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Abstract
Lévy walks are continuous time random walks with spatio-temporal coupling 
of jump lengths and waiting times, often used to model superdiffusive 
spreading processes such as animals searching for food, tracer motion in 
weakly chaotic systems, or even the dynamics in quantum systems such as 
cold atoms. In the simplest version Lévy walks move with a finite speed. Here, 
we present an extension of the Lévy walk scenario for the case when external 
force fields influence the motion. The resulting motion is a combination of the 
response to the deterministic force acting on the particle, changing its velocity 
according to the principle of total energy conservation, and random velocity 
reversals governed by the distribution of waiting times. For the fact that the 
motion stays conservative, that is, on a constant energy surface, our scenario is 
fundamentally different from thermal motion in the same external potentials. 
In particular, we present results for the velocity and position distributions for 
single well potentials of different steepness. The observed dynamics with its 
continuous velocity changes enriches the theory of Lévy walk processes and 
will be of use in a variety of systems, for which the particles are externally 
confined.
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1.  Introduction

Already in 1795 Dutch physician Jan Ingenhousz observed irregular motion of coal dust par-
ticles on the surface of alcohol. Scottish botanist Robert Brown used more systematic studies 
of jittery motion of various inanimate materials following his observation of the same zigzag-
ging of pollen granules extracted from pollen grains, in 1828 [1]. More systematic studies 
of diffusive particle motion are due to Gouy [2] and, in particular, Perrin, whose seminal 
1908 paper [3] prompted a whole series of ever more refined experiments. Two remarkable 
examples of the latter are the experiments of Nordlund [4] and Kappler [5] using moving film 
plates to produce long, individual time series of the motion. The theoretical analysis of the 
Brownian motion of thermally activated particles appeared at the start of the 20th century, 
mainly promoted by Smoluchowski [6], Einstein [7], and Langevin [8].

A standard way to define Brownian motion within the theory of stochastic processes is in 
terms of the Wiener process, which can be represented as the Langevin equation [9, 10]

dx(t)
dt

= ξ(t),� (1)

where the Gaussian white noise ξ(t) with zero mean 〈ξ(t)〉 = 0 and δ-correlation 
〈ξ(t)ξ(t′)〉 = δ(t − t′) corresponds to the increments of the Wiener process. The latter are 
independent and identically distributed according to the normal (Gaussian) distribution 
x(t)− x(s) ∼ N (0, t − s). Physically, this is the natural consequence of the assumption that 
interactions of the test particle with its thermal environment occur on a faster time scale. 
Moreover they are independent and bounded. Therefore, the collisions with the bath particles 
can be approximated by Gaussian white noise. Note that here and in the following we adopted 
a dimensionless notation, in which position, time, and mass have unit dimension.

The Wiener process can be extended to α-stable motions, for which the increments remain 
independent but are distributed according to α-stable densities with heavy-tailed power-law 
asymptotics (Lévy flights) [11, 12]. The Wiener process is included in the α-stable processes 
in the limiting case α = 2. α-stable processes can be extended to the case of external forces, 
resulting in the more general form of the Langevin equation

dx(t)
dt

= −V ′(x) + ξ(t),� (2)

where V(x) is the potential resulting in the deterministic force F(x) = −V ′(x). Equation (2) 
provides a starting point for the analysis of a large variety of noise induced phenomena [13–
16]. We note that Lévy flights are often invoked as optimal search strategies, due to their frac-
tal sample paths combining longer excursions with local search events [17]. However in the 
presence of an external drift the advantage of Lévy flights over normal Brownian search may 
become significantly reduced or even turn into a disadvantage [18].

