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“A chain is only as strong as its weakest link” says the proverb. But what about a collection of statistically
identical chains: How long till all chains fail? The answer to this question is given by the max-min of a matrix
whose (i, j) entry is the failure time of link j of chain i: take the minimum of each row, and then the maximum
of the rows’ minima. The corresponding min-max is obtained by taking the maximum of each column, and then
the minimum of the columns’ maxima. The min-max applies to the storage of critical data. Indeed, consider
multiple backup copies of a set of critical data items, and consider the (i, j) matrix entry to be the time at
which item j on copy i is lost; then, the min-max is the time at which the first critical data item is lost. In this
paper we address random matrices whose entries are independent and identically distributed random variables.
We establish Poisson-process limit laws for the row’s minima and for the columns’ maxima. Then, we further
establish Gumbel limit laws for the max-min and for the min-max. The limit laws hold whenever the entries’
distribution has a density, and yield highly applicable approximation tools and design tools for the max-min
and min-max of large random matrices. A brief of the results presented herein is given in: Gumbel central limit
theorem for max-min and min-max [Eliazar, Metzler, and Reuveni, Phys. Rev. E 100, 020104 (2019)].
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I. INTRODUCTION

Extreme value theory (EVT) is a branch of probability
theory that focuses on extreme-value statistics such as maxima
and minima [1–3]. EVT has major applications in science
and engineering [4–6]; examples range from insurance to
finance, and from hydrology to computer vision [7–9]. At
the core of EVT stands its fundamental theorem, the Fisher-
Tippett-Gnedenko theorem [10,11], which establishes the
three extreme-value laws: Weibull [12,13], Frechet [14], and
Gumbel [15].

The fundamental theorem of EVT applies to ensembles of
independent and identically distributed (IID) real-valued ran-
dom variables, and is described as follows [16]. Consider an
ensemble {X1, . . . , Xn} whose n components are IID copies of
a general real-valued random variable X . Further consider the
ensemble’s maximum Mn = max{X1, . . . , Xn}, and an affine
scaling of this maximum:

M̃n = sn(Mn − δn), (1)

where sn is a positive scale parameter, and where δn is a
real location parameter. The fundamental theorem of EVT
explores the convergence in law (as n → ∞) of the scaled
maximum M̃n to a nontrivial limiting random variable L.

First, the fundamental theorem determines its admissible
“inputs”: the classes of random variables X that yield non-
trivial limits L. Second, given an admissible input X , the fun-
damental theorem specifies the adequate scale parameter sn
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and location parameter δn. Third, as noted above, the fun-
damental theorem establishes that its “outputs” are the three
extreme-value laws: the statistics of the nontrivial limits L are
either Weibull, Frechet, or Gumbel. The domain of attraction
of each extreme-value law is the class of inputs X yielding,
respectively, each output law.

The fundamental theorem of EVT yields asymptotic ap-
proximations for the maxima of large ensembles of IID real-
valued random variables. Indeed, consider the scaled maxi-
mum M̃n to converge in law (as n → ∞) to a nontrivial limit
L. Then, for a given large ensemble (n � 1), the ensemble’s
maximum Mn admits the following extreme-value asymptotic
approximation in law:

Mn � L∗ := δn + 1

sn
L. (2)

The extreme-value asymptotic approximation of Eq. (2)
has the following meaning: the deterministic asymptotic ap-
proximation of the ensemble’s maximum Mn is the location
parameter δn; the magnitude of the random fluctuations about
the deterministic asymptotic approximation is 1/sn, the in-
verse of the scale parameter sn; and the statistics of the random
fluctuations about the deterministic asymptotic approximation
are that of the limit L, which is governed by one of the three
extreme-value laws.

The three extreme-value laws are universal in the sense that
they are the only nontrivial limiting statistics obtainable (as
n → ∞) from the scaled maximum M̃n. However, universality
holds neither for the corresponding domains of attraction
nor for the corresponding scale parameter sn and location
parameter δn. Indeed, each extreme-value law has a very
specific and rather narrow domain of attraction [16]. Also,
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for any given admissible input X , the scale parameter sn and
location parameter δn are “custom tailored” in a very precise
manner [16].

In essence, the fundamental theorem of EVT considers a
random-vector setting: the maxima of what can be perceived
as vector-structured ensembles of IID real-valued random
variables. This paper elevates from the random-vector setting
to the following random-matrix setting: the max-min and the
min-max of matrix-structured ensembles of IID real-valued
random variables. The max-min is obtained by taking the
minimum of each matrix row, and then taking the maximum
of the rows’ minima. The min-max is obtained by taking
the maximum of each matrix column, and then taking the
minimum of the columns’ maxima.

The max-min and the min-max values of matrices emerge
naturally in science and engineering. Perhaps the best known
example of the max-min and the min-max comes from game
theory [17,18]. Indeed, consider a player that has a set of ad-
missible strategies, and that faces a set of viable scenarios. A
payoff matrix determines the player’s gains—or, alternatively,
losses—for each strategy it applies and for each scenario it
encounters. The player’s goal is to optimize with respect to
the worst-case scenario. Hence, in the case of gains, the player
goes max-min: calculate the minimal gain per each scenario,
and then pick the strategy that yields the largest minimal gain.
And, in the case of losses, the player goes min-max: calculate
the maximal loss per each scenario, and then pick the strategy
that yields the smallest maximal loss. In the field of game
theory the max-min and the min-max values appear also in
the context of game-searching procedures on trees [19,20].

Architectural illustrations of the max-min and the min-max
values come from reliability engineering [21,22], where one
is interested in calculating the failure time (or the failure load)
of a given system. Two important system-architectures are
“series-parallel” and “parallel-series” [23–25]. In the series-
parallel architecture a system is a parallel array of subsystems,
and each subsystem is a serial array of components. In the
parallel-series architecture a system is a serial array of subsys-
tems, and each subsystem is a parallel array of components.
The max-min and the min-max values correspond, respec-
tively, to the failure times (or the failure loads) of systems with
series-parallel and with parallel-series architectures [23–25].

There are several limit-law results—counterparts of the
fundamental theorem of EVT—for the max-min and the min-
max of random matrices (with IID entries). The pioneer-
ing mathematical results were presented by Chernoff and
Teicher [26], reliability-engineering results were presented
by Kolowrocki [23–25], and relatively recent reliability-
engineering results were presented by Reis and Castro [27].
All these limit-law results use affine scalings—similar to that
of Eq. (1)—for the max-min and the min-max. Also, all
these limit-law results employ asymptotic couplings of the
dimensions of the random matrices (as these dimensions are
taken to infinity).

Chernoff and Teicher established that the limit laws for the
max-min and the min-max are the three extreme-value laws
[26]: Weibull, Frechet, and Gumbel. Kolowrocki investigated
limit laws for the max-min and the min-max in the context of
systems with the aforementioned series-parallel and parallel-
series architectures [23–25]. Considering the max-min, and

applying the fundamental theorem of EVT iteratively—first
to the minimum of each matrix-row, and then to the maximum
of the rows’ minima—Reis and Castro established a Gumbel
limit law [27]; this limit law applies to matrix entries that
belong to subsets of the domains of attraction of the three
extreme-value laws.

