parameter α. As
expected the slope in figure 2(b) is −(α+ 1) = −2.0.

Figure 3 is a log–log representation of the PDF p(x, t) for different times. In each panel of
figure 3, the results p(x, t) are obtained through the difference solution of equation (20). In the
FD, the stability index α = 1.5, noise intensity DG = 1.0, and different values for DL, time
step dt = 0.001, and spatial increment dx = 0.01 were used. In each panel the PDF p(x, t) has
a Gaussian shape for the case DL = 0, while we see distinct power-law tails for the combined
noise cases (DL �= 0). We note that larger DL values leads to heavier tails of the PDF for the
combined-noise cases with the same DG. In addition, comparing panels (a) to (d) we find that
longer times t lead to the heavier tails at the same x-value in the tail regions.

4. Fractional Fokker–Planck–Kolmogorov equation with harmonic external
potential

We now turn to the solution of the FFPKE (19) in the presence of an external harmonic poten-
tial. The stationary analytical solutions are available for some special cases and the power-law
asymptotic of the stationary solution are proved. We note that the FFPKE (19) is more compli-
cated for the case of a non-constant external potential, and we concentrate on the more easily

10
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Figure 3. Log–log plots of the PDF p(x, t) at times t = 0.001, 0.01, 0.1, and 1.0 for
α = 1.5 and DG = 1.0.

accessible stationary case pst(x) of the equation instead of the full time-dependent solution
p(x, t).

4.1. Analytical solutions

We here derive the stationary solution in the Fourier space and obtain explicit solutions in the
real space for the special cases α = 2 and α = 1. For the harmonic potential function U(x) =
x2/2 the PDF p(x, t) satisfies the FFPKE

∂

∂t
p(x, t) =

∂

∂x
[xp(x, t)] + DL

∂α

∂|x|α p(x, t) + DG
∂2

∂x2
p(x, t). (30)

In the Fourier space ZX(k, t) thus satisfies

∂

∂t
ZX(k, t) = −k

dZX(k, t)
dk

− DL|k|αZX(k, t) − DGk2ZX(k, t), (31)

where, ZX(k, t) is the Fourier transformation of p(x, t). Note that ZX(k, 0) = 1. By the method
of characteristics, the solution of equation (31) is [21]

ZX(k, t) = exp

(
−DL|k|α

α
[1 − e−αt] − DGk2

2
[1 − e−2t]

)
. (32)

11
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We can then always get the stationary solution ZX(k) as (note that we omit ‘st’ for ZX(k))

ZX(k) = exp

(
−DL

α
|k|α − DG

2
k2

)
. (33)

By inverse Fourier transformation of equation (33) we get the stationary PDF pst(x) in real
space. This transformation is difficult, and we are able to perform it for the special cases α = 2
and α = 1.

For the caseα = 2, the analytical solution can be obtained by inverse Fourier transformation
of ZX(k) = exp(−DL|k|2/2 − DGk2/2),

pst(x)|α=2 =
1√

2π(DL + DG)
exp

(
− x2

2(DL + DG)

)
. (34)

For the case α = 1, the inverse Fourier transformation of ZX(k) = exp(−DL|k| − DGk2/2)
produces

pst(x)|α=1 =
1√

8πDG

[
exp

(
(DL + ix)2

2DG

)
erfc

(
DL + ix√

2DG

)
+ c.c

]
, (35)

where, again, c.c is the complex conjugate of the first part in the curly brackets on the right hand
side of equation (35) and erfc(x) is the complementary error function. There are two special
cases of equation (35) that are worth mentioning:

(A) If only Gaussian noise exists, that is, DL = 0, equation (35) reduces to the Gaussian
distribution pst(x)|α=1 = exp(−x2/[2DG])/

√
2πDG.

(B) If DG → 0, then pst(x)|α=1 → (1/π)DL/(D2
L + x2), the well-known Cauchy distribution.

4.2. Power-law asymptotic around the tails of the stationary PDF

The power-law asymptotic of the stationary PDF pst(x) at large x can be proved in the same
way as in the constant-potential case, namely,

lim
|x|→∞

pst(x) ∼ −
∫ +∞

−∞

dk
2π

exp (−ikx)

(
DL

α
|k|α +

DG

2
k2

)

= −
∫ +∞

−∞

dk
2π

exp (−ikx)
DL

α
|k|α =

DL sin
(
πα/2

)
Γ (α)

π|x|1+α
. (36)

This shows that pst(|x| →∞) is a power-law function of |x|, that is, log10 pst(|x| →∞) and
log10|x| have a linear relationship. Moreover, equation (36) exhibits that larger DL values leads
to larger amplitudes of pst(|x| →∞), which means a heavier tail of the stationary PDF.

For the SDE with pure α-stable Lévy noise and confining the potential U(x) = x2/2 the
stationary PDFs have power-law asymptotic of the form |x|−(α+1) at |x| →∞ [55]. Comparing
with the power-law asymptotic of the combined noise case, equation (36), we find the same
power-law asymptotic. Solely from the tails the presence of the Gaussian noise therefore cannot
be discerned, as detailed in the numerical analysis below.

