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The max-min and min-max of matrices arise prevalently in science and engineering. However, in many real-
world situations the computation of the max-min and min-max is challenging as matrices are large and full
information about their entries is lacking. Here we take a statistical-physics approach and establish limit laws—
akin to the central limit theorem—for the max-min and min-max of large random matrices. The limit laws
intertwine random-matrix theory and extreme-value theory, couple the matrix dimensions geometrically, and
assert that Gumbel statistics emerge irrespective of the matrix entries’ distribution. Due to their generality and
universality, as well as their practicality, these results are expected to have a host of applications in the physical
sciences and beyond.
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The central limit theorem (CLT), a foundational corner-
stone of statistical physics and probability theory, is of prime
importance in science and engineering. The CLT and its
generalized version assert that the scaled sum of a large num-
ber of independent and identically distributed (i.i.d.) random
variables is governed, asymptotically, by two limit-law statis-
tics [1,2]: normal and Lévy stable. The CLT considers finite-
variance i.i.d. random variables, and yields normal statistics.
Departing the finite-variance dominion, the generalized CLT
imposes sharp tail conditions on the distribution of the i.i.d.
random variables [3], and yields Lévy-stable statistics (that
include normal statistics as a boundary case).

Extreme-value theory [4,5] is applied whenever extreme
behavior, rather than average behavior, is of relevance; e.g.,
the prediction of rare events, and the safe design of critical
systems such as dams, bridges, and power grids. Extreme-
value theory shifts the focus from sums to extrema, i.e.,
maxima and minima. The Fisher-Tippett-Gnedenko (FTG)
theorem is the extreme-value counterpart of the above CLTs.
This theorem asserts that the scaled extrema of a large number
of i.i.d. random variables are governed, asymptotically, by
three limit-law statistics [6,7]: Weibull, Frechet, and Gumbel.
As in the case of the generalized CLT, the FTG theorem
imposes sharp tail conditions on the distribution of the i.i.d.
random variables [3].

The limit-law statistics of the CLTs and the FTG theorem
play key roles in physics, e.g., in [8–20] and in [21–27], re-
spectively. Underlying these theorems is a common bedrock:
a random-vector setting, with the i.i.d. random variables being
the vector entries. Elevating from one-dimensional to two-
dimensional arrays, we arrive at a random-matrix setting:
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matrices whose entries are i.i.d. random variables. Random
matrices also play key roles in physics [28,29], and much
effort has been directed to the extreme-value analysis of their
eigenvalues spectra [30,31]. Here we focus on a different
extreme-value analysis of random matrices: their max-min
and min-max (see Fig. 1 for the max-min).

The max-min and min-max arise prevalently in science
and engineering. Perhaps the best known example is in game
theory [32], a field which drew considerable attention from
physicists [33–39]. There, a player seeks a strategy that will
maximize gain, or minimize loss, in the worst-case scenario.
The player has a payoff matrix which specifies the gain or
loss for each strategy taken vs each scenario encountered; the
player calculates the max-min in the case of gains, and the
min-max in the case of losses. However, in real-life situations
the payoff matrix is often large and full information about its
entries is lacking. In turn, such situations call for a modeling
approach employing large random matrices.

The max-min and min-max of large random matrices
were investigated in mathematics [40], and in reliability en-
gineering [41–44]. In the pioneering work [40], Chernoff
and Teicher established that the scaled max-min and min-
max are governed, asymptotically, by the FTG statistics:
Weibull, Frechet, and Gumbel. In subsequent works [41–43],
Kolowrocki further advanced the topic in the context of (so
called) series-parallel and parallel-series systems. In a more
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FIG. 1. The max-min of a matrix is obtained by first taking
the minimal entry of each row (depicted red), and then taking the
maximum of these minimal entries (depicted blue).
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recent work [44], Reis and Castro obtained Gumbel limit-law
statistics for the max-min via an iterative application of the
FTG theorem: first to the minimum of each and every matrix
row, and then to the maximum of the rows’ minima.

The results in [40–44] are notable and inspiring mathe-
matical theorems. However, from a practical perspective the
application of these results is extremely challenging, even on a
case by case basis. More importantly, the results in [40–44] do
not provide a clear-cut answer to the following focal question:
Is there a “central limit theorem” for the max-min and min-
max of random matrices?