The stochastic equation (2) displays some non-physical properties. These are often negligi-
ble on the relevant space and time scales. However, from a conceptual point of view random 
walks generated by the scheme (2) involve an infinite propagation speed. For Brownian motion 
this shortcoming was particularly realised in the context of heat flow. There it was remedied 
by the introduction of the Cattaneo or telegrapher’s equation on the level of the diffusion equa-
tion, leading to short-time ballistic motion with a finite horizon of propagation [19–21]. Even 
more so this problem arises for α-stable noises with α < 2: due to the significant probability 
of extremely long jumps the variance diverges [22–24]. A remedy for this infinite propagation 
speed can be introduced in terms of a spatio-temporal coupling of jump lengths and associated 
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waiting times. This concept was introduced in the continuous time random walk scheme in the 
form of Lévy walks by Shlesinger and coworkers in 1982 [25], see also [26, 27].

In their simplest version Lévy walks couple jump lengths and the corresponding waiting 
time by a constant speed v. Random velocity changes occur after independent and identi-
cally distributed waiting times. These waiting times thus determine the flight time and thus 
the travelled distance in between velocity changes. Lévy walks were successfully applied to 
model the dynamics of tracer particles in weakly chaotic systems [28–30] and in the dynamics 
of cold atom systems [31]. A particular field of application of Lévy walks are random search 
processes, for instance, of animals searching for sparse food. Here Lévy walks combine the 
above-mentioned advantage of Lévy flights with a physically meaningful, finite variance of 
the motion [26, 32]. Remarkably, Lévy walk search statistics were unveiled in intracellular 
motion driven by molecular motors [33, 34]. We also note that Lévy walks exhibit ultraweak 
ergodicity breaking such that time and ensemble averaged observables merely differ by a con-
stant, α-dependent factor, and that they fulfil a linear response relation, among other interest-
ing physical properties [35–39].

In the classical Lévy walk setup [27] no forces are acting on the moving particle. Therefore, 
its energy E is fixed to the kinetic energy v2/2, and is constant. At present, despite the wide use 
of the Lévy walk model a comprehensive conceptual understanding of the response of Lévy 
walks to an arbitrary external force field remains elusive. Here, we present a possible exten-
sion of the Lévy walk framework which takes into account such force fields. As in the classical 
Lévy walk model the system is considered to be conservative in the sense that the total energy 
is conserved, while the velocity is randomly reversed at time events defined by the waiting 
time distribution. This conservative scheme immediately implies that the Lévy walk speed is 
no longer constant but constantly varies along with the potential energy corresponding to a 
given position x. The resulting stationary distribution will therefore differ from the Boltzmann 
distribution, which emerges in a thermal system and allows for infinitely far yet exponentially 
suppressed excursions. The conservative model with well-defined maximum excursions due 
to the constant energy requirement will thus be more appropriate for cases when the particle 
is not allowed to cross a maximum distance while experiencing a restoring force. An example 
for such a behaviour could be the confinement of an animal searching for food while being 
limited to move only within their homing range. When approaching the border of the hom-
ing range the animal becomes more reluctant and thus slower. In such a scenario it may thus 
make sense that the velocity decreases with the distance from the centre of the system. More 
microscopically our conservative Lévy walk model may represent a molecular motor in a 
biological cell [33, 34] attempting to pull an anchored cargo. Indeed, with growing resisting 
force molecular motors achieve lower speeds and efficiencies [40, 41].

In the following section 2 we introduce our conservative Lévy walk model. Its properties 
are explored in detail in sections 3 and 4. Finally we draw our conclusions in section 5.

2.  Conservative random walk model

We start with the motion of a test particle described by the classical Newton equation

d2x(t)
dt2 = −V ′(x),� (3)

in our dimensionless notation. For the external potential we choose the power-law form

V(x) =
|x|n

n
,� (4)
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for which we consider the integer values n = 1, 2, 4 and n = ∞, that is, a softer-than-har-
monic, harmonic, and stronger-than-harmonic potential as well as a box with infinitely steep 
walls, see figure 1. The motion encoded by equation (3) for confining potentials of the form 
(4) is always periodic with the period

T = 4
∫ xmax

0

dx√
2[E − V(x)]