4.3. Numerical results

The analytical solution of the stationary PDF obtained from the inverse Fourier transformation
of relation (33) is compared with the results of the FD in figure 4. In the numerical calculation
of the FD the time and space steps are dt = 0.01 and dx = 0.1, respectively. Good agreement

12
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Figure 4. Stationary PDFs obtained from the finite difference (FD) method, compared
with the analytical solution for the harmonic external potential U(x) = x2/2. Panels (a)
and (b) are for α = 0.5 in linear and log–log scales; (c) and (d) are correspondingly for
α = 1.0; and (e) and (f) are for α = 1.5.

between the stationary PDF and the finite difference results are observed in figure 4. In the
log–log plots the power-law asymptotic are distinct, and consistent with the theoretical results
(36). Moreover, we see that the noise intensity affects the value of the stationary PDF but does
not affect the power-law behaviour.

Figure 5(a) shows the stationary PDF comparison of the pure Gaussian case (DL = 0), for
pure Lévy noise (DG = 0), and for the combined-noise case for U(x) = x2/2 and α = 1.5 on

13
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Figure 5. Stationary PDF comparing among pure Gaussian, pure Lévy, and the
combined-noise case for U(x) = x2/2 and α = 1.5.

both linear and log–log scales. The numerical solutions are obtained through the FD on the
interval [−30, 30], with the time step dt = 0.01 and space increment dx = 0.01. The analyti-
cal solutions are obtained from the equation (33) through the inverse Fourier transformation.
Figure 5(a) indicates that the numerical solutions fit well the analytical solutions. Figure 5(b)
highlights the tails of the PDF. For the pure Gaussian-noise case (DL = 0) we see a fast Gaus-
sian decay, see formula (36). However, both cases of combined-noise and pure Lévy noise case
have the same asymptotic tails.

5. Fractional Fokker–Planck–Kolmogorov equation in the presence of quartic
and strongly nonlinear potentials

We now study the solution of the FFPKE (19) for the quartic external potential U(x) = x4/4
and the ‘strongly nonlinear’ potential U(x) = x2m+2/(2m + 2) with m = 2, 3, 4, . . . . We again
limit our discussion to the stationary solution. Specifically, we find the stationary analytical
solutions of the special cases DL = 0 and DG = 0 with α = 1 and U(x) = x4/4. Moreover, the
power-law asymptotic about the tails of the stationary PDF is proved and presented through
log–log plots in our numerical analysis.

5.1. Analytical solutions

For the case U(x) = x2m+2/(2m + 2) (m = 1, 2, . . .), the stationary distribution pst(x) satisfies

∂

∂x

(
x2m+1 pst(x)

)
+ DL

∂α

∂|x|α pst(x) + DG
∂2

∂x2
pst(x) = 0. (37)

In the Fourier space equation (37) can be expressed as (note that we again omit the subscript
‘st’ for ZX(k))

d2m+1ZX(k)
dk2m+1

= DL sign(k)|k|α−1ZX(k) + DGkZX(k). (38)

In general, the analytical solutions for both equations (37) and (38) are difficult to derive. We
obtain the analytical solutions for the following two special cases:

14
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Figure 6. Stationary PDFs obtained from finite difference method compared with the
AS for α = 2. (a) U(x) = x4/4, (b) U(x) = x6/6.

(A) For the stability index α = 2 the AS of (37) is

pst(x) =
m + 1

Γ(1/[2 m + 2])[(2 m + 2)(DL + DG)]1/(2m+2)
× exp

(
− 1

DL + DG

x2m+2

2 m + 2

)
. (39)

(B) For the special case α = 1, U(x) = x4/4 and DG = 0 the stationary distribution in the
Fourier space satisfies

d3ZX(k)
dk3

= DL sign(k)ZX(k), (40)

and the solution for the pure Lévy case can be obtained as

ZX(k) =
2√
3

exp

(
−D1/3

L

2
|k|

)
cos

(
D1/3

L

√
3

2
|k| − π

6

)
. (41)

After inverse Fourier transformation of equation (41) we have

pst(x) =
1
π

DL

x4 + D4/3
L − D2/3

L x2
. (42)

And the exact stationary PDFs for α = 1, DG = 0 and arbitrary m can be found in [30]
Figure 6 presents the stationary solution pst(x) for the quartic and x6 potentials for differ-

ent noise intensities for the case α = 2. The analytical solutions are compared with the finite
difference solutions for the cases DL = DG = 0.01 and DL = DG = 0.05, in each panel. Both
results agree well in all cases. For the FD, the parameters dx = 0.01 and dt = 0.01 were used
on the interval x ∈ [−5, 5]. We find that smaller DL and DG lead to a thinner PDF. Moreover,
U(x) = x4/4 results in a thinner PDF than for U(x) = x6/6 for the same noise intensity.

In figure 7 the stationary analytical solution (42) is compared with the corresponding finite
difference solution for DG = 0, DL = 0.05 and α = 1.0. In the finite difference scheme the
parameter dx = 0.005, dt = 0.01 and the interval x ∈ [−20, 20] are employed. Figure 7(a)
shows that the analytical solution agrees well with the finite difference solution. Panel (b)
displays the corresponding log–log plot with the power-law tails of the PDF, detailing the
asymptotic for the pure Lévy case with DG = 0, lim|x|→∞ p(x) � x−4, compare the analyti-
cal solution (42). In panel (b) of figure 7 the auxiliary line with slope −4 is plotted with the
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Figure 7. Stationary PDFs comparing between the finite difference solution (FD) and
the analytical solution for DG = 0, DL = 0.05, and α = 1.0.

expected power-law asymptotic. Notably, panel (a) of figure 7 demonstrates a bimodal station-
ary PDF, with a distinct dip towards the origin, x = 0. This behaviour for Lévy stable processes
was first analysed in a series of works [25–29]. We will here analyse how this phenomenon is
when we use combined Lévy–Gaussian noise.