The CLTs and the FTG theorem stand on two pillars:
domain of attraction and scaling scheme. The domain of
attraction of the CLT is wide (encompassing all finite-variance
distributions), and its scaling scheme is simple; the appli-
cation of the CLT is thus straightforward, and its use is
omnipresent. For the generalized CLT and the FTG theorem
matters are more intricate: the domains of attraction are
narrow (characterized by the sharp conditions imposed on the
distributions’ tails [3]), and the scaling schemes are elaborate
(they need to be carefully custom-tailored per each admissible
distribution [3]). Elevating from a random-vector setting to a
random-matrix setting adds a third pillar to the two above:
the asymptotic coupling between the matrix dimensions (as
these are taken to infinity). In [40–44] the intricacy of all
three pillars is prohibitively high. Consequently, there are no
available max-min and min-max limit laws with the following
features: wide domain of attraction, simple scaling scheme,
and simple asymptotic coupling.

Here we present central limit theorem results for the
max-min and min-max of large nonsquare random matrices.
Circumventing the use of the FTG theorem altogether, the
results are based on novel Poisson-process limit laws [45].
The results assert that the scaled max-min and min-max are
governed, asymptotically, by Gumbel statistics. The results’
domain of attraction is vast, encompassing all distributions
with a density. The results’ scaling schemes are similar to
that of the CLT, and their asymptotic couplings are geometric.
The novel results established here are thus highly practical and
applicable (see Fig. 2 for the max-min result).

Written for a general physics readership, this Rapid Com-
munication offers a concise brief of the results and their
implementation; for a comprehensive exposition, including
detailed proofs, see [45]. The brief is organized as follows:
we begin with an underlying setting, present Gumbel ap-
proximations for the max-min and min-max, and describe the
implementation of these approximations; then, we present the
Gumbel limit laws (that yield the Gumbel approximations),
discuss these limit laws, and conclude with an outlook.

Setting. Consider a random matrix with i.i.d. entries:

M =

⎛
⎜⎝

X1,1 · · · X1,n
...

. . .
...

Xm,1 · · · Xm,n

⎞
⎟⎠. (1)

Namely, the matrix is of dimensions m × n, with rows labeled
i = 1, . . . , m, and columns labeled j = 1, . . . , n. The matrix
entries are i.i.d. copies of a generic real-valued random
variable X , with probability density f (x) (−∞ < x < ∞).
In what follows we denote by F (x) = Pr (X � x)
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FIG. 2. Gumbel limit-law statistics for the scaled max-min of
large random matrices. Universality is demonstrated by data collapse
for nine different distributions from which the i.i.d. matrix entries are
drawn: the colored symbols depict the simulated data; the solid black
line is the probability density of the predicted Gumbel statistics, with
its 95% confidence interval shaded in gray. For additional details see
discussion below Eq. (8) and the caption of Fig. 3.

(−∞ < x < ∞) the corresponding distribution function, and
by F̄ (x) = Pr (X > x) (−∞ < x < ∞) the corresponding
survival function.

We set the focus on the max-min and min-max of the
random matrix M. Denoting by ∧i = min {Xi,1, . . . , Xi,n} the
minimum over the entries of row i, the max-min is the
maximum over the rows’ minima:

∧max = max {∧1, . . . ,∧m}. (2)

Similarly, denoting by ∨ j = max {X1, j, . . . , Xm, j} the max-
imum over the entries of column j, the min-max is the
minimum over the columns’ maxima:

∨min = min {∨1, . . . ,∨n}. (3)

To illustrate the setting, consider the aforementioned game-
theory example. If the matrix M manifests gains, then the rows
represent the player’s strategies; the columns represent the
scenarios the player is facing; Xi, j is the player’s gain when
taking strategy i and encountering scenario j; and ∧max is the
player’s max-min gain. If the matrix M manifests losses, then
the roles of its rows and columns are transposed, Xi, j is the
player’s loss when encountering scenario i and taking strategy
j, and ∨min is the player’s min-max loss.