.� (5)

Here xmax is the reversal point satisfying V(xmax) = E , and thus the period of the motion depends 
on the system energy E, except for the harmonic case n = 2, see [42]. The total energy E is 
determined by the initial condition x(0) and ẋ(0), or, more precisely E = 1

2 ẋ2(0) + 1
n |x(0)|

n. 
In phase space, a particle described by relation (3) moves (clockwise) along the closed orbit 
determined by the system energy E

E =
1
2

v2 + V(x) = const,� (6)

see figure 2. Naturally velocity reversals occur at the points of maximal distance from the 
origin xmax. These reversals are soft in the sense that they occur at v(xmax) = 0.

In addition to the naturally occurring velocity reversals in the orbits of figure 2 we now 
introduce additional, random velocity reversals. In this scheme a particle moves according to 
equation (3) for a random time τ  (τ � 0) which is distributed according to the given density 
ψ(τ) of waiting times. At the end of a moving period with probability p = 1, the velocity is 
reversed, that is, v(τ) → −v(τ). These reversals are hard in the sense that they typically occur 
at points where v(x) �= 0. Here, we assume that τ = |ζ|, where ζ follows a symmetric α-stable 
density with characteristic function [11]

φ(k) = 〈exp(ikτ)〉 = exp (−κα|k|α) ,� (7)

where α (0 < α � 2) is the stability index and κ (κ > 0) is the scale parameter4. For α < 2, 
ψ(τ) asymptotically behaves like the power-law

ψ(τ) � 1
τα+1 .� (8)

Consequently, for α < 1, the average between reversal time diverges. Additionally, we will 
consider the exponential waiting time distribution (Brownian creepers [44])

ψ(τ) = λ exp(−λτ)� (9)

with mean rate λ. In this latter case moments of any order are finite.
After a hard velocity reversal a new waiting time τ  is generated and the deterministic 

motion is continued until the next hard velocity reversal. If during the period τ  a soft velocity 
reversal occurs at the points of maximal distance from the origin, the waiting time continues 
to be counted, that is, the waiting period in between two hard velocity reversals remains unaf-
fected by soft reversals. Therefore, the system evolves deterministically between the random 
velocity reversals. We expressly note that the velocity reversals only change the sign of the 
velocity thus keeping the system conservative with constant energy (6). We here assume each 
waiting time event leads to a hard velocity reversal with unit probability5. In phase space the 

4 Note that we could have chosen a completely asymmetric, one-sided Lévy stable distribution instead. However, 
with the symmetric choice we can also consider α values larger than unity [11, 43].
5 We could also assume that velocity reversals occur with probability 12.
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particle makes a jump from the point (x, v) to the point (x,−v) on the orbit determined by (6), 
without change in the direction of motion along the orbit, see figures 3 and 4.

3. Trajectories and mapping onto position and velocity distributions

Figure 3 schematically depicts the motion of a particle described by equation (3) along with 
its velocity reversals in phase space. Due to energy conservation (clock wise) motion takes 
place on the closed E = const orbit, which is depicted by the dotted line. Note that for clarity 
the solid line representing the sample trajectory is drawn with a different radius. The points 
labelled s and f  indicate the starting and final positions respectively. Points 1 and 1′ as well 
as 2 and 2′, connected with dashed lines, illustrate the hard velocity reversals. During these 
reversals a particle changes its velocity from unprimed to primed numbers, while the position 
remains the same. Figure 4 demonstrates some sample time evolutions of the velocity v(t) (left 
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Figure 2.  Phase space portrait of constant energy curves for n = 1, 2, 4, and ∞. Note 
the soft velocity reversals at the points of maximal distance from the origin, where 
v(xmax) = 0.

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1

V
(x

)

x

|x|
x2/2
x4/4

∞

Figure 1.  Single well potential V(x) = |x|n/n for n = 1, 2, 4 as well as for n = ∞, 
which represents an infinite rectangular potential well.
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column) and position x(t) (right column) of a test particle for various model parameters and 
potential types.