5.2. Power-law asymptotic around the tails of the stationary PDF

The power-law asymptotic of the stationary solution is analysed theoretically through the
method laid out in [27]. For the potential U(x) = x2m+2/(2m + 2) (m = 0, 1, 2, . . .) the
stationary solution satisfies

∂

∂x
(U′(x)pst) + DL

∂α

∂|x|α pst + DG
∂2

∂x2
pst = 0. (43)

We find pst(x +Δx) � pst(x) � pst(x −Δx) and Dα
−pst(x) � Dα

+pst(x), when x →+∞. To
prove the power-law asymptotic we distinguish the two different cases α �= 1 and α = 1:

(A) When α �= 1 then the stationary solution meets

∂

∂x
(U′(x)pst(x)) − DL

2 cos(πα/2)Γ(2 − α)
d2

dx2

∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ � 0, x →∞ (44)

for 1 < α < 2, namely,

x2m+1 pst(x) � DL

2 cos(πα/2)Γ(2 − α)
d

dx

∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ, x →+∞, 1 < α < 2. (45)

Suppose that the asymptotic behaviour of pst(x) satisfies pst(x) ∼ C1/xμ (x →+∞,μ > 0),
and then integrate equation (45) to get

2C1 cos(πα/2)Γ(2 − α)
DL(2m + 2 − μ)

x2m+2−μ �
∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ. (46)
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Then the approximated value for the right-hand side integral can be obtained as

∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ � 1
xα−1

∫ x

−∞
pst(ξ)dξ � 1

xα−1

∫ ∞

−∞
pst(ξ)dξ =

1
xα−1

. (47)

Comparing equations (46) and (47) we see that

μ = α+ 2m + 1, (48)

and

C1 =
DL(2 m + 2 − μ)

2 cos(πα/2)Γ(2 − α)
=

DL sin(πα/2)Γ(α)
π

. (49)

In view of the symmetry of the stationary solution its power-law asymptotic form is

pst(x) ∼ DL sin(πα/2)Γ(α)
π|x|α+2m+1

, |x| →∞, 1 < α < 2. (50)

For the case 0 < α < 1, μ has the identical value (48), and

C1 =
DL

2 cos(πα/2)Γ(1 − α)
=

DL sin(πα/2)Γ(α)
π

. (51)

Thus, the general power-law asymptotic of α �= 1 becomes

p(x) ∼ DL sin(πα/2)Γ(α)
π|x|α+2m+1

, |x| →∞, 0 < α < 2, α �= 1. (52)

(B) When α = 1 the stationary solution satisfies

∂

∂x
(U′(x)pst(x)) − DL

1
π

d
dx

∫ ∞

−∞

pst(ξ)
x − ξ

dξ � 0. (53)

After the same procedure followed in part (A) the asymptotic of the stationary solution turns
into

pst(x) ∼ DL

π|x|2 m+2
, |x| →∞, (54)

which is indeed a special case of result (50) when α = 1.
Thus, the power-law asymptotic of stationary solution uniquely satisfies

pst(x) ∼ DL sin(πα/2)Γ(α)
π|x|α+2m+1

, |x| →∞, 0 < α < 2. (55)

Equation (55) shows that the Gaussian noise intensity DG has no effect on the power-law
asymptotic of the PDF, and thus for the pure Lévy case, the PDF has the same power-law
asymptotic as reported in [25].
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Figure 8. Stationary PDF from the FD and Monte Carlo (MC) solution for U(x) = x4/4.
(a) is for α = 1.0 and (b) is the corresponding plot on log–log scale. (c) is for α = 1.3,
with the corresponding log–log representation in (d).

5.3. Numerical results

In this subsection we present our numerical results for the external potentials U(x) = x4/4 and
U(x) = x6/6. Both Monte Carlo solutions for the SDE and finite difference solutions for the
FFPKE are used.

Figure 8 presents the stationary PDFs for different noise strengths DL and DG for the quartic
potential U(x) = x4/4, in both linear and log–log representation. In the latter the power-law
tails are highlighted. For the FD the time step dt = 0.01 and spatial increment dx = 0.01 are
adopted. The finite difference solution agrees well with the Monte Carlo solution. Figures 8(a)
and (c) show that larger DL lead to a stronger bimodality of the PDF for the same DG. The
bimodality of the stationary PDF for smaller DL is shown in the zoom-in in the insets in figuress
8(a) and (c). Panels (b) and (d) are the corresponding double-logarithmic plots detailing the
power-law asymptotic for the tails of the PDF. For the case U(x) = x4/4 andα = 1, figure 8(b)
shows that the tails of the PDF satisfy pst(x) � x−4 (x →+∞). Similarly, for α = 1.3 panel
(d) shows that the tails of the PDF satisfy pst(x) � x−4.3 for (x →+∞). Both results are thus
consistent with equation (55) where the tails of the stationary PDF are shown to obey pst(x) �
|x|−(α+3) at x →∞. Moreover, we find that larger DL lead to heavier tails in each of the log–log
plots.