From Eqs. (2) and (3) it follows that the
distribution/survival functions of the max-min and min-max
are given, respectively, by Pr (∧max � x) = [1 − F̄ (x)n]m

and by Pr (∨min > x) = [1 − F (x)m]n. In the results to
be presented here we scale the max-min and min-max
appropriately, and establish their convergence (in law) to
universal Gumbel statistics. In what follows, Z denotes a
“standard” Gumbel random variable, and G(x) denotes the
corresponding Gumbel distribution function [7]:

Pr(Z � x) = G(x) = exp[− exp(−x)] (4)

(−∞ < x < ∞).
Our results involve an “anchor” x∗, an arbitrary value that

can be realized by the generic random variable X . Specifically,
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TABLE I. Key statistical features of the Gumbel approximations
Zmax of Eq. (5) and Zmin of Eq. (6): mode, median, mean, and standard
deviation (SD); in the row for the mean, γ = 0.577 . . . is the Euler-
Mascheroni constant.

Zmax Zmin

Mode x∗ x∗
Median x∗ − ln [ln (2)]

α

1
n x∗ + ln [ln (2)]

β

1
m

Mean x∗ + γ

α

1
n x∗ − γ

β

1
m

SD π√
6α

1
n

π√
6β

1
m

the anchor meets two requirements: (i) 0 < f (x∗) < ∞ and
(ii) 0 < F (x∗) < 1, which is equivalent to 0 < F̄ (x∗) < 1. For
example, with regard to three of the distributions appearing in
Fig. 2, the admissible values of the anchor are −∞ < x∗ < ∞
for the normal, 0 < x∗ < ∞ for the gamma, and 0 < x∗ < 1
for the beta.

Approximations. We present Gumbel approximations for
the max-min ∧max and the min-max ∨min of a large random
matrix M with dimensions m � 1 and n � 1. The approxima-
tions are based on couplings between the matrix dimensions m
and n, and the anchor x∗. As we shall show hereinafter, these
couplings are always implementable: given two of the triplet
{m, n, x∗} we can always set the third to satisfy the couplings.
Also, in the approximations Z is the standard Gumbel random
variable of Eq. (4).

Consider the coupling mF̄ (x∗)n � 1; then, the max-min
admits the approximation

∧max � Zmax := x∗ + 1

n

1

α
Z, (5)

where α = f (x∗)/F̄ (x∗). Similarly, consider the coupling
nF (x∗)m � 1; then, the min-max admits the approximation

∨min � Zmin := x∗ − 1

m

1

β
Z , (6)

where β = f (x∗)/F (x∗).
Equations (5) and (6) imply that the deterministic approx-

imation of the max-min ∧max and the min-max ∨min is the
anchor x∗; the magnitude of the random fluctuations about
x∗ is 1/(nα) for the max-min, and is 1/(mβ ) for the min-
max; and the statistics of the random fluctuations about x∗
are Gumbel. Key statistical features of the Gumbel approx-
imations Zmax of Eq. (5) and Zmin of Eq. (6) are detailed in
Table I: modes, medians, means, and standard deviations. The
probability densities of the Gumbel approximations Zmax and
Zmin have a unimodal shape: monotone increasing below x∗,
and monotone decreasing above x∗.

Implementation. There are two ways of implementing the
Gumbel approximations, which we now describe. Both ways
exploit the couplings underpinning the approximations.

The first way applies when the matrix dimensions m and n
are given; in this case the dimensions determine the anchor x∗.
Specifically, for matrix M with dimensions m > n � 1 the ap-
proximation of Eq. (5) holds with anchor x∗ = F̄−1[(1/m)1/n].
Similarly, for matrix M with dimensions n > m � 1 the ap-
proximation of Eq. (6) holds with anchor x∗ = F−1[(1/n)1/m].

The second way applies when the anchor x∗ is given;
in this case the matrix dimensions m and n should be set
accordingly. Specifically, for the max-min setting n � 1 and
m � 1/F̄ (x∗)n yields the approximation of Eq. (5). And, for
the min-max setting m � 1 and n � 1/F (x∗)m yields the
approximation of Eq. (6). In this way the magnitudes of the
random fluctuations about the anchor x∗ are of the order
O(1/n) in the approximation of Eq. (5), and of the order
O(1/m) in the approximation of Eq. (6).

The first way is a “scientific tool”: given a matrix M,
it provides us with approximations for the max-min and
min-max. The second way is an “engineering tool”: given a
“target” anchor x∗, it tells us how to design the matrix M so
that x∗ will be the deterministic approximation of the max-min
and min-max; moreover, we can design the magnitudes of the
random fluctuations about x∗ to be as small as we wish [45].

