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Abstract
Numerous examples for a priori unexpected non-Gaussian behaviour for nor-
mal and anomalous diffusion have recently been reported in single-particle
tracking experiments. Here, we address the case of non-Gaussian anoma-
lous diffusion in terms of a random-diffusivity mechanism in the presence of
power-law correlated fractional Gaussian noise. We study the ergodic prop-
erties of this model via examining the ensemble- and time-averaged mean-
squared displacements as well as the ergodicity breaking parameter EB quan-
tifying the trajectory-to-trajectory fluctuations of the latter. For long mea-
surement times, interesting crossover behaviour is found as function of the
correlation time τ characterising the diffusivity dynamics. We unveil that at
short lag times the EB parameter reaches a universal plateau. The corre-
sponding residual value of EB is shown to depend only on τ and the trajec-
tory length. The EB parameter at long lag times, however, follows the same
power-law scaling as for fractional Brownian motion. We also determine a
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corresponding plateau at short lag times for the discrete representation of frac-
tional Brownian motion, absent in the continuous-time formulation. These
analytical predictions are in excellent agreement with results of computer
simulations of the underlying stochastic processes. Our findings can help dis-
tinguishing and categorising certain nonergodic and non-Gaussian features of
particle displacements, as observed in recent single-particle tracking experi-
ments.

Keywords: stochastic processes, anomalous diffusion, fractional Brownian
motion, diffusing diffusivity, weak ergodicity breaking

(Some figures may appear in colour only in the online journal)

1. Introduction

Brownian motion (BM) describes ubiquitous physical phenomena across multiple disciplines
of natural science. Based on multiple experimental findings and theoretical frameworks [1–10],
BM features two fundamental properties: (i) the linear growth of the mean-squared displace-
ment (MSD) with time and (ii) the Gaussian form of the probability density function (PDF)
of particle displacements. Anomalous diffusion processes feature a nonlinear MSD growth,
typically of the power-law form [11–22]〈

x2(t)
〉
∝ t2H. (1)

Subdiffusion is observed when the anomalous scaling exponent is in the range 0 < H < 1/2,
while superdiffusion is realised for 1/2 < H < 1. Especially, prompted by modern technolo-
gies (such as superresolution microscopy, fluorescence technologies, single-particle tracking
and advanced computing methods), anomalous diffusion has been detected in numerous phys-
ical and biological systems [18, 24–33]. Along with these experimental developments, the
mathematical foundations of different models of anomalous diffusion have been intensively
studied, such as, for instance, for continuous-time random walks [14, 19, 34–36], fractional
BM (FBM) [37–44] (also with tempered noise [45, 46]), and heterogeneous diffusion processes
[47–53].

Over the past years, a particular class of stochastic processes—so-called ‘Brownian yet
non-Gaussian diffusion’—has been reported in a representative number of soft-matter and
cellular biological systems [54–64]. These processes typically combine the linear BM-like
growth of the MSD with a highly non-Gaussian (often close to exponential) PDF of particle
displacements for given time lags. These non-Gaussian PDFs may emerge due to diffusion in
inhomogeneous environments. In a first approach it was assumed that each particle is moving
on a spatial patch with a given diffusivity, D. Measuring the displacement-PDF of an ensemble
of particles, imagined to be distributed over a set of local patches, is then taken to be a weighted
mean of individual Gaussians with a given diffusion coefficient, where the weight function is
the PDF p(D) of diffusion coefficients. This is, in fact, the classical approach of ‘superstatistics’
[65, 66]. For instance, in the experiment of Granick and coworkers, for colloidal beads diffusing
on lipid-bilayer tubes an exponential distribution p(D) was obtained [54, 55]. However, the
superstatistical model with time-independent p(D) cannot predict the crossover from short-time
non-Gaussian to long-time effective Gaussian PDFs observed experimentally [54, 55].

To allow for such a crossover, the concept of ‘diffusing diffusivity’ (DD) was introduced
[67]. Introducing a fluctuating instantaneous D(t), in this model exponential PDFs at short
times and Gaussian PDFs at long times emerge, while the process still features a linear MSD
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with time-independent effective diffusivity. The crossover is characterised by the correlation
time inherent to the diffusivity dynamics. A similar concept of distributed diffusivities was
previously developed in reference [68] (see also reference [69]. The DD approach helps mim-
icking and rationalising the impact of static and dynamical heterogeneities [70–75] on various
statistical quantifiers of the particle-spreading dynamics.

Recently, various modifications and extensions of the DD model [67] were developed
[76–98]. Specifically, a minimal DD model [87] provided the general analytical subordination-
based framework for Brownian yet non-Gaussian processes. Persistent and antipersistent
anomalous diffusion processes of FBM of generalised-master-equation family are normally
also Gaussian. However, antipersistent non-Gaussian dynamics have been observed as well
[99, 100].

To accommodate this dynamics, recent advances of the DD model include the supersta-
tistical FBM approach [99] describing the exponential PDFs as observed, e.g., for cytoplas-
mic RNA-protein diffusion in bacterial and eukaryotic cells [99]. A more general approach
for the superstatistical generalised Langevin equation was developed in reference [101]. The
link between the DD model and random-coefficient autoregressive model for non-Gaussian
diffusion was established [102] and a DD model for generalised grey BM was developed [88].

Strongly non-Gaussian behaviours were reported for a number of complex systems, such
as, e.g., molecular diffusion of lipid molecules or proteins embedded in protein-crowded lipid
membranes [100, 103, 104], dynamics of polymers transiently adsorbed at solid–liquid inter-
faces [106, 107], spreading dynamics of micron-size tracers in mucin-polymer gels [105, 108],
transiently superdiffusive spreading of amoeboid cells in heterogeneous populations [109],
anomalous transport of tracers in amoeboid cells [110], dynamics of colloidal particles near a
wall [111], in dense matrices of micropillars [71] and anisotropic liquid crystals [112], diffu-
sion in narrow corrugated channels with fluctuating cross-sections [113], and the dynamics of
acetylcholine receptors on live muscle-cell membranes [114].

The paper is organised as follows. In section 2 we introduce the physical observables used
in the description and the basic equations solved in the text. In sections 3.1 and 3.2 the time-
averaged MSD (TAMSD) and the EB parameter of the DD-FBM model, respectively, are
calculated analytically and supported by the results of computer simulations. We provide ana-
lytical expressions for EB for the BM case H = 1/2 and numerical results for the whole range
H ∈ (0, 1). The discussion and conclusions are summarised in section 4.

2. Physical observables and formulation of the DD model

2.1. Ensemble- versus time-averaging

Single-particle tracking (SPT) routinely measures the trajectories of submicron or even single-
molecular tracers in the form of time series of the particle position at unprecedented spatial
and temporal resolution. SPT is by now an established powerful tool to study ‘microscopic’
diffusion in a broad spectrum of physical systems at different length- and time-scales. For a
large number of SPT trajectories, the ensemble-based MSD is a well suited statistical mea-
sure. The dynamics is, however, often assessed from a limited number of long SPT trajectories
in terms of the TAMSD. In accord with the ergodic hypothesis [19], the TAMSD for a given
trajectory of a particle exploring the entire system for long times is equivalent to the MSD
computed for a large ensemble of identical particles diffusing in the same system. In con-
trast, when the system features weak ergodicity breaking [115, 116] the MSD and TAMSD
cease to coincide, even for long measurement times T [16, 19]. However, even for ergodic pro-
cesses an ensemble of TAMSDs features a finite spread for finite trajectories. This spread is
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Figure 1. Physical interpretation and schematic of the DD-FBM diffusion model.
The position x(t) is driven by fractional Gaussian noise ζH(t), whose amplitude is
modulated by stochastic diffusivity D(t). The latter is taken to be the square of the
Ornstein-Uhlenbeck process y(t).

quantified by EB, which has been studied for many normal and anomalous stochastic processes
[19, 29, 39, 44, 117–121].