For the results of [23–27]—as in the case of the fundamen-
tal theorem of EVT—universality holds neither with regard to
the domains of attraction nor with regard to the affine scalings.
Also, for these results, universality does not hold with regard
to the asymptotic couplings of the dimensions of the random
matrices. Moreover, as the results of [23–27] involve very
intricate mathematical conditions and schemes, their practical
implementation is extremely challenging.

The limit-law results of [23–27] are derived via an
“EVT machinery,” i.e., methods similar to the Fisher-Tippett-
Gnedenko theorem, together with other EVT results (e.g.,
[28]). In this paper we take an altogether different approach:
a “bedrock” Poisson-process method. Specifically, we dive
down to the bedrock level of the rows’ minima and the
columns’ maxima (of random matrices with IID entries), and
establish Poisson-process limit laws for these minima and
maxima. Then, elevating back from the bedrock level to the
max-min and the min-max, we establish Gumbel limit laws
for these values. For a brief of the results presented herein we
refer the reader to Ref. [29].

The limit laws presented here have the following key
features. First, their domain of attraction is vast: the limit
laws hold whenever the entries’ distribution has a density.
Second, they use affine scalings similar to that of Eq. (1) with
a location parameter that is tunable (it can be set as we wish
within the interior of the support of the IID entries), and with a
scale parameter that depends on the entries’ distribution only
up to a coefficient. Third, their asymptotic couplings (of the
dimensions of the random matrices) are geometric. Due to
these features the practical implementation of the limit laws
presented here is easy and straightforward, and hence these
results are highly applicable.

Figure 1 demonstrates the potency of the Gumbel limit
law for the max-min (see Sec. III for the details). This figure
depicts numerical simulations of the max-min of random
matrices whose IID entries are drawn from an assortment of
distributions: exponential, gamma, log-normal, inverse Gauss,
uniform, Weibull, beta, Pareto, and normal. For all these dis-
tributions, the convergence of the simulations to the theoreti-
cal prediction of the max-min result is evident. The MATLAB

code that was used in order to generate the simulations is
detailed in the Appendix; this short code shows just how
easy it is to apply, in practice, the novel Gumbel limit laws
presented here.

The reminder of this paper is organized as follows.
Section II presents the random-matrix setting, and the bedrock
Poisson-process limit law for the rows’ minima. Then, Sec. III
establishes the Gumbel limit law for the max-min, which is
motivated by the following question: Within a collection of
IID chains, how long will the strongest chain hold? Section IV
further establishes the counterpart Gumbel limit law for the
min-max, which is based on a counterpart bedrock Poisson-
process limit law for the columns’ maxima, and which is
motivated by the following question: Using a collection of IID
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FIG. 1. Numerical simulations demonstrating Proposition 2: the
convergence of the scaled max-min ∧̃max/η̄, in law, to the standard
Gumbel random variable G (see Sec. III for details). 105 random
matrices were simulated, with l = 5, 25, 70 links and c � 1.25l

chains [see Eq. 3]. The colored symbols depict the simulated data
points of the scaled max-min. The solid black line depicts the density
function of the standard Gumbel random variable G (with its 95%
confidence interval shaded in grey). Nine different distributions of
the generic failure time T are considered: exponential, gamma, log-
normal, inverse-Gauss, uniform, Weibull, beta, Pareto, and normal.
As the number of links grows from l = 5 (top) to l = 25 (middle)
and to l = 70 (bottom), the convergence of the simulated data to the
standard Gumbel density function is evident.

data-storage backup copies, how long can the data be stored
reliably by the backup copies? Section V describes the appli-

cation of the Gumbel limit laws as approximation tools and as
design tools. An in-depth discussion of the limit laws is held
in Sec. VI. Finally, Sec. VII concludes, and the proofs of the
key results stated along the paper are detailed in the Appendix.

II. BEDROCK

Consider a collection of c chains, labeled by the index
i = 1, . . . , c. Each chain comprises l links, and all the c × l
links are IID copies of a generic link. In this paper we
take a temporal perspective and associate the failure time
of the generic link with a real-valued random variable T .
Namely, T is the random time at which the generic link fails
mechanically.

As the analysis to follow is probabilistic, we introduce rele-
vant statistical notation. Denote by F (t ) = Pr(T � t ) (−∞ <

t < ∞) the distribution function of the generic failure time T ,
and by F̄ (t ) = Pr(T > t ) (−∞ < t < ∞) the corresponding
survival function. These functions are coupled by F (t ) +
F̄ (t ) = 1 (−∞ < t < ∞). The density function of the generic
failure time T is given by f (t ) = F ′(t ) = −F̄ ′(t ) (−∞ < t <

∞). In particular, this notation covers the case of a positive-
valued generic failure time T . We note that, alternatively to
the temporal perspective taken here, the random variable T
can manifest any other real-valued quantity of interest of the
generic link, e.g., its mechanical strength (in which case T is
positive valued).

The following random matrix underlies the collection of
chains:

T =

⎛
⎜⎜⎝

T1,1 · · · T1,l

...
. . .

...

Tc,1 · · · Tc,l

⎞
⎟⎟⎠. (3)

The dimensions of the random matrix T are c × l , and its
entries are IID copies of the generic failure time T . The ith
row of the random matrix T represents the l links of chain i,
and the entries of this row manifest the respective failure times
of the links of chain i. Specifically, the entry Ti, j is the failure
time of link j of chain i.

“A chain is only as strong as its weakest link” says the
proverb. So, chain i fails as soon as one of its links fails. Hence
the chain’s failure time is given by the minimum of the failure
times of its links:

∧i = min{Ti,1, . . . , Ti,l} (4)

(i = 1, . . . , c). Namely, the random variable ∧i is the mini-
mum over the entries of the ith row of the random matrix T.

Now, consider an arbitrary reference time t∗ of the generic
failure time T , e.g., its median, its mean (in case the mean
is finite), or its mode [in case the density function f (t ) is
unimodal]. In general, the reference time t∗ can be any real
number that satisfies two basic requirements: (i) 0 < F (t∗) <

1, which is equivalent to 0 < F̄ (t∗) < 1; and (ii) 0 < f (t∗) <

∞. These requirements are met by all the interior points in the
support of the input T .

With respect to the reference time t∗, we apply the follow-
ing affine scaling to the failure time of the ith chain:

∧̃i = l (∧i − t∗) (5)
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TABLE I. Summary of Propositions 1 and 3. Rows 1–3 sum-
marize the underlying settings: the quantities under consideration,
their affine scalings, and the ensembles under consideration. Rows
4–6 summarize the Poisson-process limit-law results: the required
asymptotic geometric couplings of c and l , the intensity functions of
the limiting Poisson processes (to which the ensembles converge in
law), and their exponents.