Every hard velocity reversal is associated with advancing the solution x(t) of equation (3) 
by a shift δ

δ =

{
2T (|x(t)|, xmax) if x(t)× v(t) > 0
T − 2T (|x(t)|, xmax) if x(t)× v(t) < 0

,� (10)

where T (|x(t)|, xmax) is the time needed to travel from |x(t)| to the reversal point xmax,

T (|x(t)|, xmax) =

∫ xmax

|x(t)|

dx√
2[E − V(x)]

.� (11)

T  is the period of the motion given in relation (5). The time shift (10) assures that x(t) = x(t + δ) 
and v(t) = −v(t + δ), which in turn guarantees energy conservation. Numerical simulations 
of the model confirm that at sufficiently long time t the accumulated time shift

∆t =
N∑

i=0

δi mod T� (12)

is uniformly distributed on the interval [0, T). The upper summation bound N  is defined by 
the condition

N−1∑
i=0

τi � t �
N∑

i=0

τi,� (13)

where the τi are the independent identically distributed random waiting times defined by the 
distribution (8). The observation that ∆t  in expression (12) is uniform, U([0, T)), is shown in 
figure 5 for n = 2 and n = ∞.

Due to the velocity reversals the phase space co-ordinates x(t) and v(t) are no longer 
deterministic but they become random variables. Moreover, position x and velocity v are not 

Figure 3.  Schematic of the particle motion in phase space from starting point (s) to 
final point ( f ). Solid line shows a possible trajectory while dashed parts correspond to 
velocity reversals (1 → 1′) and (2 → 2′). The dotted circle represents E = const orbit 
on which a particle stays all the time, the different radii are only drawn for clarity.
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independent but are linked by the energy conservation constraint (6). Therefore, the velocity 
density p(v) can be used to calculate the position distribution p(x) through

p(x) =
|x|n−1

√
2 [E − V(x)]

× p
(

v = ±
√

2 [E − V(x)]
)

.� (14)

Figure 4.  Sample trajectories for n = 1, 2, 4, and ∞ (top to bottom). The different 
colours correspond to α = 0.5 (red), α = 1.5 (green), and the exponential case with the 
scale factor λ = 1 (black), see bottom left panel for the legend. In the left column we 
show the velocity v(t), the right column depicts the position x(t). The simulations are 
described in section 4 below.
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Analogously, p(v) can be obtained from p(x) through

p(v) =
[
n
(
E − v2/2

)]1/n−1 |v|

× p
(

x = ±
[
n
(
E − v2/2

)]1/n
)

.
� (15)

In figure A1 we demonstrate that on top of the soft velocity reversals at the zero-velocity 
points, even for identical initial conditions hard reversals still maintain the random nature 
of the conservative Lévy walk motion. Consequently, after a finite time trajectories corre
sponding to the same initial conditions are becoming disparate, thus randomizing velocity 
v(t) and position x(t).

The cases n = 1 and n = 2 are fully traceable analytically. For n � 3 one has to rely on 
numerical methods. Consequently, we start our considerations with the case n = 2 corre
sponding to the conservative Lévy walk harmonic oscillator. Consecutively, we proceed with 
the case n = 1 and, finally, we consider the cases n = 4 and n = ∞ numerically.

In the specific case n = 2 relation (3) describes the harmonic oscillator, for which

x(t) = xmax sin(t + ϕ),� (16)

where ϕ is the initial phase. Without loss of generality it can be assumed that ϕ = 0, i.e. 
x(0) = 0 and v(0) = vmax. The first velocity reversal at t1 introduces the extra phase shift δ to 
equation (16), which is equal to

δ = π − 2t1.� (17)