The normal-diffusion DD model [87] and the DD-FBM model driven by power-law corre-
lated noise ζH(t) [38, 39] are central for the current study, see figure 1. The ergodic properties
of the DD-FBM process—defined below in the Boltzmann–Khinchin sense of the equiva-
lence of the long-time limit of the MSD (2) and TAMSD (3) [16, 19, 121]—are investigated
via analysing the realisation-to-realisation amplitude variation of individual TAMSDs quanti-
fied by EB, see equation (6) below. This is also a practical definition of ergodicity used, for
instance, in statistical physics dealing with SPT data, as experimentalists often measure time
averages. We do not talk about rigorous conditions of ergodicity, for instance, in the sense dis-
cussed in reference [122]. A detailed comparison of the dynamics and the (non-)ergodicity to
the behaviours of pure FBM and the DD model is provided and the discrepancies are quantified
below. In particular, we identify a fundamental time-scale below which EB features a plateau
and we determine the residual EB value.

2.2. Definition of main observables

The MSD—the standard observable for a stochastic process [16–19]—is the average of the
squared particle position with the PDF of its displacements at time t,

〈
x2(t)

〉
=

∫ +∞

−∞
x2P(x, t)dx. (2)

Here and below we consider one-dimensional systems; component-wise extension to higher
dimensions is possible. The TAMSD for a time series xi(t) of the ith particle is typically defined
as

δ2
i (Δ) =

1
T −Δ

∫ T−Δ

0
[xi(t +Δ) − xi(t)]2dt, (3)
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where Δ is the lag time and T is the total measurement time. In contrast to the ‘statistically
averaged’ MSD, each TAMSD is an inherently random quantity (even for BM) [16, 19].
Therefore, averaging over N independent TAMSDs is often performed to compute the
mean,

〈
δ2(Δ)

〉
=

1
N

N∑
i=1

δ2
i (Δ). (4)

For a fixed lag time Δ, a stochastic process is called ergodic if its MSD and TAMSD are
identical in the limit of long observation times [16, 19], i.e. when

lim
Δ/T→0

δ2(Δ) =
〈

x2(Δ)
〉
. (5)

The randomness of each TAMSD realisation at a finite T gives rise to a certain amplitude
scatter of δ2

i (Δ, T) around the average (4). This scatter can be quantified by the EB parameter
[16, 19, 39]

EB(Δ) =
〈
ξ2(Δ)

〉
− 1, (6)

where ξ(Δ) = δ2(Δ)
/〈

δ2(Δ)
〉

. Similar to the TAMSD, the EB parameter is clearly also a

function of the trajectory length, EB(Δ, T). Hereafter, however, we write EB as a function
of its most relevant variable (often, the lag time Δ). For ergodic processes, EB approaches
zero for long observation times T and the distribution of normalised TAMSDs [42, 43,
123, 124] (named below φ(ξ)), approaches the Dirac δ-function in the asymptotic limit
[16, 19, 44], φ(ξ) → δ(ξ − 1). In that limit, the results of all individual measurements coin-
cide. For example, for paradigmatic BM (in the continuous-time limit) one gets [39, 117, 120]

lim
Δ/T→0

EBcont
BM (Δ) =

4Δ
3T

, (7)

see also below. For nonergodic stochastic processes—such, e.g., as continuous-time random
walks and heterogeneous diffusion processes—EB attains finite values at Δ/T → 0 [16, 19,
29, 47, 50]. We refer the reader to some examples of transiently nonergodic [43, 124] and non-
Gaussian [70, 125] behaviour. Note also that the spectral content of single non-Brownian tra-
jectories was recently investigated [22, 126, 127] and extended to random-diffusivity dynamics
[128].

2.3. Main equations of the DD model

In what follows we employ the minimal DD model defined by the system of equations
(following reference [87])⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t)
dt

=
√

2D(t)ζH(t)

D(t) = y2(t)

dy(t)
dt

= −y(t)
τ

+ ση(t).

(8)

Here σ is a noise intensity, while ζH(t) and η(t) is fractional Gaussian [38, 39] and white
Gaussian [16, 19] noise, respectively. Both noises have zero means and correlation functions

〈ζH(t1)ζH(t2)〉 	 2D2HH(2H − 1)|t1 − t2|2H−2 (9)
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(for t1 
= t2) and

〈η(t1)η(t2)〉 = δ(t1 − t2). (10)

Here D2H is the generalised diffusion coefficient. Extending the minimal DD model [87, 88] the
diffusivity D(t) in (8) is set to be the square of the Ornstein-Uhlenbeck process [129] with the
correlation time τ . This guarantees non-negative diffusivities, D(t) = y2(t). The physical units
of some model parameters and quantities are: [y] = [D1/2] = [K1/2] = m/sH , [σ] = m/sH+1/2,
[η] = 1/

√
s, [ζH(t)] = sH−1, and [D2H] = 1. We note here that the approach combining the

features of both the FBM and DD models is pioneered in [130] and further developed here
and, to the best of our knowledge, it has not been considered in the literature before.

3. Main results: TAMSD and EB

3.1. Magnitude and distribution of the TAMSDs for the DD-FBM model

Here, we compute the mean TAMSD for the DD-FBM model for H ∈ (0, 1) and check the
MSD-TAMSD equivalence. To be able to use the stationarity of the DD model, the initial
condition for y(t) is chosen from the equilibrium distribution (see section 4.3 for nonequilib-
rium conditions). The mean TAMSD can be obtained via expanding (4) and calculating the
position-correlation function (see appendix A for details),

〈
δ2(Δ)

〉
= 4

∫ Δ

0
(Δ− s12)G(s12)ds12, (11)

where the velocity autocorrelation function of the DD model is

G(s12) =
〈√

D(s1)
√

D(s2)
〉
〈ζH(s1)ζH(s2)〉 (12)

and

s12 = |s1 − s2|. (13)

For H = 1/2 the TAMSD (11) reduces to〈
δ2(Δ)

〉
= (σ2τ ) ×Δ = 2DeffΔ, (14)

in agreement with the results of references [87, 88].
The MSD for the DD-FBM model is obtained via integrating (8) with initial condition

x(0) = 0, yielding

〈
x2(t)

〉
= 2

∫ t

0
ds1

∫ t

0
ds2

〈√
D(s1)

√
D(s2)

〉
〈ζH(s1)ζH(s2)〉

= 4
∫ t

0
(t − s12)G(s12)ds12. (15)

From equations (11) and (15) follows that the MSD and mean TAMSD are identical in the
entire range of (lag) times,〈

δ2(Δ)
〉
=

〈
x2(Δ)

〉
. (16)

6
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As the DD-FBM process is self-averaging at T →∞, the equivalence holds on the level of
single TAMSD trajectories and the diffusion process is therefore ergodic.