Limit laws. The Gumbel approximations of Eqs. (5) and (6)
emanate from corresponding Gumbel limit laws which we
now present. In the limit laws we fix the anchor x∗, and then
grow the matrix dimensions infinitely large: m, n → ∞. Also,
in the limit laws G(x) is the standard Gumbel distribution
function of Eq. (4).

Grow the matrix dimensions via the coupled limit
limm,n→∞ mF̄ (x∗)n = 1; then, the max-min limit law is

lim
m,n→∞ Pr [αn( ∧max − x∗) � x] = G(x) (7)

(−∞ < x < ∞), where α = f (x∗)/F̄ (x∗) as above. Simi-
larly, grow the matrix dimensions via the coupled limit
limm,n→∞ nF (x∗)m = 1; then, the min-max limit law is

lim
m,n→∞ Pr [βm( x∗ − ∨min) � x] = G(x) (8)

(−∞ < x < ∞), where β = f (x∗)/F (x∗) as above.
Equations (7) and (8) imply that the scaled max-min

αn( ∧max − x∗) and the scaled min-max βm( x∗ − ∨min)
converge—in law, as m, n → ∞—to a standard Gumbel ran-
dom variable Z [recall Eq. (4)]. Hence, the limit laws of
Eqs. (7) and (8) yield, respectively, the approximations of
Eqs. (5) and (6). The Gumbel limit law of Eq. (7) is tested for
nine different distributions from which the i.i.d. matrix entries
are drawn (Fig. 3); note that convergence is evident already
for moderate values of the dimension n. The data collapse
demonstrated in Fig. 2 corresponds to the nine distributions
of Fig. 3 with dimension n = 70.

The Gumbel limit laws of Eqs. (7) and (8) stem from
“bedrock” Poisson-process limit laws. Underlying the max-
min ∧max is the ensemble of the rows’ minima {∧1, . . . ,∧m},
and underlying the min-max ∨min is the ensemble of the
columns’ maxima {∨1, . . . ,∨n}. In [45] it is established that
appropriately scaled versions of these ensembles converge—
in law, as m, n → ∞—to a Poisson process that is char-
acterized by the following exponential intensity function:
λ(x) = exp(−x) (−∞ < x < ∞). For the points of this Pois-
son process one can observe that the maximal point is
no larger than a real threshold x if and only if there are
no points above this threshold—an event whose probability
is exp [− ∫ ∞

x λ(x′)dx′] = G(x) [46]. Hence, the distribution
function of the maximal point is G(x), which is the term that
appears on the right-hand sides of Eqs. (7) and (8) [45].

020104-3



ELIAZAR, METZLER, AND REUVENI PHYSICAL REVIEW E 100, 020104(R) (2019)

n=5
n=25
n=70

0 5 10
10-4

0.001

0.010

0.100

1
n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1
n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1

n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

n=5
n=75
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

Scaled Max Min

n=5
n=25
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

Scaled Max Min

n=5
n=75
n=70

0 5 10

0.001

0.010

0.100

1

Scaled Max Min

Scaled Max Min

10-4 10-4

10-4 10-4 10-4

10-4 10-4 10-4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. The Gumbel limit law of Eq. (7) is tested for nine different distributions from which the i.i.d. matrix entries are drawn: (a) beta,
(b) exponential, (c) gamma, (d) inverse Gaussian, (e) log-normal, (f) normal, (g) Pareto, (h) uniform, and (i) Weibull. The statistics of the
scaled max-min αn( ∧max − x∗), with anchor x∗ = F̄−1(0.8), were simulated by sampling 105 random matrices with the following dimensions:
n = 5, 25, 70 rows and m � 1.25n columns. In all cases, the convergence of the simulations (colored symbols) to the probability density of the
standard Gumbel law (solid black line, with its 95% confidence interval shaded in gray) is evident.

Discussion. The limit laws of Eqs. (7) and (8) are highly
invariant with respect to the i.i.d. entries of the random matrix
M. Indeed, contrary to the CLT, no moment conditions are
imposed on the entries’ distribution. And, contrary to the
generalized CLT and to the FTG theorem, no tail conditions
are imposed on the entries’ distribution. The Gumbel limit
laws merely require that the entries’ distribution has a density.
In practice, this smoothness condition is widely satisfied.