Proposition 1 Proposition 3

1. Quantity ∧i = min{Ti,1, . . . , Ti,l} ∨ j = max{T1, j, . . . , Tc, j}
2. Scaling ∧̃i = l (∧i − t∗) ∨̃ j = c(∨ j − t∗)

3. Ensemble {∧̃1, . . . , ∧̃c} {∨̃1, . . . , ∨̃l}
4. Coupling limc→∞, l→∞ cF̄ (t∗)l = 1 liml→∞, c→∞ lF (t∗)c = 1

5. Intensity λ(x) = ε̄ exp(−ε̄x) λ(x) = ε exp(εx)

6. Exponent ε̄ = f (t∗)/F̄ (t∗) ε = f (t∗)/F (t∗)

(i = 1, . . . , c). Namely, in the affine scaling of Eq. (5) the
chains’ common length l is the positive scale parameter, and
the reference time t∗ is the real location parameter.

Our goal is to analyze the limiting behavior of the chains’
scaled failure times in the case of a multitude of long chains:
c → ∞ and l → ∞. To that end we set our focus on the
ensemble of the chains’ scaled failure times: {∧̃1, . . . , ∧̃c}.
Also, to that end we introduce the following asymptotic
geometric coupling between the number c of the chains and
the common length l of the chains: cF̄ (t∗)l � 1. Specifically,
the asymptotic geometric coupling is given by the limit

lim
c→∞, l→∞

cF̄ (t∗)l = 1. (6)

With the affine scaling of Eq. (5), and the asymptotic
geometric coupling of Eq. (6), we are now in position to state
the following Poisson-process limit-law result.

Proposition 1. The ensemble {∧̃1, . . . , ∧̃c} converges in
law, in the limit of Eq. (6), to a limiting ensemble P that is
a Poisson process over the real line with the following in-
tensity function: λ(x) = ε̄ exp(−ε̄x) (−∞ < x < ∞), where
ε̄ = f (t∗)/F̄ (t∗).

See the Appendix for the proof of Proposition 1. Table I
summarizes Proposition 1 and its underlying setting. We now
elaborate on the meaning of this Proposition.

A Poisson process is a countable collection of points that
are scattered randomly over its domain, according to certain
Poisson-process statistics that are determined by its intensity
function [30–32]. Poisson processes are of key importance in
probability theory, and their applications range from insurance
and finance [8] to queueing systems [33], and from fractals
[34] to power laws [35].

In the case of the Poisson process P of Proposition 1 the
domain is the real line (−∞ < x < ∞), and the intensity
function is λ(x) = ε̄ exp(−ε̄x). The points of the Poisson
process P of Proposition 1 manifest, in the limit of Eq. (6),
the chains’ scaled failure times. The informal meaning of
the intensity function λ(x) is the following: the probability
that the infinitesimal interval (x, x + dx) contains a point
of the Poisson process P is λ(x)dx, and this probability is

independent of the scattering of points outside the interval
(x, x + dx).

The exponent ε̄ = f (t∗)/F̄ (t∗) of the intensity function
λ(x) manifests the hazard rate of the generic failure time T
at time t∗ [21,22]: ε̄ is the likelihood that the generic link will
fail right after time t∗, conditioned on the information that the
generic link did not fail up to time t∗. Specifically, this hazard
rate is given by the following limit:

ε̄ = lim
�→0

1

�
Pr(T � t∗ + �|T > t∗). (7)

The hazard rate is a widely applied tool in reliability engineer-
ing and in risk management [21,22].

III. MAX-MIN

With Proposition 1 at our disposal, we now set the focus
on the strongest chain, i.e., the last chain standing. The failure
time of the strongest chain is given by the maximum of the
chains’ failure times:

∧max = max{∧1, . . . ,∧c}. (8)

Namely, the random variable ∧max is the max-min over the
entries of the random matrix T: for each and every row of the
matrix pick the minimal entry, and then pick the rows’ largest
minimal entry.

As with the chains’ failure times, we apply the affine
scaling of Eq. (5) to the failure time of the strongest chain:

∧̃max = l (∧max − t∗), (9)

where t∗ is the above reference time. Also, as with the en-
semble {∧̃1, . . . , ∧̃c}, we analyze the limiting behavior of the
random variable ∧̃max in the case of a multitude of long chains:
c → ∞ and l → ∞.

Here and hereinafter G denotes a “standard” Gumbel ran-
dom variable. Namely, G is a real-valued random variable
whose statistics are governed by the following “standard”
Gumbel distribution function:

Pr(G � t ) = exp[− exp(−t )] (10)

(−∞ < t < ∞). We note that within the three extreme-value
laws, Gumbel is the only law whose support is the entire real
line.

The three extreme-value laws have one-to-one correspon-
dences with the maximal points of specific Poisson processes
[36]. In particular, the Gumbel extreme-value law has a one-
to-one correspondence with the maximal point of the Poisson
process P of Proposition 1. This connection leads to the
following Gumbel limit-law result.

Proposition 2. The random variable ∧̃max converges in
law, in the limit of Eq. (6), to a limiting random variable
η̄G, where η̄ = F̄ (t∗)/ f (t∗), and where G is the “standard”
Gumbel random variable of Eq. (10).

See the Appendix for the proof of Proposition 2. Table II
summarizes Proposition 2 and its underlying setting. In Fig. 1
we use numerical simulations to demonstrate Proposition 2.
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TABLE II. Summary of Propositions 2 and 4. Rows 1–2 summa-
rize the quantities under consideration and their affine scalings. Rows
3–5 summarize the Gumbel limit-law results: the required asymp-
totic geometric couplings of c and l , the limiting Gumbel random
variables (the convergences being in law), and the coefficients of the
limiting Gumbel random variables. The term G appearing in row 4 is
the standard Gumbel random variable of Eq. (10).

Proposition 2 Proposition 4

1. Quantity ∧max = max{∧1, . . . , ∧c} ∨min = min{∨1, . . . , ∨l}
2. Scaling ∧̃max = l ( ∧max − t∗) ∨̃min = c(∨min − t∗)

3. Coupling limc→∞, l→∞ cF̄ (t∗)l = 1 liml→∞, c→∞ lF (t∗)c = 1

4. Limit limc→∞, l→∞ ∧̃max = η̄G liml→∞, c→∞ ∨̃min = −ηG
5. Coefficient η̄ = F̄ (t∗)/ f (t∗) η = F (t∗)/ f (t∗)

To that end nine different distributions of the generic fail-
ure time T are considered: exponential, gamma, log-normal,
inverse-Gauss, uniform, Weibull, beta, Pareto, and normal.
In all nine cases, the convergence of the simulations to the
theoretical prediction of Proposition 2 is evident. See the
Appendix for the MATLAB code that was used in order to
generate the numerical simulations.