The phase shift can be calculated from the condition

sin(t1) = sin(t1 + δ),� (18)

which is fulfilled for δ = 0 or δ = π − 2t1, as sin(u) = sin(w) has two series of main solu-
tions, u = w and u = π − w. Only the latter solution assures that v(t1) = −v(t1). Finally, for 
n = 2 the phase shift fulfils the recursion

{
δ0 = 0
δn = π − 2tn − δn−1

,� (19)

where tn are time instants of velocity reversal. These time instants are given by

Figure 5.  Accumulated time shift distribution p(∆t), see equation (12), for n = 2 and 
n = ∞ with various values of α. The solid lines represent 1/2π and 1/4, which are 
uniform densities over [0, T] for n = 2 (T = 2π) and n = ∞ (T = 4).
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tn = tn−1 + τ� (20)

with t0 = 0.
For α > 1 (or for the exponential density) when the mean time τ  between reversals is finite, 

from numerical simulations we conclude that at sufficiently long times ∆t , see equation (12), 
is uniformly distributed on [0, 2π), see figure 5. Analogously for α < 1 (see below) the distri-
bution p(∆t) also becomes uniform, however, due to the long memory of the initial conditions 
a significantly longer time is required as compared to the case α > 1. Therefore, both velocity 
and position are distributed according to the arcsine laws

p(v) =
1

π
√

1 − v2� (21)

and

p(x) =
1

π
√

1 − x2
,� (22)

where we interpret velocity and position as v(t)/vmax and x(t)/xmax. Above results follow 
from the transformation of variables

v(t)/vmax = cos(t + δ mod 2π),� (23)

and

x(t)/xmax = sin(t + δ mod 2π),� (24)

where (t + δ mod 2π) is uniformly distributed on [0, 2π), that is, U([0, 2π)). This behaviour is 
indeed corroborated by our numerical analysis, see below.

A different situation occurs for α < 1, when the mean waiting time between hard velocity 
reversals diverges. In this situation, even at appreciably long times discrete slowly decaying 
peaks appear in the distributions p(x) and p(v), see [45]. These correspond to deterministic 
motion events without hard velocity reversal, that is, to the solution of equation (3) with below 
initial conditions (27) and (28). At the time instant when p(x) and p(v) are evaluated, the 
trajectories corresponding to the peaks will be at exactly the same position with exactly the 
same velocity. With increasing time the height of these peaks decreases as the likelihood for 
hard velocity reversals increases. Finally, in the limit t → ∞, in analogy to the case α > 1, the 
peaks also disappear. Of course, these peaks can be completely eliminated by taking a random 
initial condition on the constant energy orbit.

A similar effect is observed for V(x) = |x|, in this case v(t) is piecewise linear and x(t) 
is piecewise parabolic. Assuming, analogously to the harmonic oscillator, that the velocity 
reversal introduces an extra phase shift to x(t) and v(t) leading to uniform distribution of 
(t + δ mod T) on [0, T), transformation of variables shows that the velocity is uniformly dis-
tributed over [−vmax, vmax],

p(v) =
1

2vmax
.� (25)

Furthermore, using relations (14) and (25) the density p(x) can be calculated as

p(x) =
1

4
√

E(E − |x|)
,� (26)

where x ∈ [−xmax, xmax] = [−E , E ]. Analogously, expression (26) can be calculated using the 
fact that x(t) is piecewise parabolic. Our numerical results thus confirm the above assumption 
of the uniform distribution of (t + δ mod T).

B Dybiec et alJ. Phys. A: Math. Theor. 52 (2019) 015001
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4.  Numerical analysis

As the motion in our conservative phase space is restricted to the total energy surface 
E = 1