Figure 9 shows the stationary PDF on both linear and double-logarithmic scales for differ-
ent noise strengths DL and DG for the case of the strongly nonlinear potential U(x) = x6/6.
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Figure 9. Stationary PDF from the FD and Monte Carlo (MC) solution for U(x) = x6/6.
(a) is forα = 1.0 with the corresponding log–log representation in (b). (c) is forα = 1.3,
with log–log scales in (d).

Both finite difference solutions and Monte Carlo solutions are shown, demonstrating good
agreement. For the FD the time step was dt = 0.01 and the spatial increment was dx = 0.01.
Figures 9(a) and (c) show that larger DL values lead to a stronger bimodality of the PDF for
the same DG. The bimodality for smaller DL is shown in the insets. Panels (b) and (d) show
that the tails of the PDF have power-law asymptotic. For the case U(x) = x6/6 equation (55)
indicates that pst(x) � |x|−(α+5) as |x| →∞. Namely, log10 pst(x) � −(α+ 5) log10|x| as
|x| →∞, such that in the log–log plot the stationary PDF has the asymptotic slope −(α+ 5).
Forα = 1, pst(x) � |x|−6(|x| →∞), and the tails of the PDF are indeed parallel to the auxiliary
line with slope −6 in panel (b). In panel (d) the auxiliary line has slope −6.5, again consistent
with the analytical prediction.

6. Fractional Fokker–Planck–Kolmogorov equation in the presence of an
external subharmonic potential

In this section, consider the FFPKE (19) in the presence of a ‘subharmonic’ potential U(x) =
|x|c/c (0 < c < 2). Specifically, the FFPKE can be expressed as

∂

∂t
p(x, t) =

∂

∂x

(
|x|c−1 sign(x)p(x, t)

)
+ DL

∂α

∂|x|α p(x, t) + DG
∂2

∂x2
p(x, t), (56)
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Figure 10. Examples for subharmonic potentials U(x) = |x|c/c with 0 < c < 2 for the
parameters c = 1.0, c = 1.5, and c = 0.5.

where sign(x) is the sign function. In figure 10 the subharmonic potential functions with some
specific parameters are presented. We discuss the existence of a stationary state and determine
the power-law asymptotic of the tails of the stationary PDF.

6.1. Existence of a stationary PDF and corresponding power-law tails

We here prove that the tails of the stationary PDF have power-law asymptotic. To this end we
use the same method as employed in section 5.2.

If a stationary state of equation (56) exists, it satisfies

∂

∂x

(
|x|c−1 sign(x)pst(x)

)
+ DL

∂α

∂|x|α pst(x) + DG
∂2

∂x2
pst(x) = 0. (57)

Considering that the stationary solution satisfies pst(x +Δx) � pst(x) � pst(x −Δx) for
|x| →∞, according to the definition of the Riemann–Liouville derivatives (8) we find
that Dα

−pst(x) � Dα
+pst(x) when x →+∞, and Dα

+pst(x) � Dα
−pst(x) when x →−∞. Then,

equation (57) reduces to

xc−1 pst(x) � DL

2 cos(πα/2)Γ(2 − α)
d

dx

∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ, x →+∞, 1 < α < 2 (58)

and, respectively,

−(−x)c−1pst(x) � DL

2 cos(πα/2)Γ(2 − α)
d

dx

∫ ∞

x

pst(ξ)
(ξ − x)α−1

dξ, x →−∞, 1 < α < 2.

(59)
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Assuming that the tails of the distribution are given by a power-law, i.e. pst(x) ∼ C1/|x|μ
(μ > 0, x →∞) we get

2C1 cos(πα/2)Γ(2 − α)
DL(c − μ)

xc−μ �
∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ, x →+∞, 1 < α < 2 (60)

and

2C1 cos(πα/2)Γ(2 − α)
DL(c − μ)

(−x)c−μ �
∫ ∞

x

pst(ξ)
(ξ − x)α−1

dξ, x →−∞, 1 < α < 2. (61)

The right-hand sides of equations (60) and (61) can be approximated as∫ x

−∞

pst(ξ)
(x − ξ)α−1

dξ � 1
xα−1

∫ ∞

−∞
pst(ξ)dξ =

1
xα−1

, x →+∞, 1 < α < 2 (62)

and∫ ∞

x

pst(ξ)
(ξ − x)α−1

dξ � 1
(−x)α−1

∫ ∞

−∞
pst(ξ)dξ =

1
(−x)α−1

, x →−∞, 1 < α < 2. (63)

Comparing equations (60) and (62), as well as (61) and (63), we obtain

c − μ = 1 − α (64)

and,

C1 =
DL(c − μ)

2 cos(πα/2)Γ(2 − α)
=

DL sin(πα/2)Γ(α)
π

. (65)

Thus, the power-law asymptotic about the tail of the PDF is

pst(x) ∼ C1

|x|μ =
DL sin(πα/2)Γ(α)

π|x|c+α−1
, |x| →∞, 1 < α < 2. (66)

In the derivation of the power-law asymptotic (66) the Riemann–Liouville fractional deriva-
tives (8) with stability parameter 1 < α < 2 are used. For the fractional derivatives with
stability parameter 0 < α < 1 the analogous power-law asymptotic can be obtained as

pst(x) ∼ DL

2 cos(πα/2)Γ(1 − α)|x|c+α−1
=

DL sin(πα/2)Γ(α)
π|x|c+α−1

, |x| →∞, 0 < α < 1.