Proposition 2 yields an asymptotic approximation for the
max-min of large random matrices with dimensions c>l�1.
Indeed, consider the matrix dimensions (c and l) and the ref-
erence time (t∗) to satisfy the relation cF̄ (t∗)l � 1. Then, the
max-min random variable ∧max admits the following Gumbel
asymptotic approximation in law:

∧max � G∗ := t∗ + η̄

l
G, (11)

where η̄ and G are as in Proposition 2.
The Gumbel asymptotic approximation of Eq. (11) has

the following meaning: the deterministic asymptotic approx-
imation of the max-min ∧max is the reference time t∗, the
magnitude of the random fluctuations about the determin-
istic asymptotic approximation is η̄/l , and the statistics of
the random fluctuations about the deterministic asymptotic
approximation are Gumbel. Table III summarizes the Gumbel
asymptotic approximation of Eq. (11), and details the key
statistical features of this approximation.

IV. MIN-MAX

So far we addressed the max-min of the random matrix
T: pick the minimum of each row ∧i = min{Ti,1, . . . , Ti,l}
(i = 1, . . . , c), and then pick the maximum of these minima
∧max = max{∧1, . . . ,∧c}. Analogously, we can address the
min-max of the random matrix T: pick the maximum of each
column

∨ j = max{T1, j, . . . , Tc, j} (12)

( j = 1, . . . , l), and then pick the minimum of these maxima

∨min = min{∨1, . . . ,∨l}. (13)

To illustrate the min-max ∨min consider the collection of
the aforementioned c chains to be copies of a given DNA
strand. The chains’ l links represent l sites along the DNA

TABLE III. Summary of the max-min and the min-max Gumbel
asymptotic approximations of Eqs. (11) and (18). Rows 1–3 sum-
marize the approximations: the required asymptotics, the resulting
approximations, and the coefficients of the magnitudes of the ap-
proximations’ stochastic parts. The term G appearing in row 2 is the
standard Gumbel random variable of Eq. (10). Rows 4–7 summarize
the approximations’ key statistical features: modes, medians, means,
and standard deviations (SD). The term γ appearing in row 6 is the
Euler-Mascheroni constant: γ = 0.577 . . . .

Max-Min Min-Max

1. Asymptotics l � 1 and cF̄ (t∗)l � 1 c � 1 and lF (t∗)c � 1

2. Approximation G∗ := t∗ + η̄

l G G∗ := t∗ − η

c G
3. Coefficient η̄ = F̄ (t∗)/ f (t∗) η = F (t∗)/ f (t∗)

4. Mode t∗ t∗
5. Median t∗ − ln[ln(2)]η̄ 1

l t∗ + ln[ln(2)]η 1
c

6. Mean t∗ + γ η̄ 1
l t∗ − γ η 1

c

7. SD πη̄√
6

1
l

πη√
6

1
c

strand, where each of these sites codes a critical information
item. The links’ generic failure time T manifests the time
at which the information coded by a specific DNA site is
damaged; namely, the matrix entry Ti, j is the time at which
the jth information item on the ith DNA copy is damaged.
The jth information item is lost once all its c copies are
damaged, and hence the failure time of the jth information
item is given by Eq. (12). As all the l information items are
critical, a system failure occurs once any of the l information
items is lost. Hence, the time of the system failure is given by
the min-max of Eq. (13).

More generally, the min-max ∨min applies to a setting in
which l critical information items are stored on c different
backup copies, where j = 1, . . . , l is the index of the infor-
mation items, i = 1, . . . , c is the index of the copies, and Ti, j

is the time at which the jth information item on the ith backup
copy is damaged. The above “DNA model” was for the sake
of illustration, following the “chains model” of Sec. II, which
we used in order to illustrate the max-min.

The analysis presented above was with regard to the max-
min. Analogous analysis holds with regard to the min-max.
Indeed, consider the above reference time t∗, and apply the
following affine scaling to the failure time of the jth informa-
tion item:

∨̃ j = c(∨ j − t∗) (14)

( j = 1, . . . , l). Namely, in the affine scaling of Eq. (14) the
number c of the copies is the positive scale parameter, and the
reference time t∗ is the real location parameter.

Also, introduce an asymptotic geometric coupling between
the number l of the information items and the number c of the
copies: lF (t∗)c � 1. Specifically, the asymptotic geometric
coupling is given by the limit

lim
l→∞, c→∞

lF (t∗)c = 1. (15)

With the affine scaling of Eq. (14) and the asymptotic
geometric coupling of Eq. (15), we are now in position to state
the following counterpart of Proposition 1.
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Proposition 3. The ensemble {∨̃1, . . . , ∨̃l} converges in
law, in the limit of Eq. (15), to a limiting ensemble P that
is a Poisson process over the real line with the following
intensity function: λ(x) = ε exp(εx) (−∞ < x < ∞), where
ε = f (t∗)/F (t∗).

See the Appendix for the proof of Proposition 3. Table I
summarizes Proposition 3 and its underlying setting. The
notion of Poisson processes was described right after Proposi-
tion 1. The exponential intensity function λ(x) = ε exp(εx) of
Proposition 3, and the Poisson process P that this intensity
characterizes, are most intimately related to the notion of
accelerating change [37]; readers interested in a detailed anal-
ysis of the (rich) statistical structure of this Poisson process
are referred to [37]. The exponent ε = f (t∗)/F (t∗) has the
following limit interpretation:

ε = lim
�→0

1

�
Pr(T > t∗ − �|T � t∗), (16)

which is a time-reversal analog of the hazard rate of Eq. (7).
Continuing on from Proposition 3, and considering the

above reference time t∗, we apply the affine scaling of Eq. (14)
to the time of the system failure:

∨̃min = c(∨min − t∗). (17)

Then, as Proposition 1 led to Proposition 2, Proposition 3
leads to the following Gumbel limit-law result, which is the
min-max counterpart of Proposition 2.

Proposition 4. The random variable ∨̃min converges in law,
in the limit of Eq. (15), to a limiting random variable −ηG,
where η = F (t∗)/ f (t∗), and where G is the “standard” Gum-
bel random variable of Eq. (10).

See the Appendix for the proof of Proposition 4. Table II
summarizes Proposition 4 and its underlying setting. Propo-
sition 4 yields an asymptotic approximation for the min-max
of large random matrices with dimensions l > c � 1. Indeed,
consider the matrix dimensions (l and c) and the reference
time (t∗) to satisfy the relation lF (t∗)c � 1. Then, the min-max
random variable ∨min admits the following Gumbel asymp-
totic approximation in law:

∨min � G∗ := t∗ − η

c
G, (18)

where η and G are as in Proposition 4.
The Gumbel asymptotic approximation of Eq. (18) is the

min-max counterpart of the max-min Gumbel asymptotic
approximation of Eq. (11). Specifically, the deterministic
asymptotic approximation of the min-max ∨min is the refer-
ence time t∗, the magnitude of the random fluctuations about
the deterministic asymptotic approximation is η/c, and the
statistics of the random fluctuations about the deterministic
asymptotic approximation are Gumbel. Table III summarizes
the Gumbel asymptotic approximation of Eq. (18) and details
the key statistical features of this approximation.

V. APPLICATION

The Gumbel asymptotic approximations of Eqs. (11), (18)
can be applied in two modalities: as approximation tools and
as design tools for the max-min and the min-max, respectively.
Both applications are based on the fact that—for Eqs. (11)

and (18) to hold—it is required that the matrix dimensions (c
and l) and the reference time (t∗) be properly coupled. In this
section we describe and demonstrate these applications.