These theoretical predictions and results of computer simulations for the MSD and TAMSD
in the DD-FBM model are presented in figure 2 for three values of the Hurst exponent H.
Expression (15) for the MSD states that for persistent fluctuations (1 > H > 1/2) both for
short and long times one obtains

〈
x2(t)

〉
∼ t2H , (17)

while for the antipersistent situation (0 < H < 1/2) a crossover from subdiffusive to Brownian
behaviour is observed at long times, see figure 2. This behaviour observed in simulations is
consistent with the analytical predictions stemming from the general MSD expression (15), as
clarified in detail in reference [130].

Mathematically, repeating the arguments of reference [130], at short times (s12 
 τ ) the
diffusivity correlator

K(s12) =
〈√

D(s1)
√

D(s2)
〉

(18)

in equation (15) approaches (1/2)σ2τ , see figure 7. This yields the anomalous MSD scaling

〈
x2(t)

〉
≈ (D2H/2)σ2τ × t2H (19)

at short times, both for the persistent and antipersistent situations. At long times we have to
separate persistent and antipersistent motion. In the persistent case, 1 > H > 1/2, the leading
contribution to the integral (15) at long times comes from large s12, owing to a slow decay
of the noise-autocorrelation function. We thus have a monotonically decreasing correlator (18)
with the limit K(s12 � τ ) → (1/π)σ2τ (see figure 7) that yields anomalous MSD growth [130]

〈
x2(t)

〉
= (2D2H/π)σ2τ × t2H . (20)

In the antipersistent case, via splitting the integral (15) we arrive at the leading MSD contri-
bution 4t

∫∞
0 K(s12) 〈ζH(s1)ζH(s2)〉 ds12, where (due to convergence of the integrand) the upper

limit was set to infinity, t →∞ [130]. This leading MSD term at long times yields the linear
growth,

〈
x2(t)

〉
≈ 2D̄t, (21)

with the effective diffusivity D̄ = lim
δ→0

2
∫ +∞

0 K(s12) 〈ζH(s1)ζH(s2)〉 ds12 (where δ is the

smoothening parameter of the correlation function [38, 130]). Here, the crossover time from
the short-time law (19) to the long-time linear diffusion scaling laws (20) and (21) is always
the correlation time τ , independent on the actual value of the Hurst exponent H.

Physically, the absence of the crossover and MSD scaling (19) in the entire rage of times for
persistent motion and the crossover from the short-time behaviour (19) to the long-time linear
MSD behaviour (21) for antipersistent noise is owing to the fact that antipersistent motion for
FBM delicately depends on the exact vanishing of the cumulative correlation, in contrast, e.g.,
to an analogous process with cut-off noise correlator [46].

Specifically, from our simulations at Δ ≈ τ and H = 1/10 this crossover is distinct both for

7
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Figure 2. MSD (filled orange circles) and mean TAMSD (blue thick curves) as well
as individual TAMSDs (red thin curves) for the DD-FBM model obtained from com-
puter simulations for H = 9/10 (panel (a)), 1/2 (b), and 1/10 (c). The short-time MSD
asymptote (19) and long-time scaling relations (20) and (21) are shown as the dashed
lines. Parameters: the correlation time is τ = 1, the noise intensity is σ = 1, the total
trace length is T = 102, the integration time-step is δt = 10−3, and the number of inde-
pendent trajectories for averaging is N = 103. The same values of δt and N are used in
all other plots. The values of the generalised diffusion coefficient in all our simulations
and in the theoretical results shown above was fixed to D2H = 1/2.

the MSD and mean TAMSD, see figure 2. We observe that the spread of individual TAMSDs
for short lag times is larger for subdiffusion. From equation (A5) we also see that the mean
TAMSD is independent of the total time T for all values of H. This is in contrast to ageing
nonstationary processes [23, 116, 131, 132]. Note that experimentally short-time plateaus for
the MSD and mean TAMSD can emerge due to localisation errors of particle positions [133,
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134]. We also refer to the recent analysis of the effect of particle-localisation errors [135] on
deviations of the short-time EB behaviour, above the BM asymptote (7).

3.2. Plateau values of EB

Here, we present the results for the EB parameter of the DD-FBM model in the limit of long
traces, such that T � τ . As for H = 1/2 the correlation function for fractional Gaussian noise,
equation (9), reduces to the δ-function, we get exact analytical results for EB. For arbitrary
H ∈ (0, 1) the complicated correlation function (9) hampers an exact analytical expression for
EB in the DD-FBM model and, thus, we resort to simulations.

3.2.1. Brownian case H = 1/2 for the DD-FBM model. The EB parameter of the DD-FBM
model at H = 1/2 is calculated separately in the domains of lag times 0 < Δ < T/2 and T/2 <
Δ < T, similarly as in references [117, 120], and for long trajectories (T � τ ). For 0 < Δ <
T/2 we get (see appendix B)

EBDD+BM(Δ) =

(
4Δ
3 + 6τ − 4τ2

Δ − 2τ3

Δ2 e−
2Δ
τ + 2τ3

Δ2

)
(T −Δ)

+
τ 4

(T −Δ)2Δ2

×
(

3
2
− 3Δ

τ
+

2Δ2

τ 2
− 2Δ3

τ 3
− Δ4

3τ 4
− 3e−

2Δ
τ

2
+

e−
2(T−2Δ)

τ

4
− e−

2(T−Δ)
τ

2
+

e−
2T
τ

4

)
.

(22)

From equation (22), the leading order in 1/T yields

EBDD+BM(Δ) ∼ 4Δ
3T

+
6τ
T

− 4τ 2

ΔT
− 2τ 3e−

2Δ
τ

Δ2T
+

2τ 3

Δ2T
(23)

and we get the respective asymptotes as

EBDD+BM(Δ) ≈
{

2τ/T, Δ 
 τ

4Δ/(3T), Δ � τ
. (24)

We thus find that the standard result for BM [117, 120] is reached atΔ � τ , while a remarkable
plateau is reached for EBDD+BM(Δ) at short lag times. As follows from (22) and (24), the
correlation time τ emerges as the fundamental time-scale that controls the crossover behaviour
of EBDD+BM(Δ).

For T/2 < Δ < T the EB parameter is (see appendix B)

EBDD+BM(Δ) =
T2 − 6TΔ− 6Tτ + 11Δ2 + 24Δτ − 6τ 2

3Δ2

− τ 3
(
1 + 2e−2Δ/τ

)
(T −Δ)Δ2 +

τ 4
(

2 − 2e−
2(T−Δ)

τ + 5e
2(T−2Δ)

τ + e−
2T
τ − 6e−

2Δ
τ

)
4(T −Δ)2Δ2 .

(25)

For long enough T the first term in expression (25) gives

EBDD+BM(Δ) ∼ T2/3 − 2TΔ− 2Tτ + 11Δ2/3 + 8Δτ − 2τ 2

Δ2 . (26)

9
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Figure 3. Analytical (solid coloured curves) and numerical (coloured circles) results for
the EB parameter of the DD-FBM model for H = 1/2. The thick black dashed line is
the continuous-time analytical result for EB of BM, equation (7). The terminal value of
EB(Δ = T) = 2 is the thin dashed line. Parameters: H = 1/2, σ = 1, T = 102.