(67)

Finally, the power-law asymptotic in the Cauchy case α = 1 is

pst(x) ∼ DL

π|x|c , |x| →∞, α = 1, (68)

which can be viewed as a limiting case of the general power-law asymptotic. Taken altogether,
the power-law asymptotic in the subharmonic potential becomes

pst(x) ∼ DL sin(πα/2)Γ(α)
π|x|c+α−1

, |x| →∞, 0 < α < 2. (69)

Moreover, for the pure Lévy case (DG = 0) the tails of the PDF satisfy the same power-law
asymptotic [55].
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Figure 11. Evolution of the PDF at x = 0 as function of time t for U(x) = |x|, DL =
0.05, and DG = 0.02. (a) α = 1.5, (b) α = 0.9.

The PDF pst(x) has to be integrable which implies to μ > 1. The necessary condition for
the existence of the steady state therefore is

c > 2 − α. (70)

Specifically, this means that for the harmonic case c = 2 we always have a stationary solution,
as proved originally in [21].

6.2. Numerical results

In this section numerical results are presented to verify the condition for the existence of the
stationary state and to show the power-law asymptotic of the stationary PDF. Without loss of
generality, we choose two special cases, U(x) = |x| (c = 1) and U(x) = |x|0.5/0.5 (c = 0.5).
In our presentation the value p(x = 0, t) is selected as a parameter to show the existence of
the stationary states, and logarithmic scales are used to show the power-law asymptotic of the
stationary solution.

6.2.1. Subharmonic potential U(x) = |x|. We first turn to the case U(x) = |x| for different
noise intensities and stability parameter α and verify the necessary condition for the existence
of the stationary state with its long-tailed asymptotic pst(x) ∝ |x|c+α−1 for |x| →∞.

If the stationary state exists, the PDF will remain unchanged once it arrives at the stationary
state. Figure 11 shows the evolution of the PDF at x = 0 as function of time. The value of the
PDF is obtained through Monte Carlo simulations with the time step dt = 10−3 and spatial
increment dx = 0.1. The number of sample trajectories is 1 × 106 and the initial condition is
x (0) = 0. In figure 11(a), the PDF p(x = 0, t) first decreases and then remains unchanged when
we use the parameters DL = 0.05, DG = 0.02, and α = 1.5. This combination of α = 1.5 and
c = 1 meet the necessary condition (70). In contrast, there does not exist a stationary state if
(70) is violated. This is demonstrated in figure 11(b). The parameters α = 0.9 and c = 1 do
not satisfy condition (70), and the value of the PDF apparently does not reach a stationary
value.

For the case that the stationary state exists, figure 12 shows the value of p(x = 0, t) for
different noise intensities. Each panel of figure 12 demonstrates that smaller DG values lead
to higher amplitudes for the same noise intensity DL. Comparing panels (a) and (b), larger DL

lead to higher amplitudes for the same noise intensities DG = 0.01 and DG = 0.05.
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Figure 12. Time evolution of the PDF at x = 0 for U(x) = |x| and α = 1.5 under
different DG. (a) DL = 0.01, (b) DL = 0.05.

Figure 13. Stationary PDFs and corresponding log–log plots for U(x) = |x|, α = 1.5,
and DL = 0.05.

In section 6.1 the power-law asymptotic of the stationary solution is proved. Figure 13
presents the stationary PDF on linear and log–log scales for U(x) = |x|, α = 1.5, and DL =
0.05. Panel (a) shows that smaller DG values lead to higher amplitudes. Panel (b) shows that
the tails of the stationary PDF satisfy pst(x) � |x|−1.5 as x →∞. Specifically, we see that the
noise intensity DG has no effect on the power-law asymptotic, in accordance with result (66).

6.2.2. Subharmonic potential U(x) = |x|0.5/0.5. We now turn to the case U(x) = |x|0.5/0.5
and perform a similar analysis.

Figure 14 shows the value p(x = 0, t) of the PDF, obtained from Monte Carlo simulations
with the same setting as above, but with initial x(0) = 1.0. In figure 14(a) p(x = 0, t) first
increases and then decreases to a constant for α = 1.7, consistent with the fact that the param-
eters α = 1.7 and c = 0.5 satisfy the necessary condition (70) for stationarity. In contrast, for
α = 1.0, (70) is not satisfied, and panel (b) indeed shows that the stationary state is not reached.

For the case U(x) = |x|0.5/0.5 and DL = 0.2 figure 15 shows the effect of the noise intensity
on the PDF, where panels (a) and (b) are for α = 1.7 and (c) and (d) are for α = 1.0. For
α = 1.7, for which the stationary state exists panel (b) indicates that smaller DG lead to larger
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Figure 14. Time evolution of the PDF at x = 0 for U(x) = |x|0.5/0.5, DL = 0.2, and
DG = 0.1. (a) α = 1.7, (b) α = 1.0.

Figure 15. The PDF and time evolution of the PDF at x = 0 under different DG for
U(x) = |x|0.5/0.5 and DL = 0.2. (a) and (b) α = 1.7. (c) and (d) α = 1.0.

amplitudes of p(x = 0, t) for the same DL, and for all times except t = 0. In accordance with the
findings of panel (b), panel (a) indicates that smaller DG lead to higher amplitudes pst(x = 0)
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Figure 16. Stationary PDFs for U(x) = |x|0.5/0.5, α = 1.7, and DL = 0.1.

for the same DL. Additionally, for α = 1.0, panels (c) and (d) show similar tendencies for the
PDF for different noise intensities, although the stationary state does not exist.