We start with the max-min and its Gumbel asymptotic
approximation of Eq. (11). This approximation requires the
following coupling between the matrix-dimensions and the
reference time: cF̄ (t∗)l � 1, where c > l � 1. Consequently,
if the matrix dimensions are given (c > l � 1) then the
approximation of Eq. (11) holds with the following implied
reference time:

t∗ = F̄−1

[(
1

c

)1/l
]

. (19)

For example, if c = 2l then the implied reference time is the
median of the generic failure time T . This application is an
approximation tool: given the random matrix T, Eq. (11) with
the implied reference time of Eq. (19) approximates the max-
min of the matrix.

To demonstrate the design-tool application of the Gumbel
asymptotic approximation of Eq. (11), consider a system with
a “series-parallel” architecture: the system is a parallel array
of c subsystems (labeled i = 1, . . . , c), and each subsystem
is a serial array of l components (labeled j = 1, . . . , l). In
terms of the random matrix T of Eq. (3), the failure time
of component j in subsystem i is Ti, j . The series-parallel
architecture implies that the system’s failure time is the max-
min ∧max. Now, assume that our goal is to design a system
whose failure time has the following properties: its determin-
istic approximation is t∗ and the magnitude of its random
fluctuations about its deterministic approximation is m̄, where
t∗ and m̄ are specified target values. Then, to meet the goal,
the dimensions of the system should be designed as follows:

l � 1

m̄

F̄ (t∗)

f (t∗)
and c � 1

F̄ (t∗)l
. (20)

Let us turn now to the min-max and its Gumbel asymptotic
approximation of Eq. (18). This approximation requires the
following coupling between the matrix-dimensions and the
reference time: lF (t∗)c � 1, where l > c � 1. Consequently,
if the matrix dimensions are given (l > c � 1) then the
approximation of Eq. (18) holds with the following implied
reference time:

t∗ = F−1

[(
1

l

)1/c
]

. (21)

For example, if l = 2c then the implied reference time is the
median of the generic failure time T . This application is an
approximation tool: given the random matrix T, Eq. (18) with
the implied reference time of Eq. (21) approximates the min-
max of the matrix.

To demonstrate the design-tool application of the Gumbel
asymptotic approximation of Eq. (18), consider a system with
a “parallel-series” architecture: the system is a serial array
of l subsystems (labeled j = 1, . . . , l), and each subsystem
is a parallel array of c components (labeled i = 1, . . . , c).
In terms of the random matrix T of Eq. (3), the failure
time of component i in subsystem j is Ti, j . The parallel-
series architecture implies that the system’s failure time is
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the min-max ∨min. Now, assume that our goal is to design
a system whose failure time has the following properties: its
deterministic approximation is t∗ and the magnitude of its
random fluctuations about its deterministic approximation is
m, where t∗ and m are specified target values. Then, to meet
the goal, the dimensions of the system should be designed as
follows:

c � 1

m

F (t∗)

f (t∗)
and l � 1

F (t∗)c
. (22)

Equations (19) and (21) are explicit formulas facilitating
the approximation of the max-min and min-max of large
random matrices. Equations (20) and (22) are explicit for-
mulas facilitating the design of systems with, respectively,
series-parallel and parallel-series architectures. The practical
implementation of these formulas is easy and straightforward.

VI. DISCUSSION

We opened this paper with the fundamental theorem of
EVT, and with a short discussion of the extreme-value asymp-
totic approximations emerging from this theorem. We now
continue with this discussion, and expand it to include the
Gumbel asymptotic approximations of Eqs. (11) and (18),
as well as the asymptotic approximation emanating from the
central limit theorem (CLT) of probability theory [38,39]. To
that end we begin with a succinct review of the CLT.

As in the case of the fundamental theorem of EVT, the CLT
applies to ensembles of IID real-valued random variables,
{X1, . . . , Xn}, where the ensemble’s n components are IID
copies of a general real-valued random variable X . The input
X is assumed to have a finite (positive) standard deviation σ ,
and hence also a finite (real) mean μ. We consider the ensem-
ble’s average An = (X1 + · · · + Xn)/n, and further consider
the following affine scaling of this average:

Ãn = 1

σ

√
n(An − μ) . (23)

Equation (23) is the CLT counterpart of Eq. (1), with the term√
n/σ assuming the role of the positive scale parameter [sn

in Eq. (1)] and with the mean μ assuming the role of the real
location parameter [δn in Eq. (1)].

The CLT asserts that the scaled average Ãn converges in
law (as n → ∞) to a limiting random variable N that is
“standard” normal; i.e., the statistics of the limit N are normal
(Gauss) with zero mean and with unit variance. Consequently,
for a given large ensemble (n � 1), the ensemble’s average An

admits the following normal asymptotic approximation in law:

An � N∗ := μ + σ√
n
N . (24)

The normal asymptotic approximation of Eq. (24) has the fol-
lowing meaning: the deterministic asymptotic approximation
of the ensemble’s average An is the mean μ, the magnitude
of the random fluctuations about the deterministic asymptotic
approximation is σ/

√
n, and the statistics of the random

fluctuations about the deterministic asymptotic approximation
are normal.

It is illuminating to compare the extreme-value asymptotic
approximation of Eq. (2), the normal asymptotic approxima-
tion of Eq. (24), and the Gumbel asymptotic approximations

of Eqs. (11) and (18). Such a comparison will highlight
the analogies and the differences between these asymptotic
approximations, as we shall now see.

The extreme-value asymptotic approximation of Eq. (2)
has the following key features. (I) The domains of attraction
are characterized by narrow tail conditions: regular-variation
conditions for the Weibull and Frechet extreme-value laws,
and a complicated condition for the Gumbel extreme-value
law (see Theorems 8.13.2–8.13.4 in [16], and [28]). (II) The
deterministic asymptotic approximation δn is highly depen-
dent on the input X . (III) The fluctuations’ magnitude 1/sn is
highly dependent on the input X . (IV) The limit L is either
Weibull, Frechet, or Gumbel. (V) The information required
in order to apply this asymptotic approximation is infinite-
dimensional: the input’s distribution function.

The normal asymptotic approximation of Eq. (24) has the
following key features. (I) The domain of attraction is char-
acterized by a wide moment condition: inputs X with a finite
variance. (II) The deterministic asymptotic approximation μ

is the input’s mean. (III) The fluctuations’ magnitude σ/
√

n
depends on the input X only via the coefficient σ (which is
the input’s standard deviation); hence the asymptotic order
O(1/

√
n) of the fluctuations’ magnitude is independent of

the input X . (IV) The limit N is standard normal. (V) The
information required in order to apply this asymptotic approx-
imation is two-dimensional: the input’s mean and standard
deviation.