2 v2 + V(x) = const the velocity v(t) changes between the maximal values −vmax  and 
vmax. Similarly, the position x(t) is restricted to [−xmax, xmax], in contrast to thermally activated 
motion which can reach arbitrary values of the phase space co-ordinates, with the respec-
tive Boltzmann weights. For clarity of presentation the initial conditions are chosen such 
that the numerical values of xmax and vmax are identical and the resulting p(x) and p(v), for 
fixed n, densities have the same support. For our case of unit mass and n �= 2, the condition 
xmax = vmax uniquely determines the total energy E, which in turn can be used to calculate 
xmax and vmax. For n = 2 the closed orbit is a circle, and thus the relation xmax = vmax always 
holds. As the initial condition any point on the E = const orbit can be chosen—we note that 
some of the observed results are sensitive to the initial conditions, as discussed below. We 
made the explicit choice

x(0) = 0� (27)

and

v(0) =

{
(2/n)1/(2−n) for n �= 2
1 for n = 2

.� (28)

Different initial conditions will introduce an initial phase shift to the solutions x(t) and v(t). 
In principle, we would expect that for the case α > 1 fast mixing of the system occurs such 
that the long time properties are independent of the initial conditions. For 0 < α < 1, how-
ever, when the mean waiting time 〈τ〉 diverges, the initial conditions should be visibly more 
persistent. In our finite-time simulations, we indeed observe a fast decay of the initial peaks 
in the position and velocity distributions for α > 1, while for 0 < α < 1 the decay is slower. 
Yet we do not see a clear change of the generic behaviour when α crosses the value of unity, 
see figures 6 and 8–10.

As evidenced in figure A2 this decay is actually of power-law form whose scaling exponent 
depends on the exponent of the waiting time density. It is tempting to assume that the decay of 
the peak height is directly linked to the scaling exponent α of the waiting time density, in the 
spirit of ‘The single big jump principle’ [46]. However, the results listed in table A1 appear 
not fully conclusive. For random initial conditions on the constant energy orbit, in contrast to 
fixed initial conditions, even for α < 1 there are no additional peaks in the densities p(x) and 
p(v) as the peaks are washed out.

For the general potential (4) with exponent n the period of the deterministic motion is 
given by expression (5). The values of the periods T  corresponding to different n with initial 
conditions (27) and (28) (or, more precisely, with the total energy E determined by the initial 
conditions) are listed in table 1. For n = 4, these values were used to obtain p(x).

In the numerical evaluation for the case n = 4 with Wolfram Mathematica equation  (3) 
was used to construct the mapping [0, T) � t �→ x(t). Then, using the constructed map and the 
assumption that (t + δ mod T) is uniform on [0, T) the probability density p(x) was obtained 
numerically by transformation of variables. In the final step, p(x) was transformed into p(v) 
using relation (15). With increasing steepness n the potential wells become almost flat in the 
vicinity of the origin. This implies that in that region there is practically no external force act-
ing on the test particle. Consequently, close to the origin for large n the velocity is practically 
constant, see the third panel from the top in figure 4. Therefore, the procedure based on the 
[0, T) � t �→ v(t) mapping cannot be successfully applied to determine p(v) when x(t) ≈ 0. 
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To calculate the density p(v) a transformation of variables x → v has to be used, see equa-
tion (15). Nevertheless, despite being more robust than the mapping [0, T) � t �→ v(t) even 
the numerical transformation of variables results in some numerical instabilities, see figure 9.

4.1. The densities p(x) and p(v)

The conservative random walk model based on equations (3) and (4) as well as random, hard 
velocity reversals was studied by Monte Carlo simulations. Multiple realisations were simu-
lated with the velocity Verlet algorithm [47]. Individual sample trajectories of finite length are 
displayed in figure 4 for various systems parameters. In particular, for finite time t, we show 
the difference between power-law waiting times with finite and infinite mean waiting time, 
and with exponential waiting times.

From the ensemble of realisations the densities p(x) and p(v) were constructed and com-
pared with the theoretical predictions. Figure 7 shows the oscillatory dynamics with a converg-
ing envelope of the mean values and standard deviation of the position x(t) and the velocity 
v(t) for the harmonic potential, n = 2. Due to the symmetry of the setup, even for an asym-
metric initial condition the densities for position and velocity converge to symmetric forms. 
Therefore the average values asymptotically tend to zero. As shown in figure A2 the decay 

Figure 6.  Probability densities p(x, t = 103) and p(v, t = 103) for V(x) = |x| with 
α = 0.5 (top) and α = 1.5 (bottom). Solid lines are given by equations (25) and (26). 
The initial conditions are adjusted in such a way that vmax = xmax, see relations (27) 
and (28).