At τ 
 Δ and τ 
 (T −Δ) this expression yields

EBDD+BM(Δ) ∼ 11(Δ/T)2 − 6(Δ/T) + 1
3(Δ/T)2

, (27)

similar to EB of standard BM [117, 120]. Towards the end of the trajectories, at Δ→ T, the
value

EB = 2 (28)

is reached and from equation (27) one gets the first-order correction to this value as

EBDD+BM(Δ) ≈ 2 − 4(T −Δ)/(3T). (29)

We note that equations (27) and (29) also hold for BM in the respective range of lag times
[117].

In figure 3 the analytical and numerical results for the EB parameter of the DD-FBM model
at H = 1/2 are presented. For the case τ 
 T , EBDD+BM(Δ) starts from the plateau value
2τ/T (thin dashed lines in the plot, equation (24)) at short enough lag times, Δ 
 τ . The
BM EB asymptote (7) is approached for Δ � τ , as equation (24) predicts. In figure 3 the
results for varying correlation times are plotted. We find that, as for longer τ the EB plateau
value increases (see equation (24)) and the region of lag times where EBDD+FBM(Δ) stays
nearly constant becomes more extended. Concurrently, for larger τ values the region of lag
times where EBDD+BM(Δ) follows the BM law (7) shifts towards larger Δ values, see the
curve for τ = 1 in figure 3.

3.2.2. General case of H ∈ (0, 1) for ordinary FBM: discreteness effects. We start by dis-
cussing the ergodic properties of free (unconstrained) ordinary or standard FBM. The expres-
sion for EBFBM(Δ) at short lag times Δ/T 
 1 was derived analytically in reference [39] in
the continuous-time representation, namely

EBcont
FBM(Δ) ∼

{
C1 ×

(
Δ/T

)1
, 0 < H < 3/4

C2 × (Δ/T)4−4H, 1 > H > 3/4
, (30)

10
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where the coefficients are

C1(H) =
∫ ∞

0

[
(1 + s)2H + |1 − s|2H − 2s2H

]2
ds (31)

and

C2(H) = [2H(2H − 1)]2

(
1

4H − 3
− 1

4H − 2

)
. (32)

The variation of C1(H ) is presented in figure 8. The main conclusion is that for short lag times
EBcont

FBM(Δ) scales linearly with Δ/T for H < 3/4, while the scaling of EB(Δ/T) is sublinear
for 1 > H > 3/4 (H = 3/4 is a ‘critical point’ [39, 44], see figure 5 below and the detailed
behaviour in figure 9). In other words, the degree of reproducibility of individual TAMSD
realisations increases linearly with the trace length for H < 3/4 and the statistical uncertain-
ties decrease slower than linearly with T in the range of Hurst exponents 1 > H > 3/4 (it
was erroneously predicted in reference [39] to diverge at H = 3/4, see below). The canonical
continuous-time result for free BM, equation (7), follows from equation (30) at H = 1/2.

In the continuous-time formulation, the original EB results for FBM [39] were recently
reexamined [44]. Specifically, within a more rigorous analytical framework for EBFBM(Δ) it
was revealed that the ‘critical point’ at H = 3/4 disappears and the behaviour of EB is, in
fact, continuous as function of H across this point, see figure 1 in reference [44]. This conti-
nuity agrees with the results of our FBM simulations presented in figure 5. Moreover, some
unexpected results from computer simulations of FBM regarding the longer-tailed, non-
Gaussian distributions φ(ξ) of individual TAMSDs—in particular, for progressively superdif-
fusive FBM and at longer lag times—were reported in figure 3 of reference [44].

The analytical predictions and the results of our computer simulations of FBM for
EBFBM(Δ) are shown in figure 4. We find that for H > 3/4 the continuous-time theory [39]
and our computer simulations coincide in a large range of the lag times studied. However, due
to the innate limitations of the short-lag-time EB expansion (30), towards the end of the tra-
jectory the simulations yield EB→ 2 (28), while the (extrapolated) continuous-time prediction
[39] would give EB(Δ→ T) ≈ C2(H ), as follows from equation (32).

In contrast, for H < 3/4 at short lag times a plateau-like, saturation behaviour of EB
is found, while the continuous-time theory [39] predicts a linear scaling with (Δ/T), see
equation (30). This is the vital effect of a finite time-step used in computer simulations, δt.
The region of EB saturation with Δ is particularly pronounced for small Hurst exponents, at
which the EB plateau can occupy a considerable range of lag times (see, e.g., the curve for
H = 1/100 in figure 4 and also the results of figure 10).

From the general discrete-time expression (C4) for EBdisc
FBM(Δ) we find that at Δ1 = δt and

H = 1/2 the residual value

EBdisc
BM(Δ1) ∼ 2/(N − 1) (33)

is approached, while for H → 0 one gets (see also reference [137])

EBdisc
FBM(Δ1) ∼ 2

N − 1

(
3
2
− 1

2(N − 1)

)
. (34)

Here N = T/δt is the number of elementary time-intervals in the trajectory. In the region

0 < H � 1/2 (35)

11
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Figure 4. Analytical predictions of the continuous-time theory [39] (dashed coloured
lines, equation (30)) and results of computer simulations (coloured circles) for the EB
parameter of free ordinary FBM. The thin dashed lines indicate the residual EB values
(33) and (34) as well as the terminal value EB = 2 reached at Δ→ T . Parameters: T =
102, δt = 10−3, D2H = 1/2.

we get the approximate, rather weak variation of the residual EB value with H (see appendix
C),

EBdisc
FBM(Δ1) ∼ 2

N − 1
+

(N − 2)
(
22H − 2

)2

(N − 1)2
. (36)

Note that (33) follows from this expression at H = 1/2. The lag time up to which this saturating
EB behaviour is detected can be estimated as

Δdisc
pl (H) ∼ 2 × δt/C1(H), (37)

(see appendix C and figure 10 for details), where C1(H ) is given by equation (31). In the range

1 > H > 3/4 (38)

from equation (C4) we get (in the leading order)

EBdisc
FBM(Δ1) ∼ C2(H)/(N − 1)4−4H, (39)

that is identical to the result of continuous-time theory [39], see equation (30).
In figure 4 we plot the result for EBFBM(Δ) starting from the shortest lag time, Δ1 = δt.

For H > 3/4 the results for EB from computer simulations are in full agreement with the
predictions of the continuous-time theory (30) and the discrete-time framework (39) for all
lag times. At the end of the trajectories EB approaches the expected value EB = 2 (see
equation (C7)). At short lag times EBFBM(Δ) in the discrete-time framework features a plateau
for 0 < H < Hpl ≈ 0.64 (as given by equation (C12)), as follows from the theoretical esti-
mations (C9) and (C10). This plateau trend is most pronounced for the smallest Hurst expo-
nents, extending towards longer lag times (as figure 10 explicitly quantifies). All these features
are also consistent with the results of computer simulations, as illustrated in figure 4 for the

12
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Figure 5. EBFBM(Δ) normalised to the BM behaviour EBcont
BM (Δ) (equation (7)) plotted

versus the Hurst exponent H at the shortest lag time Δ1 ≡ δt = 10−3. The results of our
computer simulations are the filled symbols. The analytical results of the continuous-
time theory [39], see equation (30), are the dashed coloured curves. The results of the
discrete-time EB-derivation scheme—see equation (C4) and also reference [137]—is
the solid black curve (shown for T = 102 only, not to cover the dashed coloured curves
of reference [39] for H > 1/2). The thin dashed black lines are the discreteness-induced
plateaus, equations (33) and (34). The thin vertical dotted line indicates the ‘critical
point’ of the continuous-time EB theory for FBM [39]. The behaviour of EB near
H = 3/4 is detailed in figure 9. Parameters: T = 100, 101, 102 for the respective colours,
D2H = 1/2.

time-step δt = 10−3 and in figure 11 for δt = 10−6. Note, however, that for a nearly ballistic
Hurst exponent, at H = 0.99, in the region of extremely small lag times a rapid and unexpected
reduction of EB for FBM is observed. This effect requires additional future consideration.