For those cases in which a stationary state exists the stationary solutions indeed have power-
law tails. Figure 16 presents the stationary PDFs on a log–log scale for U(x) = |x|0.5/0.5,
α = 1.7 and DL = 0.1. Here panel (a) shows that smaller DG lead to higher amplitudes of the
PDF. Panel (b) shows that the tails of the stationary PDF satisfy pst(x) � |x|−1.2 when x →∞.
The power-law tails of the stationary solutions are again indifferent to the noise intensity DG.

7. Conclusions

We derived the FFPKE corresponding to an SDE driven by a combination of Gaussian white
noise and α-stable Lévy white noise. The FFPKE is solved for different external poten-
tials: U(x) = 0, U(x) = x2/2, U(x) = x2m+2/(2m + 2) (m = 1, 2, . . .), as well as U(x) =
|x|c/c with 0 < c < 2. Analytical solutions are derived for some special cases and are ver-
ified by numerical solutions. The latter are obtained from the underlying SDE by a Monte
Carlo scheme, and from the FFPKE through a finite difference scheme. Analytically, we
proved that the solutions of the FFPKE have asymptotic power-law tails. These are of the
form p(x, t) � |x|−(α+1) at |x| →∞ for the constant-potential case. Here, as expected, the
power-law exponent is the same as the stable index of the driving Lévy stable noise. For
the case U(x) = x2m+2/(2m + 2) (m = 0, 1, 2, . . .), the PDF will always reach a stationary
state characterised by the power-law asymptotic pst(x) � |x|−(α+2m+1) at x →∞. In this case
the power-law tails become increasingly steeper, such that for m � 1 the stationary solution
has a finite variance, as unveiled earlier for the case of pure Lévy motion in superharmonic
potentials [25–27]. In the harmonic case the power-law index of the stationary PDF is iden-
tical to the stable index of the driving Lévy noise as seen in [21]. Finally, we proved that in
subharmonic potentials of the form U(x) = |x|c/c the process reaches a stationary state when
c > 2 − α. In this case the stationary PDF has the power-law asymptotic pst(x) � |x|−(c+α−1)

for x →∞. In the limit c = 2 this result agrees with the asymptotic in an harmonic potential.
For 0 < c < 2 it thus has a power-law exponent−(c + α− 1) < −1 such that the PDF always
remains normalisable.

Remarkably, in all cases the emerging power-law tails are independent of the additive Gaus-
sian noise. While it seems fully intuitive that the power-law exponent in all cases is dominated
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by the extreme events inherent to the Lévy stable noise, it is nevertheless interesting that the
tail behaviour remains unaffected by the noise strength DG of the additive Gaussian noise. If
we interpret the source of the Gaussian noise as a detrimental measurement or setup effect,
this means that the asymptotic form of the measured distribution is fully stable against this
additional noise. Of course, the pre-asymptotic behaviour of the PDF does show effects from
the Gaussian noise, and in this regime our numerical modelling approach can be used to gauge
the effect. We note that when we do not focus on the PDF of the process but the first-hitting
(first-arrival) time encoded in the dynamics [71, 72], the presence of the additional Gaussian
noise is beneficial, as it leads to an effective finite size of the target and thus a faster loca-
tion [44, 53]. Indeed, the probability to find a point target for Lévy search with 0 < α � 1
is zero, that is, such a random search dynamics is absolutely unreliable. However, for the
combined Lévy–Brownian search the situation is drastically different: adding Gaussian noise
to the equation of motion makes such search completely reliable for α = 1 (i.e., the proba-
bility to find a point target is 1), whereas the probability for 0 < α < 1 takes on a nonzero
value between 0 and 1, which depends on the intensity of the Gaussian noise. This is com-
pletely equivalent to the case of pure Lévy search of a finite-size target. Thus, the intensity of
the additive Gaussian noise plays a role analogous to that of the target size [44].

Another remark concerns the potential shapes. In this paper we consider the simplest cases
of symmetric external potentials. More complicated shapes will doubtlessly induce new fea-
tures. For instance, it is known that for pure LFs in an anharmonic single-well potential of the
form U(x) = ax2 + bx4 with non-negative constants a and b a unimodal-bimodal transition in
the shape of the stationary PDF takes place on increasing the ratio b/a [25]. Similarly, for pure
LFs in a symmetric double-well potential the positions of the maxima of the stationary PDF do
not coincide with the positions of the minima of the potential well [73]. It would be of interest
to investigate the influence of Gaussian noise on these two effects. Even more complex time
evolutions and stationary states are expected for odd and asymmetric potentials. The Langevin
dynamics for several systems embedded in specific potentials of such kind and disturbed by
Lévy noise have been studied in [74–77].