The Gumbel asymptotic approximations of Eqs. (11) and
(18)—for a preset reference time t∗—have the following key
features. (I) The domain of attraction is characterized by a
wide smoothness condition: inputs T with a density function.
(II) The deterministic asymptotic approximation t∗ is the pre-
set reference time. (III) The fluctuations’ magnitudes η̄/l and
η/c depend on the input T only via the coefficients η̄ and η,
respectively; hence the asymptotic orders O(1/l ) and O(1/c)
of the fluctuations magnitudes are independent of the input
T . (IV) The limit G is standard Gumbel. (V) The information
required in order to apply these asymptotic approximations
is two-dimensional: the values of the input’s distribution
function and density function at the reference time t∗.

On the one hand, the key features of the Gumbel asymp-
totic approximations of Eqs. (11) and (18) are quite different
from those of the extreme-value asymptotic approximation
of Eq. (2). On the other, the key features of these Gumbel
asymptotic approximations are markedly similar to those
of the normal asymptotic approximation of Eq. (24). Thus,
the Gumbel asymptotic approximations presented here are
“as universal” as the normal asymptotic approximation; the
similarities between these approximations are summarized in
Table IV.

As its name suggests, a cornerstone of the central limit
theorem (CLT) is its centrality. In terms of the normal asymp-
totic approximation of Eq. (24), centrality is manifested as
follows: the ensemble’s average An is approximated about the
“center point” of the input X , its mean μ. In effect, the CLT
“magnifies” the statistical behavior of the ensemble’s average
An about the center point μ.

The fundamental theorem of EVT is diametric to the CLT.
Indeed, denote by x∗ the upper bound of the support of the
input X ; this upper bound can be either finite (x∗ < ∞) or
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TABLE IV. Summary of the similarities between the max-min and the min-max Gumbel asymptotic approximations of Eqs. (11) and (18)
(for a preset reference time t∗) and the normal asymptotic approximation of Eq. (24). In row 1, the term G is the standard Gumbel random
variable of Eq. (10), and the term N is a standard normal random variable (i.e., with zero mean and with unit variance). Rows 2–4 summarize
the approximations’ structures: their deterministic parts, the coefficients of the magnitudes of their stochastic parts, and the orders of the
magnitudes of their stochastic parts. For the normal column, f (x) (−∞ < x < ∞) denotes the density function of the input X , and n is the
size of the ensemble {X1, . . . , Xn} (see Sec. VI for the details).

Max-Min Min-Max Normal

1. Approximation G∗ := t∗ + η̄

l G G∗ := t∗ − η

c G N∗ := μ + σ√
nN

2. Deterministic t∗ t∗ μ = ∫ ∞
−∞ x f (x)dx

3. Coefficient η̄ = F̄ (t∗)/ f (t∗) η = F (t∗)/ f (t∗) σ =
√∫ ∞

−∞(x − μ)2 f (x)dx

4. Order O(1/l ) O(1/c) O(1/
√

n)

infinite (x∗ = ∞). Specifically, in the Weibull case x∗ is finite,
in the Frechet case x∗ is infinite, and in the Gumbel case
x∗ is either (see Theorems 8.13.2–8.13.4 in [16] and [28]).
In effect, the fundamental theorem of EVT magnifies the
statistical behavior of the ensemble’s maximum Mn about the
upper bound x∗.

Thus, on the one hand, the normal asymptotic approxima-
tion of Eq. (24) “anchors” at the mean μ, which is an interior
point of the range spanned by the lower bound and upper
bound of the input’s supports. And, on the other hand, the
extreme-value asymptotic approximation of Eq. (2) anchors
at the upper bound x∗, which is a boundary point of the
support of the input X . So, also from an anchoring perspective,
the Gumbel asymptotic approximations of Eqs. (11) and (18)
are different from the extreme-value asymptotic approxima-
tion of Eq. (2), and are similar to the normal asymptotic
approximation of Eq. (24). Indeed, these Gumbel asymptotic
approximations anchor at the reference time t∗, which is an
interior point of the support of the input T .

Notably, in the design-tool modality, the Gumbel asymp-
totic approximations of Eqs. (11) and (18) offer a feature
that even the CLT does not offer: tunability. The center point
at which the normal asymptotic approximation of Eq. (24)
anchors is the mean μ, and this anchoring point is fixed. The
center point at which the Gumbel asymptotic approximations
of Eqs. (11) and (18) anchor is the reference time t∗, and this
anchoring point is tunable. Namely, Propositions 1–4 allow us
to set the reference time t∗ as we wish within the support of
the input T .

Perhaps the most straightforward approach to tackle the
max-min and the min-max of random matrices is to apply the
fundamental theorem of EVT iteratively. Reis and Castro did
precisely so for the max-min [27]: they applied the fundamen-
tal theorem first to the minimum of each and every row of the
random matrix T [of Eq. (3)] and then to the maximum of the
rows’ minima. Interestingly, the results of Reis and Castro and
our results both yield Gumbel limit laws. Nonetheless, these
seemingly identical limit-law results are profoundly different.
The details and features of the approaches are important, as
we shall now elucidate.

Consider the iterative EVT approach. The first iteration of
the fundamental theorem implicitly confines the input T to
one of the theorem’s narrow domains of attraction (Weibull,
Frechet, and Gumbel); moreover, as noted above, this iteration
anchors at the the upper bound of the support of the input

T . To apply the second iteration one has to impose further
conditions, as well as to introduce an asymptotic coupling
between the dimensions of the random matrix T. Conse-
quently, the iterative EVT approach comes with an expensive
“intricacy price tag.” Specifically, for the limit law of [27] the
following are highly dependent on the input T , and are also
highly elaborate: the max-min domain of attraction, scaling
scheme, and asymptotic coupling. Matters are as intricate also
in the max-min and min-max results of [25,26] (which are
derived via “EVT machineries”).

Here, rather than mimicking the fundamental theorem of
EVT, we mimicked the CLT. First, we set a vast domain
of attraction: inputs T with a density function. Second, we
devised particular asymptotic couplings and affine scalings:
Eqs. (6) and (9) for the max-min and Eqs. (15) and (17) for the
min-max. Third, we showed that these particular asymptotic
couplings and affine scalings always yield the Gumbel limit
laws of Propositions 2 and 4; i.e., they do so for all inputs T
that belong to the vast domain of attraction. These novel Gum-
bel limit laws were achieved via a Poisson-process approach:
the bedrock Poisson-process limit laws of Propositions 1 and
3. This approach enabled us to circumvent the use of the
fundamental theorem of EVT.

The Gumbel limit laws of Propositions 2 and 4 are truly
workable tools for the max-min and the min-max of random
matrices with IID entries. In turn, so are the Gumbel asymp-
totic approximations of Eqs. (11) and (18). A short MATLAB

code given in the Appendix shows just how easy it is to apply
these tools in practice.