The results of computer simulations and the discrete-time-induced EB plateau (33) at Δ1

are superimposing in the region 0 < H � 1/2, see figure 5. The predictions of the continuous-
time theory [39] deviate from the results of computer simulations in the range 0 < H � 1/2,
and, most pronouncedly, for very small values of the Hurst exponent.

In the region 0 < H < 3/4 the continuous-time EB(Δ) results for BM and FBM are linear
in Δ/T, see equation (30). This linearity yields the universal, T-independent behaviour for
the normalised quantity EBcont

FBM(Δ)/EBcont
BM (Δ) at short lag times in this region of H expo-

nents, see the coloured dashed curves in figure 5. On the contrary, because of the sublin-
ear scaling of EBcont

FBM(Δ) with Δ/T in the region 3/4 < H < 1 the predictions for the ratio
EBcont

FBM(Δ)/EBcont
BM (Δ) split up as T is being varied, see figure 5.

We also find that the H-dependent residual values of the rescaled EB parame-
ter, EBFBM(Δ1)/EBcont

BM (Δ1), at 0 < H � 1/2, equation (36), are nearly independent on
the trajectory length T, while in the range of Hurst exponents 1/2 � H < 1 the ratio
EBFBM(Δ1)/EBcont

BM (Δ1) is highly sensitive to T. The values of the ratio EBFBM(Δ1)/EBcont
BM (Δ1)

decisively split up for different trajectory lengths in the range 1 > H � 1/2, as demonstrated
in figures 5 and 9. As all EBFBM(Δ1) data in figure 5 are renormalised to the continuous-
time classical result for the EB parameter of BM, EBcont

BM (Δ1), at H = 1/2 we find that the
result of the discrete-time theory is a factor of 3/2 higher than that of the continuous-time EB

13
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Figure 6. EB parameter of the DD-FBM model as obtained from computer simulations
for varying Hurst exponents (the values are indicated in the plot). The result for BM,
equation (7), is shown as the thick dashed line. The plateau value (40) and the limiting
value of EB = 2 at Δ→ T are the thin dashed lines. The asymptotes of FBM at long lag
times, equation (30), are the dashed lines at long lag times. Parameters: τ = 0.1, σ = 1,
T = 102, D2H = 1/2, and N = 103.

calculation, while at H = 0 the EB value in the discrete model EBdisc
FBM(Δ1) is a factor (3/2)2

larger than EBcont
BM (Δ1) (see equations (7), (33) and (34)).

Physically, the nonmonotonicity of the rescaled EB parameter EBFBM(Δ1)/EBcont
BM (Δ1) as a

function of H presented in figure 4 is owing to the fact that for pure BM (at H = 1/2) the
EB parameter attains the smallest value (natural for the most ergodic situation). The sys-
tem becomes slightly less ergodic as H decreases from H = 1/2 towards H = 0 and the
deviations from ergodicity turn much more dramatic as the Hurst exponent grows in the oppo-
site direction from H = 1/2 towards H = 1 (the ultimate ballistic regime). This physically
intuitive behaviour is consistent with all relevant limits clarified in figure 4, both within the
continuous-time [39] and discrete-time (reference [137] and the current study) approaches.
The overall dependence of EBFBM(Δ1)/EBcont

BM (Δ1) for FBM—for the results of continuous-
time theory, the discrete-time analytical theory, and the innately discretised computer simu-
lations—as a function of exponent H (see figure 4) as well as the universality of the ratio
EBdisc

FBM(Δ1)/EBcont
BM (Δ1) for varying trajectory lengths in the region 0 < H � 1/2 (see figure 5)

are similar to those trends we observed for another Gaussian anomalous-diffusion process,
namely so-called scaled BM (e.g., see figure 3(a) of our recent study [136]).

After the current study was finished, we became aware of reference [137] presenting detailed
calculations of EB in the discrete-time scheme both for standard BM as well as for FBM.
In figure 5 we show that the analytical results of equation (37) in reference [137]—which
are identical to our EB derivation in equation (C4)—agree excellently with the results of our
computer simulations. Note also that the emergence of the residual EB value for the discrete-
time simulations was already presented (but not rationalised) in figure 6 of the original study
[39].

3.2.3. General case H ∈ (0, 1) for the DD-FBM model. We now consider the situation of
FBM-driven DD motion. We present results from computer simulations for EBDD+FBM(Δ) at
different H in figure 6 and compare them to the results for EBFBM(Δ) obtained in figure 4. For
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short lag times (Δ 
 τ ) and for all values of H, EB is found to approach a plateau (subscript
‘pl’) with the residual value

EBpl,DD+FBM ≈ 2τ/T. (40)

In figure 12 we check this functional form via examining the plateau values for varying corre-
lation time τ . The magnitude of EB at Δ 
 τ approaches the plateau (33) (thin dashed line in
figure 6) and it shows the FBM-like asymptotic law (30) at long lag times Δ � τ (thick dashed
lines in figure 6). As figures 6 and 12 show, EB for larger H approaches this plateau at pro-
gressively shorter lag times. This trend is similar to that of Δdisc

pl for the discreteness-induced
EB plateau for pure FBM, shown in figure 10. Performing computer simulations at varying
correlation times τ for the relatively large Hurst exponent H = 9/10 we confirmed the uni-
versal EB plateau within the DD-FBM model, see figure 13, which is realised also (at even
shorter lag times) for H = 9/10 in figure 6. The EB plateau for the DD-FBM model is reached
at shorter lag times also for larger Hurst exponents. To make this region visible, in figure 14
we present results of simulations for shorter trajectories and shorter elementary lag-time-step
used in simulations.

We observe three clear differences between the FBM and DD-FBM models. (i) At short
lag times, in the DD-FBM model the DD-induced EB plateau (40) is different from the
discreteness-induced residual value (33) for FBM. Moreover, while equation (40) is valid for
all H, the EB of FBM approaches the plateau at H � 1/2 only. (ii) For lag times Δ 	 τ and
small H values (see the results for H = 1/100 in figure 15), EBDD+FBM(Δ) grows nonmono-
tonically in Δ and shows a minimum at Δ ≈ τ . We quantify the position of this minimum in
figure 15, also verifying the minimum via examining the width of the distributions of individ-
ual TAMSDs in figure 16. Near this minimum, at intermediate lag times, EBDD+FBM(Δ) also
features a drop below the paradigmatic BM asymptote (7). (iii) For long lag times, Δ � τ ,
EBDD+FBM(Δ) at H < 1/2 approaches the continuous BM result, while for 1/2 < H < 1 the
FBM limit for the EB parameter (equation (30)) is obtained, see figure 6.