An interesting extension of the present results would be to combine the Markovian dynam-
ics of the combined, white noises with a non-Poissonian waiting time dynamics in a continuous
time random walk formulation [15, 78], or to combine the Lévy white noise with a non-
Markovian noise, for instance, fractional Gaussian noise [79]. It will also be of interest to
generalise the results obtained here for asymmetric Lévy stable distributions [80]. Finally, we
note that recently generic examples of Lévy walks have been considered in confining potentials,
demonstrating fundamentally different dynamics from LFs [81–83].
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Appendix A. Numerical methods

In this appendix, the numerical methods used in this paper are introduced. Appendix A.1 intro-
duces the FD used for solving fractional FPK equation. Appendix A.2 shows the Monte Carlo
method for the stochastic differential equation with Gaussian and Lévy noise.

A.1. Finite difference method

In the appendix A.1, the FD scheme is presented for the cases 1 < α � 2 (the FD for the
0 < α < 1 case is similar) and α = 1.

Case1: 1 < α � 2
For fractional FPK equation

∂

∂t
p(x, t) =

∂

∂x

(
U′(x)
mγ

p(x, t)

)
+ DL

∂α

∂|x|α p(x, t) + DG
∂2

∂x2
p(x, t), (A.1)

the FD is stated as follows. The time domain [0, T] is divided as tn = nΔt, n = 0, 1, . . . , L,
where Δt = T/L. And the spatial domain [xmin, xmax] is discretised into N parts, the length of
each part is Δx and x j = xmin + jΔx, j = 0, 1, . . . , N.

The Riesz space fractional derivative ∂α/∂|x|α is defined as follows [58, 60]

∂α

∂|x|α p(x j, tn) = −Dα
+p(x j, tn) + Dα

−p(x j, tn)
2 cos(πα/2)

, (A.2)

where

Dα
+p(x, t) =

1
Γ(2 − α)

d2

dx2

∫ x

xmin

p(η, t)dη
(x − η)α−1

, (A.3)

and

Dα
−p(x, t) =

1
Γ(2 − α)

d2

dx2

∫ xmax

x

p(η, t)dη
(η − x)α−1

. (A.4)

Then, according to shifted Grünwald–Letnikov estimates [61–63], we express the fractional
space fractional operator as

Dα
+p(x j, tn) =

1
Δxα

N∑
k=0

ck pn
j+1−k, (A.5)

and

Dα
−p(x j, tn) =

1
Δxα

N∑
k=0

ck pn
j−1+k, (A.6)

where ck = (−1)k

(
α
k

)
= (−1)k Γ(α+1)

Γ(k+1)Γ(α−k+1) , and p(x j, tn) = pn
j . By using the difference

approximation for the first order derivatives, equation (A.1) can be discretised as

p(x j, tn+1) − p(x j, tn)
Δt

=
U′′(x j)

mγ
p(x j, tn+1)

+
U′(x j)

mγ

p(x j−2, tn+1) − 8p(x j−1, tn+1) + 8p(x j+1,tn+1) − p(x j+2, tn+1)
12Δx
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− DL

2 cos(πα/2)Δxα

(
N∑

k=0

ck pn+1
j+1−k +

N∑
k=0

ck pn+1
j−1+k

)

− DG

12Δx2

(
p(x j−2, tn+1) − 16p(x j−1, tn+1) + 30p(x j, tn+1)

− 16p(x j+1, tn+1) + p(x j+2, tn+1)
)

(A.7)

Moving terms of different time t in equation (A.7) to different sides, equation (A.7) becomes

pn
j =

(
−U′(x j)

mγ
ε1 + ε2 + Mc3

)
pn+1

j−2 +

(
8U′(x j)

mγ
ε1 − 16ε2 + Mc0 + Mc2

)
pn+1

j−1

+

(
1 − U′′(x j)Δt

mγ
+ 30ε2 + 2Mc1

)
pn+1

j +

(
−8U′(x j)

mγ
ε1 − 16ε2 + Mc0 + Mc1

)
pn+1

j+1

+

(
U′(x j)

mγ
ε1 + ε2 + Mc3

)
pn+1

j+2 + M

(
N∑

k=4

ck pn+1
j+1−k +

N∑
k=4

ck pn+1
j−1+k

)
(A.8)

where ε1 = Δt/(12Δx), ε2 = ΔtDG/(12Δx2), M = DLΔt/[2cos(πα/2)Δxα].
Equation (A.8) can be expressed in a matric form as (A.7) becomes

[T]{p}n+1 = {p}n, (A.9)

where {p} = [p1, p2, . . . pN−1]T and

Ti j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − U′′(x j)Δt
mγ

+ 30ε2 + 2Mc1, i = j

−U′(x j)
mγ

ε1 + ε2 + Mc3, j = i − 2

8U′(x j)
mγ

ε1 − 16ε2 + Mc0 + Mc2, j = i − 1

−8U′(x j)
mγ

ε1 − 16ε2 + Mc0 + Mc1, j = i + 1

U′(x j)
mγ

ε1 + ε2 + Mc3, j = i + 2

Mci− j+1, j � i − 3

Mc j−i+1, j � i + 3

, (A.10)

where i, j = 1, 2, . . . , N − 1. And we consider the natural boundary condition p0 = pN = 0.
Besides, the sum of the PDF at each time satisfies the normalisation condition

∑N
k=0 pk =

1/Δx.
Case2: α = 1

∂

∂t
p(x, t) =

∂

∂x

(
U′(x)
mγ

p(x, t)

)
+ DL

∂

∂|x| p(x, t) + DG
∂2

∂x2
p(x, t), (A.11)
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The time division and space division are the same as case1. But the fractional derivative
∂