VII. CONCLUSION

This paper explored the max-min value ∧max and the min-
max value ∨min of a random matrix T with c rows, l columns,
and entries that are IID real-valued random variables. This IID
setting is common to random-matrix theory, to the fundamen-
tal theorem of extreme value theory, and to the central limit
theorem. The max-min and the min-max values of matrices
emerge naturally in science and engineering, e.g., in game
theory and in reliability engineering. We motivated the max-
min value ∧max by the following question: Within a collection
of c IID chains, each with l links, how long will the strongest
chain hold? And, we motivated the min-max value ∨min by the
following question: How long can l critical information items
be stored reliably on c IID backup copies?
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We showed that if the number of rows c and the number
of columns l are large, and are coupled geometrically, then
the max-min value ∧max and the min-max value ∨min admit,
respectively, the Gumbel asymptotic approximations of
Eq. (11) and of Eq. (18) (in law). These Gumbel asymptotic
approximations are similar, in form, to the normal asymptotic
approximation that follows from the central limit theorem.
Moreover, in their design-tool modality, the Gumbel asymp-
totic approximations display a special feature: their determin-
istic part—the reference time t∗—is tunable. Hence, these
Gumbel asymptotic approximations can be used, via Eqs. (20)
and (22), to design the max-min and min-max values.

The Gumbel asymptotic approximations are founded on
the Gumbel limit laws of Propositions 2 and 4. In turn,
the Gumbel limit laws are founded on the bedrock Poisson-
process limit laws of Propositions 1 and 3. These four novel
limit laws have a vast domain of attraction, have simple
affine scalings, and use geometric asymptotic couplings (of
c and l). With their generality, their CLT-like structure, their
straightforward practical implementation, and their many po-
tential applications, the results established and presented in
this paper are expected to serve diverse audiences in science
and engineering.
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APPENDIX

1. A general Poisson-process limit-law result

In this subsection we establish a general Poisson-process
limit-law result. The setting of the general result is as follows.
Consider X1, . . . , Xn to be n IID copies of a generic random
variable X . The random variable X is real-valued, and its
density function is given by

fθ (x) = κθgθ (x) (A1)

(−∞ < x < ∞), where θ is a positive parameter κθ is a
positive constant, and gθ (x) is a non-negative function.

Consider the joint limits n → ∞ and θ → ∞. We assume
that the parameter n and the constant κθ admit the following
asymptotic coupling:

lim
n→∞, θ→∞

nκθ = κ , (A2)

where κ is a positive limit value. Also, we assume that

lim
θ→∞

gθ (x) = g(x) (A3)

(−∞ < x < ∞), where g(x) is a non-negative limit function.
Now, let us analyze the asymptotic statistical behavior of

the ensemble {X1, . . . , Xn} in the joint limits n → ∞ and
θ → ∞. To that end we take a real-valued “test function”
φ(x) (−∞ < x < ∞) and compute the characteristic func-
tional of the ensemble {X1, . . . , Xn} with respect to this test

function:

E[φ(X1) · · · φ(Xn)]

= E[φ(x)]n =
{∫ ∞

−∞
φ(x) fθ (x)dx

}n

=
{

1 −
∫ ∞

−∞
[1 − φ(x)] fθ (x)dx

}n

=
{

1 − 1

n

∫ ∞

−∞
[1 − φ(x)][(nκθ )gθ (x)]dx

}n

(A4)

[in Eq. (A4) we used the IID structure of the ensemble
{X1, . . . , Xn}, and Eq. (A1)]. Applying the limits of Eqs. (A2)
and (A3), Eq. (A4) implies that

lim
n→∞, θ→∞

E[φ(X1) · · · φ(Xn)]

= exp

{
−

∫ ∞

−∞
[1 − φ(x)][κg(x)]dx

}
. (A5)

The characteristic functional of a Poisson process P over
the real line, with intensity function λ(x) (−∞ < x < ∞), is
given by [30]:

E

[∏
x∈P

φ(x)

]
= exp

{
−

∫ ∞

−∞
[1 − φ(x)]λ(x)dx

}
, (A6)

where φ(x) (−∞ < x < ∞) is a real-valued test function.
We emphasize that the characteristic functional of Eq. (A6)
is indeed characteristic [30]: if P is collection of real points
that satisfies Eq. (A6), then P is a Poisson process over the
real line, with intensity function λ(x) (−∞ < x < ∞). Hence,
combined together, Eqs. (A5) and (A6) yield the following
general result:

Proposition 5. The ensemble {X1, . . . , Xn} converges in
law, in the joint limits n → ∞ and θ → ∞, to a Poisson
process P over the real line with intensity function λ(x) =
κg(x) (−∞ < x < ∞).

2. Proof of Proposition 1

Equation (4) implies that

Pr(∧i > t ) = Pr[min{Ti,1, . . . , Ti,l} > t]

= Pr(Ti,1 > t ) · · · Pr(Ti,l > t )

= Pr(T > t )l = F̄ (t )l (A7)

(−∞ < t < ∞). Equations (5) and (A7) imply that

Pr(∧̃i > t ) = Pr[l (∧i − t∗) > t]

= Pr

(
∧i > t∗ + t

l

)
= F̄

(
t∗ + t

l

)l

(A8)

(−∞ < t < ∞). Differentiating Eq. (A8) with respect to the
variable t implies that the density function of the scaled
random variable ∧̃i is given by

− d

dt
Pr(∧̃i > t ) = F̄

(
t∗ + t

l

)l

h̄

(
t∗ + t

l

)
(A9)

(−∞ < t < ∞), where h̄(t ) = f (t )/F̄ (t ). In what follows we
use the shorthand notation ε̄ = h̄(t∗). Note that the two basic
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requirements 0 < F (t∗) < 1 and 0 < f (t∗) < ∞ imply that
0 < ε̄ < ∞.

Now, apply Proposition 5 to the following setting: n = c,
θ = l , and Xi = ∧̃i (i = 1, . . . , c). Equation (A9) implies that

fθ (x) = F̄ (t∗)θ︸ ︷︷ ︸
κθ

[
F̄

(
t∗ + x

θ

)
F̄ (t∗)

]θ

h̄

(
t∗ + x

θ

)
︸ ︷︷ ︸

gθ (x)

(A10)

(−∞ < x < ∞). Note that[
F̄

(
t∗ + x

θ

)
F̄ (t∗)

]θ

=
[

F̄ (t∗) − f (t∗) x
θ

+ o
(

1
θ

)
F̄ (t∗)

]θ

=
[

1 − ε̄x

θ
+ o

(
1

θ

)]θ

−→
θ→∞

exp(−ε̄x)

(A11)

(−∞ < x < ∞). Equations (A10) and (A11) imply that

lim
θ→∞

gθ (x) = g(x) := ε̄ exp(−ε̄x) (A12)

(−∞ < x < ∞). Also, the asymptotic geometric coupling of
Eq. (6) implies that the asymptotic coupling of Eq. (A2) holds
with κ = 1. Hence, the result of Proposition 5 holds with the
intensity function

λ(x) = ε̄ exp(−ε̄x) (A13)

(−∞ < x < ∞). This proves Proposition 1.