To quantify inaccuracies of the numerical computation of the means
〈
δ2(Δ)

〉
and〈(

δ2(Δ)
)2
〉

, in figure 17 we present the respective error bars versus lag time for the com-

putations within the DD-FBM model. We find that, as expected, the error bars grow in mag-
nitude at later lag times, due to worsening statistics of averaging. In the plateau-like region of
EBDD+FBM(Δ) versus H, however, the error bars are small enough for us to be confident in
the existence of the plateau region itself and of the dip in EBDD+FBM(Δ) at Δ ∼ τ for very
small H values (see figure 6). These features are not artefacts of poor averaging. Moreover, the
magnitude of the error bars increases for larger exponents H, in agreement with equation (39).

4. Discussion and conclusions

4.1. Summary of the main results

We considered the combination of DD dynamics [67, 87] and canonical FBM. Our main focus
was to quantify the TAMSD fluctuations naturally occurring in experiments and gauged by the
EB parameter. In particular, we analysed the plateau-like residual EB behaviour. Specifically,
assuming the stationarity of the diffusivity distribution, the MSD and TAMSD of the DD-FBM
model were studied. We found that the MSD and mean TAMSD are equal for both normal and
anomalous diffusion in the entire range of (lag) times. For H < 1/2 we described a crossover
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in the TAMSD from subdiffusion to normal diffusion at lag times of the order of the DD cor-
relation time τ , figure 2. From this TAMSD behaviour, the correlation time of heterogeneous
environments featuring DD properties can potentially be extracted for SPT data sets.

We revealed an intricate nonergodic behaviour in this DD-FBM model. Specifically, consid-
ering long trajectories with T � τ , a crossover behaviour was found: for short lag times, Δ 

τ , the EB parameter was shown to approach a plateau with a residual value EBpl,DD+FBM ∼
2(τ/T), which scales linearly with the ratio of the DD correlation time τ and the total mea-
surement time T. Conversely, for long lag times Δ � τ , EBDD+FBM(Δ) behaved the same
way as for ordinary or standard FBM, see figure 6. The residual value of EBDD+FBM(Δ) was
shown to be universal for all values of the Hurst exponents H.

Moreover, we demonstrated that for small values of H the variation of EBDD+FBM(Δ) was
nonmonotonic, featuring a clear systematic minimum at Δ ≈ τ , see figure 6. Towards the end
of the trajectories, at Δ→ T , we found the expected value EB = 2. When simulating standard
FBM, we found a plateau-like behaviour for EBFBM(Δ) at H � 1/2 that scaled as the ratio of
the time-step to the total trace length and depended weakly on the Hurst exponent, see figure 4.
The plateau-like behaviour of EBpl,DD+FBM and EBdisc

pl,FBM (both analytically and via computer
simulations) is the key result of the current study. The correlation time τ in the DD and DD-
FBM models is, therefore, a fundamental time-scale for the ergodic behaviour, similar to the
single time-step in the free discrete-time dynamics.

4.2. Other DD-related models

The relative standard deviation of fluctuations of individual TAMSDs (
√

EB in our notations)
was rationalised for a model of the Langevin equation with time-dependent and fluctuating dif-
fusivity in reference [80]. This model of multiplicatively coupled Langevin equations enables
one to assess EB via studying the relaxation behaviour of the noise-coefficient matrix (or the
matrix of instantaneous diffusion coefficients). In this approach the process B(t) =

√
2D(t) × 1

in the (multidimensional) Langevin equation

dr/dt =
√

2D(t) × w(t) (41)

was assumed to be ergodic. The general expression for EB was derived [80] in the continuous
limit for arbitrary two-time-point correlation functions of the diffusivity matrix. For the one-
dimensional case, in the limit of long observation times and short lag times—and, additionally,
when the relaxation time of the diffusivity (denoted below τ1) is much longer than the lag
time, the diffusivity relaxation function ψ1(t) decays fast enough, and the relaxation time is
much shorter than the trajectory length (i.e., when τ1 � Δ and τ1 
 T)—the approximate EB
expression was derived as (see equation (33) in reference [80])

EB(Δ) ≈ 2
T

∫ ∞

0
ψ1(s) ds. (42)

For the simplest (and most common) situation of exponential relaxation,ψ1(t) = ψ1(0)e−t/τ1 ∝
e−t/τ1 , from (42) it follows that when the lag time is the shortest time-scale in the problem EB
saturates at

EB(Δ1) ≈ 2τ1/T. (43)

This value is identical to our predictions for the EB plateau in the DD-FBM model,
equation (40).
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As derived in reference [80], for the (Markovian) two-state diffusion model—the Kärger
model [138] (see also references [139, 140] for its recent applications)—with the diffusion
coefficients D1 and D2 > D1 a dependence similar to equation (43) can be obtained for the
EB parameter in reference [80]. Namely, for the transition rates from the state with diffu-
sivity D1 to the state with D2 being k12 (and vice versa for k21), the equilibrium probabili-
ties of the respective diffusion states are p1 = k21/(k12 + k21) and p2 = k12/(k12 + k21). The
characteristic relaxation time is

τ1,2 = 1/(k12 + k21) (44)

and in the same limit (at τ1,2 � Δ and τ1,2 
 T) EB has the same functional dependence on
τ1,2/T, that is [80]

EB(Δ1) ≈ ψ1(0) × 2τ1,2/T, (45)

where ψ1(0) = p1 p2(D2 − D1)2/(p1D1 + p2D2)2 (see equation (57) in reference [80]). These
results were also confirmed by computer simulations in reference [80]. The generalisation of
these EB calculations for such a dichotomic stochastic-diffusivity model for the situation when
switching between the diffusion states is governed by a power-law distribution was developed
in the same group [81, 82, 84].

The short-lag-time plateau of EB appears to be universal for the models of diffusing or fluc-
tuating diffusivity, also in the presence of anomalous underlying dynamics, as we demonstrated
above for the DD-FBM model. The model of temporally fluctuating diffusivity has recently
been applied by the same group to rationalise the dynamic interactions between membrane-
binding proteins and lipids in model biomembranes [104]. Finally, we refer the reader also to
the discussion of short measurement times and ‘apparent’ ergodicity breaking for the two-state
switching diffusion, recently presented in reference [98].

4.3. Effects of nonequilibrium initial conditions

Finally, the TAMSD and EB results obtained and discussed above involve the stationarity of
the DD distribution. Nonequilibrium conditions can, however, also be relevant. For instance,
recently the MSD of the DD model of normal diffusion with initial condition D(0) = 0 was
discussed [88]. The MSD was demonstrated to be ballistic for t 
 τ and linear for long times
[88]. We found in the model (8) that the mean TAMSD for the initial condition D(0) = y(0)2 =
0 and for H = 1/2 follows

〈
δ2(Δ)

〉
= σ2τΔ+

σ2τ 3
(
e−2(T−Δ)/τ − e−2T/τ + e−2Δ/τ − 1

)
4(T −Δ)

, (46)

see figure 18. This expression converges to equation (14) as T →∞ that is physically
clear: the long measurement time eliminates effects of initial conditions in this system. The
nonequilibrium initial DD conditions have no effect on EB, also in the general case H ∈ (0, 1).