∂|x| p(x j, tn) is divided as [57]

∂

∂|x| p(x j, tn) =
1

πΔx

N∑
k=1

p(x j+k, tn) − 2p(x j, tn) + p(x j−k, tn)
k(k + 1)

. (A.12)

Following the derivation processes like case 1, a similar iteration in matrix form can be derived
as [T]{p}n+1 = {p}n, with {p} = [p1, p2, . . . pN−1]T and

Ti j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − U′′(x j)Δt
mγ

+ 2M

(
1 − 1

N + 1

)
+ 30ε2, i = j

−U′(x j)
mγ

ε1 −
M
6

+ ε2, j = i − 2

U′(x j)
mγ

ε1 −
M
6

+ ε2, j = i + 2

8
U′(x j)

mγ
ε1 −

M
2

− 16ε2, j = i − 1

−8
U′(x j)

mγ
ε1 −

M
2

− 16ε2, j = i + 1

− M
(i − j)(i − j + 1)

, j � i − 3

− M
( j − i)( j − i + 1)

, j � i + 3

, (A.13)

where i, j = 1, 2, . . . , N − 1 and ε1 = Δt/(12Δx), ε2 = ΔtDG/(12Δx2), M = DLΔt/(πΔx).
And the normalisation condition

∑N
k=0 pk = 1/Δx is also satisfied.

A.2. Monte Carlo method

For the SDE (1), the Monte Carlo method is adopted based on the solution of Runge–Kutta
algorithm as the following form [56]

k1 = f (x(kΔt))

k2 = f (x(kΔt) +Δt × k1/2)

k3 = f (x(kΔt) +Δt × k2/2)

k4 = f (x(kΔt) +Δt × k3)

x([n + 1]Δt) = x(nΔt) +Δt × (k1 + 2k2 + 2k3 + k4)/6 +Δt1/αξn +Δt1/2ωn. (A.14)

Here, ξn is Lévy distributed random variables with noise intensity DL and stability index α.
And ωn is random variables with zero mean and variance 2DG. In the above Δt is time step
used for iteration. The trajectory of the sample path x(t) is obtained through the Runge–Kutta
method. And we carry out the Monte Carlo experiment experiment for 50 000 times and obtain
the solution by counting the number of the points in each parts of the interval Δx of the real
line x.
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[1] Langevin P 1908 Sur la théorie de mouvement brownien C. R. Hebd. Seances Acad. Sci. 146
530

[2] Risken H 1996 The Fokker–Planck Equation: Methods of Solution and Applications (Berlin:
Springer)

[3] Fogedby H C and Metzler R 2007 DNA bubble dynamics as a quantum Coulomb problem Phys.
Rev. Lett. 98 070601

[4] Sun J Q 2006 Stochastic Dynamics and Control (Amsterdam: Elsevier)
[5] Liu Q, Xu Y, Xu C and Kurths J 2018 The sliding mode control for an airfoil system driven by

harmonic and colored Gaussian noise excitations Appl. Math. Model. 64 249
[6] Mandelbrot B B 1982 The Fractal Geometry of Nature (New York: Freeman)
[7] Shlesinger M F and Klafter J 1986 On Growth and Form ed H E Stanley (Dordrecht: Kluwer

Academic Publishers Group) pp 279–83
[8] Bouchaud J P and Georges A 1990 Anomalous diffusion in disordered media: statistical mecha-

nisms, models and physical applications Phys. Rep. 195 127
[9] Viswanathan G M, da Luz M G E, Raposo E P and Stanley H E 2011 The Physics of Foraging

(Cambridge: Cambridge University Press)
[10] Xu Y, Duan J Q and Xu W 2011 An averaging principle for stochastic dynamical systems with Lévy
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[12] Zaslavsky G M 2002 Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 461
[13] Compte A 1996 Stochastic foundations of fractional dynamics Phys. Rev. E 53 4191
[14] Metzler R, Barkai E and Klafter J 1999 Deriving fractional Fokker–Planck equations from a

generalised master equation Europhys. Lett. 46 431
[15] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional

dynamics approach Phys. Rep. 339 1
[16] Metzler R and Klafter J 2004 The restaurant at the end of the random walk: recent developments in

fractional dynamics descriptions of anomalous dynamical processes J. Phys. A: Math. Gen. 37
R161

[17] Yanovsky V V, Chechkin A V, Schertzer D and Tur A V 2000 Lévy anomalous diffusion and
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[21] Jespersen S, Metzler R and Fogedby H C 1999 Lévy flights in external force fields: Langevin and
fractional Fokker–Planck equations and their solutions Phys. Rev. E 59 2736

[22] Chechkin A V and Gonchar V Y 2000 Linear relaxation processes governed by fractional symmetric
kinetic equations J. Exp. Theor. Phys. 91 635

[23] Benson D A, Wheatcraft S W and Meerschaert M M 2000 The fractional-order governing equation
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[54] Duan J Q 2015 An Introduction to Stochastic Dynamics (Cambridge UK: Cambridge University
Press)

[55] Dybiec B, Sokolov I M and Chechkin A V 2010 Stationary states in single-well potentials under
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Lévy noise Eur. Phys. J. Spec. Top. 216 133

[74] Dubkov A A and Spagnolo B 2008 Verhulst model with Lévy white noise excitation Eur. Phys. J.
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