3. Proof of Proposition 2

Set P to be a Poisson process, over the real line, with in-
tensity function λ(x) = ε̄ exp(−ε̄x) (−∞ < x < ∞) and ex-
ponent ε̄ = f (t∗)/F̄ (t∗). Consider the number of points N (t )
of the Poisson process P that reside above a real threshold t .
The Poisson-process statistics imply that the number N (t ) is a
Poisson-distributed random variable with mean

E[N (t )] =
∫ ∞

t
λ(x)dx

=
∫ ∞

t
ε̄ exp(−ε̄x)dx = exp(−ε̄t ). (A14)

Now, consider the maximal point M of the Poisson process
P . This maximal point is no larger than the threshold t if
and only if no points of the Poisson process P reside above
this threshold: {M � t} ⇔ {N (t ) = 0} . Hence, as N (t ) is
a Poisson-distributed random variable with mean E[N (t )],
Eq. (A14) implies that the distribution function of the max-
imal point M is given by

Pr(M � t ) = exp[− exp(−ε̄t )] (A15)

(−∞ < t < ∞). The distribution function of Eq. (A15) char-
acterizes the Gumbel law. A standard Gumbel-distributed
random variable G is governed by the distribution function
of Eq. (10): Pr(G � t ) = exp[− exp(−t )] (−∞ < t < ∞).
Equations (A15) and (10) imply that the maximal point M
admits the following Gumbel representation in law:

M = η̄G, (A16)

where

η̄ = 1

ε̄
= F̄ (t∗)

f (t∗)
. (A17)

Proposition 1 established that the ensemble {∧̃1, . . . , ∧̃c}
converges in law—in the limit of Eq. (6)—to the Poisson
process P . Consequently, the maximum ∧̃max of the ensemble
{∧̃1, . . . , ∧̃c} converges in law—in the limit of Eq. (6)—to the
maximal point M of the Poisson process P . Hence, Eq. (A16)
proves Proposition 2.

4. Proof of Proposition 3

For the random variable ∨ j = max{T1, j, . . . , Tc, j} we have

Pr(∨ j � t ) = Pr[max{T1, j, . . . , Tc, j} � t]

= Pr(T1, j � t ) · · · Pr(Tc, j � t )

= Pr(T � t )c = F (t )c (A18)

(−∞ < t < ∞). In turn, for the scaled random variable ∨̃ j =
c(∨ j − t∗) Eq. (A18) implies that

Pr(∨̃ j � t ) = Pr[c(∨ j − t∗) � t]

= Pr

(
∨ j � t∗ + t

c

)
= F

(
t∗ + t

c

)c

(A19)

(−∞ < t < ∞). Differentiating Eq. (A19) with respect to
the variable t implies that the density function of the scaled
random variable ∨̃ j is given by

d

dt
Pr(∨̃ j � t ) = F

(
t∗ + t

c

)c

h

(
t∗ + t

c

)
(A20)

(−∞ < t < ∞), where h(t ) = f (t )/F (t ). In what follows we
use the shorthand notation ε = h(t∗). Note that the two basic
requirements 0 < F (t∗) < 1 and 0 < f (t∗) < ∞ imply that
0 < ε < ∞.

Now, apply Proposition 5 to the following setting: n = l ,
θ = c, and Xi = ∨̃ j ( j = 1, . . . , l). Equation (A20) implies
that

fθ (x) = F (t∗)θ︸ ︷︷ ︸
κθ

[
F

(
t∗ + x

θ

)
F (t∗)

]θ

h

(
t∗ + x

θ

)
︸ ︷︷ ︸

gθ (x)

(A21)

(−∞ < x < ∞). Note that[
F

(
t∗ + x

θ

)
F (t∗)

]θ

=
[

F (t∗) + f (t∗) x
θ

+ o
(

1
θ

)
F (t∗)

]θ

=
[

1 + εx

θ
+ o

(
1

θ

)]θ

−→
θ→∞

exp(εx) (A22)

(−∞ < x < ∞). Equations (A21) and (A22) imply that

lim
θ→∞

gθ (x) = g(x) := ε exp(εx) (A23)

(−∞ < x < ∞). Also, the asymptotic geometric coupling of
Eq. (15) implies that the asymptotic coupling of Eq. (A2)
holds with κ = 1. Hence, the result of Proposition 5 holds
with the intensity function

λ(x) = ε exp(εx) (A24)

(−∞ < x < ∞). This proves Proposition 3.
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5. Proof of Proposition 4

Set P to be a Poisson process, over the real line, with
intensity function λ(x) = ε exp(εx) (−∞ < x < ∞) and ex-
ponent ε = f (t∗)/F (t∗). Consider the number of points N (t )
of the Poisson process P that reside up to a real threshold t .
The Poisson-process statistics imply that the number N (t ) is a
Poisson-distributed random variable with mean

E[N (t )] =
∫ t

−∞
λ(x)dx

=
∫ t

−∞
ε exp(εx)dx = exp(εt ). (A25)

Now, consider the minimal point M of the Poisson pro-
cess P . This minimal point is larger than the threshold t if
and only if no points of the Poisson process P reside up
to this threshold: {M > t} ⇔ {N (t ) = 0}. Hence, as N (t ) is
a Poisson-distributed random variable with mean E[N (t )],
Eq. (A25) implies that the survival function of the minimal
point M is given by

Pr(M > t ) = exp[− exp(εt )] (A26)

(−∞ < t < ∞). A standard Gumbel-distributed random
variable G is governed by the distribution function
of Eq. (10): Pr(G � t ) = exp[− exp(−t )] (−∞< t < ∞).
Equations (A26) and (10) imply that the minimal point M
admits the following Gumbel representation in law:

M = −ηG, (A27)

where

η = 1

ε
= F (t∗)

f (t∗)
. (A28)

Proposition 3 established that the ensemble {∨̃1, . . . , ∨̃l}
converges in law—in the limit of Eq. (15)—to the
Poisson process P . Consequently, the minimum
∨̃min = min{∨̃1, . . . , ∨̃l} of the ensemble {∨̃1, . . . , ∨̃l}
converges in law—in the limit of Eq. (15)—to the minimal
point M of the Poisson process P . Hence, Eq. (A27) proves
Proposition 4.

6. MATLAB code for Fig. 1

% This function computes the scaled MaxMin/eta_bar

% N specifies the number of random matrices to be generated
N=105;

% MaxMin will hold the N max-min values that will be
% computed
MaxMin=zeros(1,N);

% pd specifies the distribution of the random matrix entries
pd = makedist(‘Exponential’, ‘mu’, 1);

% CDF_t specifies the value of the cumulative distribution
% function at the anchor point
CDF_t=1/5;

% This computes the anchor point t by inverting cumulative
% distribution function
t=icdf(pd,CDF_t);

% l sets the number of links
l=70;

% c sets the number of chains via geometric coupling
c=floor((1-CDF_t)(-l));

% This for-loop generates the random matrices and computes
% the MaxMin
for k=1:N

M=random(pd,c,l);
MaxMin(k)=max(min(M’));

end

% This computes the coefficient eta_bar
eta_bar=(1-CDF_t)/pdf(pd,t);

% This computes the scaled MaxMin/eta_bar
MaxMin=(MaxMin-t)*l/eta_bar;
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