4.4. Conclusions

Concluding, we here highlighted the role of the correlation time in the stochastic dynamics with
random diffusivities. Similar to a finite elementary time-step in discrete-time diffusion models
of free, unconstrained motion (BM, FBM), the correlation time represents the fundamental
time-scale in the random-diffusivity dynamics: for lag times shorter than this correlation time
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the fluctuations of the TAMSDs reach a finite asymptotic spread, i.e., a finite residual value of
the ergodicity breaking parameter EB. This effect is expected to be relevant for modern high-
resolution singe-particle-tracking experiments, to be considered in the data analysis. It will be
interesting to analyse whether nonergodic anomalous-diffusion processes will exhibit similar
features.
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Appendix A. TAMSD of the DD-FBM model

Here, we present the details of the TAMSD calculations for the DD-FBM model, applicable
for all values of the Hurst exponent H. Starting from the TAMSD definition (3),

〈
δ2(Δ)

〉
=

∫ T−Δ

0 [
〈

x2(t +Δ)
〉
+
〈

x2(t)
〉
− 2 〈x(t +Δ)x(t)〉]dt

T −Δ
, (A1)

and using the MSD (15), we have

〈
x2(t +Δ)

〉
= 4

∫ t+Δ

0
(t +Δ− s12)G(s12)ds12. (A2)

Next, we compute the position autocorrelation function with

s12 = |s1 − s2| (A3)

and G(s12) defined in equation (12) as
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〈x(t +Δ)x(t)〉 = 2
∫ t+Δ

0
ds1

∫ t

0
ds2G(|s1 − s2|) = 2

∫ t

0
(t − s12)G(s12)ds12

+ 2
∫ t+Δ

0
(t − s12)G(s12)ds12 + 2

∫ Δ

0
s12G(s12)ds12 + 2

∫ t+Δ

Δ

ΔG(s12)ds12.

(A4)

Substituting (A4) into (A1) we get equation (15), namely

〈
δ2(Δ)

〉
=

4
T −Δ

∫ T−Δ

0

[∫ Δ

0
(Δ− s12)G(s12)ds12

]
dt

= 4
∫ Δ

0
(Δ− s12)G(s12)ds12 =

〈
x2(Δ)

〉
. (A5)

Appendix B. EB for the DD-FBM model at H=1/2

For H = 1/2 the ‘second moment’ of the TAMSD (after splitting the integrals into two
parts),

〈(
δ2(Δ)

)2
〉

=
1

(T −Δ)2

∫ T−Δ

0
dt1

∫ T−Δ

0
dt2

〈
(x(t1 +Δ) − x(t1))2(x(t2 +Δ) − x(t2))2

〉

=
2

(T −Δ)2

∫ T−Δ

0
dt1

∫ t1

0
dt2

〈
(x(t1 +Δ) − x(t1))2(x(t2 +Δ) − x(t2))2

〉
,

(B1)

is the most challenging quantity to compute. Using the Isserlis–Wick theorem for Gaussian
processes with zero mean,

〈x(t1)x(t2)x(t3)x(t4)〉 = 〈x(t1)x(t2)〉 〈x(t3)x(t4)〉

+ 〈x(t1)x(t3)〉 〈x(t2)x(t4)〉+ 〈x(t1)x(t4)〉 〈x(t2)x(t3)〉 , (B2)

we expand all higher-order correlators via the pair correlators to get〈
(x(t1 +Δ) − x(t1))2(x(t2 +Δ) − x(t2))2

〉
=

{
4A1(t1, t2), t2 � t1 −Δ

4(A1(t1, t2) + 2A2(t1, t2)), t2 � t1 −Δ
, (B3)

where

A1(t1, t2) =
∫ t1+Δ

t1

ds1

∫ t2+Δ

t2

ds2 〈D(s1)D(s2)〉 , (B4)

A2(t1, t2) =
∫ t2+Δ

t1

ds1

∫ t2+Δ

t1

ds2 〈D(s1)D(s2)〉 , (B5)
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〈D(s1)D(s2)〉 = σ4τ 2

4

(
1 + 2e−2|s1−s2|/τ

)
. (B6)

To evaluate the integral (B1), we split the consideration into two cases, 0 < Δ < T/2 and
T > Δ > T/2, that yields

〈(
δ2(Δ)

)2
〉

0<Δ<T/2

=
8

(T −Δ)2

[∫ T−Δ

Δ

dt1

∫ t1−Δ

0
dt2A1(t1, t2)

+

∫ Δ

0
dt1

∫ t1

0
dt2(A1(t1, t2) + 2A2(t1, t2)) +

∫ T−Δ

Δ

dt1

∫ t1

t1−Δ

dt2(A1(t1, t2) + 2A2(t1, t2))

]

(B7)

and

〈(
δ2(Δ)

)2
〉

T>Δ>T/2

=
8

(T −Δ)2

∫ T−Δ

0
dt1

∫ t1

0
dt2 (A1(t1, t2) + 2A2(t1, t2)) . (B8)

Combining equations (B4), (B7) and (B8) with equation (6), we straightforwardly obtain the
EB expressions of equations (23) and (25) in the main text.

Appendix C. EB for ordinary FBM

Here, we analyse the discrepancy between the theory and simulations of the EB parameter
for FBM at short lag times, Δ 
 T , arising from a discrete-time scheme employed in our
simulations. Specifically, the TAMSD at the discrete points

Δn = n × δt (C1)

is 〈(
δ2 (Δn)

)2
〉

=

δt2

(T − n × δt)2

〈
T/δt−n∑

i=1

(x(ti + n × δt) − x(ti))
2

×
T/δt−n∑

j=1

(
x(t j + n × δt) − x(t j)

)2

〉
.

(C2)

Using the Isserlis–Wick theorem (B2), from (C2) we get—as obtained initially in
equation (A2) of reference [39]—that〈

(x(ti +Δn) − x(ti))2
(
x(t j +Δn) − x(t j)

)2
〉

= 4D2
HΔ

4H
n +

4D2
H

2

(
|ti − t j −Δn|2H − 2|ti − t j|2H + |ti − t j +Δn|2H

)2
, (C3)

where ti − t j = (i − j) × δt. From equations (6) and (C2), the EB parameter for this discrete-
time FBM scheme can be expressed as
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EBdisc
FBM(Δn) =

2δt
T − n × δt

+
δt2

(T − n × δt)2n4H

×
T
δt −n−1∑

k=1

(
|k − n|2H + |k + n|2H − 2k2H

)2
(

T
δt

− n − k

)
. (C4)

At k � n, using the Taylor expansion

|k − n|2H + |k + n|2H − 2k2H ≈ 2H(2H − 1)k2H(n/k)2, (C5)

one can show that for the case H > 3/4 the second term in equation (C4) dominates. The sum
in this term can be approximated by a continuous integral so that

EBdisc
FBM(Δn) ∼ C2 ×

(
T/Δn

)4H−4
, (C6)

both for n = 1 or n � 1, that coincides with equation (27), see also figure 4. At Δ1 = δt and
at H = 0 from (C4) we obtain expression (34) in the main text, while at H = 1 one gets

EBFBM(Δ) = 2. (C7)

For the Hurst exponents 0 < H � 1/2 the first term in expression (C4) dominates and at Δ1 =
δt one gets the approximate expression (36). We checked these theoretical EB predictions at
Δ1 = δt versus FBM-based computer simulations in figure 5. From equation (C4) we also find
that at Δ1 = δt for H = 1/2 the EB parameter is