The Gumbel limit laws of Eqs. (7) and (8) involve simple
scaling schemes. To appreciate their simplicity, we compare
these schemes to that of the CLT. Consider Ak to be the
average of k i.i.d. random variables with common mean μ

and standard deviation σ . The CLT asserts that the scaled
average σ−1

√
k(Ak − μ) converges—in law, as k → ∞—to a

standard normal random variable (i.e., with a zero mean and a
unit standard deviation). The scaled max-min αn( ∧max − x∗)
of Eq. (7) and the scaled min-max βm( x∗ − ∨min) of Eq. (8)
are similar, in form, to the scaled average σ−1

√
k(Ak − μ).

Specifically, the anchor x∗ is the counterpart of the mean μ;
and the scale terms αn and βm are the counterparts of the
scale term σ−1

√
k. Consequently, the scaling schemes of the

limit laws of Eqs. (7) and (8) are as simple and straightforward
as that of the CLT.

There are numerously many ways of setting the scaling
schemes of the generalized CLT and of the FTG theorem,
and each such way corresponds to specific distributions of
the underlying i.i.d. random variables. On the other hand,
as detailed above, the scaling scheme of the CLT is set in a
particular way. This special CLT scaling scheme is universal
in the following sense: it yields normal limit-law statistics for
all finite-variance distributions.

Addressing limit laws for the max-min and min-max of
random matrices [40–44], there are numerous ways of setting
the scaling schemes; and there are also numerous ways of
asymptotically coupling the matrix dimensions, m and n,
when growing them infinitely large (m, n → ∞). Similarly
to the CLT, the Gumbel limit laws of Eqs. (7) and (8)
employ particular scaling schemes, as well as particular
asymptotic couplings. In turn, as for the CLT, these special
scaling schemes and asymptotic couplings are universal in the
following sense: they yield Gumbel limit-law statistics for all
distributions with a density.

020104-4



GUMBEL CENTRAL LIMIT THEOREM FOR MAX-MIN AND … PHYSICAL REVIEW E 100, 020104(R) (2019)

The particular asymptotic couplings employed here are
geometric, and they are parametrized by the anchor x∗.
Specifically, the geometric asymptotic couplings are given by
limm,n→∞ mF̄ (x∗)n = 1 for the Gumbel limit law of Eq. (7),
and limm,n→∞ nF (x∗)m = 1 for the Gumbel limit law of
Eq. (8). The couplings’ parametrization is a degree of freedom
that facilitates tunability. Indeed, the anchor x∗, which is the
counterpart of the mean μ in the CLT, can be tuned as we wish
within its admissible values.

Outlook. It has long been observed that seemingly identical
pieces of matter happen to fail stochastically at different
times and under different loads. Consequently, one of the
major original drivers for the development of extreme-value
theory came from materials science, where statistical pre-
dictions for mechanical strength and fracture formation are
of prime importance [47,48]. The “weakest link hypothe-
sis” is foundational in materials science [26,27]. This hy-
pothesis suggests that various mechanical systems can be
modeled as having a chainlike structure, thus implying that
such a system is only as strong as its weakest link. The
“weakest link hypothesis” naturally gives rise to the max-
min: when statistically similar chainlike systems are com-
pared, either by an evolutionary process or by industrial
quality testing, the system with the strongest weakest link
prevails.

The min-max also arises naturally from real-world appli-
cations. Indeed, consider a backup system in which critical
files are stored on multiple separate hard drives. If a file

is damaged on one of the drives it could be retrieved from
another; however, if all copies of a file are damaged, then the
file is lost forever. The loss time of a given file is thus the
maximum of its damage times over the different drives. In
turn, since all files are critical, system failure occurs at the
first loss time of a file. Thus, the system failure time is the
min-max of the files’ damage times.

Here we adopted the setting of random-matrix theory, con-
sidering large matrices with i.i.d. entries. For the max-min and
min-max of such matrices we established, respectively, the
Gumbel approximations of Eqs. (5) and (6); also, we showed
how to apply these approximations as a scientific tool and as
an engineering tool. The approximations stem from the limit
laws of Eqs. (7) and (8), which assume the role of a “Gumbel
central limit theorem” for the max-min and min-max. With
their generality and universality, their easy practical imple-
mentation, and their many potential applications, e.g., in game
theory, in reliability engineering, in materials science, and in
the design of backup systems, the results presented herein are
expected to serve diverse audiences in the physical sciences
and beyond.
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