EBdisc
FBM(Δ1) ∼ 2/(N − 1). (C8)

For the case 0 < H < 3/4 in the limit n � 1 via approximating the sum in equation (C4)
by a continuous integral we obtain

EBdisc
FBM(Δn) ∼ 2

T/δt − n
+

n × C1(H)
T/δt − n

. (C9)

For H < 3/4 at n = 1 the sum is approximated by the leading term (at H < 1/2 only one term
is enough). This ansatz works well for small Hurst exponents, while as H → 3/4 a progres-
sively larger number of terms is to be accounted in the sum for an adequate approximation
for the EB parameter. The condition of equality of the first and second term in equation (C9)
provides a rough, H-independent estimate for the lag time, see equation (37) in the main text
and equation (C10) below, below which the plateau-like, ‘saturation’ behaviour of EBdisc

FBM(Δ)
is expected to occur. The analytical threshold for this lag time given by equation (37) is plot-
ted in figure 10 versus H and shows that longer saturating regimes of EBdisc

FBM(Δ) emerge for
smaller H values, consistent with the results of our simulations, as presented in figure 4.

In reality, however, the situation is more involved. If the plateau of EB persists in sim-
ulations for a long lag time, the first term in equation (C9) is typically much larger than
the second one. This scenario is realised in the region 0 < H < 1/2 for Δ = Δ1. When the
Hurst exponent increases and as H → 3/4 the two terms in equation (C9) become comparable
in magnitude. Technically, based on equation (14) and figure 1 of reference [39] both
illustrating the behaviour of the coefficient C1(H ) versus H, we find that equating the two
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terms in expression (C9) yields in this discrete-time scheme the following condition for the lag
time

Δdisc
pl (H)

δt
=

Δn

δt
≈ 2

C1(H)
. (C10)

This gives a universal, δt-independent condition for the critical lag-time value below which
the EB plateau is realised. The value of the Hurst exponent via C1(H ) fully controls the EB
plateau existence and the lag-time-range over which it persists. Therefore, if

C1(H) � 2 (C11)

a plateau of EBdisc
FBM(Δ) is expected for lag times shorter than the elementary time step, at

Δ < δt. This effect is thus ‘undetectable’ in our simulations (see figure 4). The condition (C11)
is satisfied for large Hurst exponents 1 > H > 3/4 and also for

0.64 ≈ Hpl < H < 3/4 (C12)

in the region of small H (with H = 3/4 being the transition point between ‘large’ and ‘small’
H values). The shaded region in figure 10 demarcates the plateau-containing region of the EB
behaviour for canonical FBM. Therefore, in the framework of this discrete-time FBM scheme
we conclude using (C10) that at short lag times no plateau of EBdisc

FBM(Δ) is expected for the
Hurst exponents in the range 1 > H � Hpl. This theoretical expectation is supported by the
results of our computer simulations presented in figure 4.

Appendix D.

Below, we include additional figures supporting the claims presented in the main text.

Figure 7. Correlator of the diffusion coefficients (18), as predicted theoretically [132]
and calculated from simulations, computed for the same parameters as in Figure 2.
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Figure 8. Variation of C1(H ) computed via numerical integration of (31) (blue curve)
and results of analytical calculations (red dots). The latter yield C1(H ) ∝ 4π2H2 as the
leading-order expansion for (very) small H and the following values for some represen-

tative H values: C1(1/8) =
8
(

3
√

2−4
)

Γ(5/4)2

3
√
π

≈ 0.30, C1(1/6) =
11

(
21/3−1

)√
π Γ(7/3)

8Γ(17/6) ≈

0.44, C1(1/4) = log(2) ≈ 0.69, C(1/3) =
27

(
2−22/3

)√
π Γ(11/3)

80Γ(13/6) ≈ 0.91, C1(3/8) =

√
π
2
Γ(7/4)
Γ(9/4) ≈ 1.02, C1(1/2) = 4/3 ≈ 1.33, C1(5/8) =

(
3+

√
2
)√

π

2
√

2

Γ(9/4)
Γ(11/4) ≈ 1.95.

Figure 9. Detailed variation of the normalised EB parameter near the critical point
H = 3/4. Notations for the curves are the same as in figure 5: the results of com-
puter simulations of FBM equation (8) are the filled symbols, the results of numerical
integration of equation (11) of reference [44] are the solid curves, the approximate ana-
lytical results of equation (12) of reference [44] are the asterisks and the results of the
continuous-time infinite-trajectory-length theory of EB for FBM [39] are the dashed
lines. All symbols and lines have the respective colours for varying lengths of the
trajectory (see the legend). Other parameters are: Δ1 = 10−3 and DH = 1/2.
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Figure 10. Variation of Δdisc
pl for the FBM model, as obtained from equation (37). The

Hurst exponent Hpl ≈ 0.64 from equation (C12) and the value of δt are the dotted
lines defining the region of existence of a plateau-containing behaviour of EBFBM(Δ).
Parameters: DH = 1/2, T = 102, and δt = 10−3.

Figure 11. EBFBM(Δ) is illustrated for the same parameters and the same meaning for
the asymptotes as in figure 4, except a smaller time-step (δt = 10−6) and shorter trace
length (T = 10) were used here.
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Figure 12. Numerical EB parameter of the DD-FBM process plotted versus the lag time
for different DD correlation times, τ . For Δ 
 τ the curves approach the plateau value
2τ/T (thin dashed lines). The thick dashed line is the BM asymptote (7). Parameters:
H = 1/5, σ = 1, DH = 1/2, T = 102.

Figure 13. Results of stochastic simulations for the discreteness-induced plateau for
EBpl,DD+FBM for varying correlation times (as indicated in the plot). The dashed lines
correspond to equation (40). Parameters: H = 9/10, T = 102.
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Figure 14. EB parameter for the DD-FBM model, computed for shorter trajectories
(T = 101) and shorter lag-time steps used in simulations (δΔ = 10−6), for τ = 10−1.
The colour-scheme for the curves and the meaning of the asymptotes are as in figure 6.

Figure 15. EB for the DD-FBM model obtained by simulations for different values of
the DD correlation time τ . The thin dashed lines is the plateau value (40), while the thick
dashed line is the EB result for BM, equation (7). Parameters: H = 1/100, T = 102.
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Figure 16. Distributions of individual TAMSDs obtained in our simulations that verify
the nonmonotonicity of EBDD+FBM(Δ) with the lag time for small H values shown in
figures 6 and 15. Parameters: H = 1/100, τ = 0.1, σ = 1, T = 102.
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Figure 17. Error bars for the second and fourth moments of the displacement (used for
computation of EB, equation (6)) as obtained from our computer simulations. The bars
are symmetric about the means (asymmetric in log–log scale). For error bars larger than
the mean only the values above the mean are shown in logarithmic scale. Parameters are
the same as in figure 6 and H=1/100, 1/2, and 9/10 (for the graphs from top to bottom,
respectively).
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Figure 18. Numerical MSD (filled green circles), analytical MSD (black solid line) and
TAMSD (blue solid line), as well as the individual TAMSDs (red curves) for the DD-
FBM model with nonequilibrium initial conditions, namely D(0) = 0. Parameters: H =
1/2, τ = 1, σ = 1, DH = 1/2, T = 102.
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