B Dybiec et alJ. Phys. A: Math. Theor. 52 (2019) 015001
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Figure 7.  Case n = 2, from top to bottom: mean position 〈x(t)〉, standard deviation 
σ(x(t)) of the position co-ordinate, mean velocity 〈v(t)〉, and standard deviation σ(v(t)) 
of the velocity. Solid lines represent the theoretical values of the averages and standard 
deviations given in table 2. The initial conditions (27) and (28) assure that vmax = xmax.
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of the envelope of this dynamics is of power-law form. The standard deviations converge to 
their asymptotic values given in table 2. For diverging mean waiting time for hard velocity 
reversals corresponding to 0 < α < 1, clear periodicities in the mean and standard deviations 
of position and velocity are visible. Nevertheless, as discussed in 3, the amplitude of the perio-
dicity decays in time with a characteristic time scale depending on the value of the exponent 
α, see figure A2 and table A1. The observed periodicity agrees with the period of the motion 
for 〈x(t)〉 and 〈v(t)〉, as provided in table 1. The time dependencies of σ(x(t)) and σ(v(t)) are 
characterised by the half periods as given in table 1: 〈x2(t)〉 and 〈v2(t)〉 indeed feature half the 
periodicity of 〈x(t)〉 and 〈v(t)〉. Table 2 provides the asymptotic values of the standard devia-
tions. For n = 1, n = 2 and n = ∞ they are calculated exactly from the theoretical densities 
p(x) and p(v), while for n = 4 they were obtained numerically from p(x) and p(v).

Figures 6 and 8–10 display the finite time distributions p(x, t) and p(v, t) with α = 0.5, 
α = 1.5 and κ =

√
2 as well as λ = 1 (exponential waiting times), respectively, for increasing 

values of n at t = 103. Localised peaks in p(x) and p(v) for α = 0.5 are located at values of 
x(t) and v(t) corresponding to the deterministic motion, see equation (3). The results for the 
exponential waiting time distribution (λ = 1) are analogous to the case with finite mean wait-
ing time corresponding to 1 < α � 2. Therefore, we conclude that the model properties are 
not very sensitive to the exact shape of the waiting time distribution. The finiteness or infinity 
of the mean waiting time for 1 < α < 2 and 0 < α < 1, respectively, appears to only set the 
rate of convergence to the stationary state.

The solid lines in figures 6 and 8–10 represent the theoretical curves given by relations 
(21) and (22) as well as (25) and (26). For the case n = 4 they are calculated with Wolfram 
Mathematica. As mentioned above, the initial conditions are adjusted such that vmax = xmax, 
as given by equations (27) and (28). Some numerical instabilities are visible in figure 9 where 
the distribution p(v), calculated from p(x), fluctuates around the zero line. Small velocities 
are recorded when x ≈ ±xmax. In this region the numerical inversion of x(t) introduces some 
error, which is responsible for the p(v) fluctuations.

In the limit of n → ∞ the potential V(x) = |x|n/n becomes comparable to the infinite deep 
rectangular potential well, see figure 1. In this case p(x) is uniform and the formula for p(v) 
reads

p(v) =
1
2
[δ(v − v0) + δ(v + v0)] ,� (29)

which is nicely corroborated in figure  10. Note that v0 is set to v0 = 1 and xmax is set to 
xmax = 1. For 0 < α < 1 isolated persistent peaks in the densities p(x) and p(v) are visible, 
see figure 10.

4.2. Tails versus central parts of waiting time distributions

Figure 11 presents the sample time dependent probability density p(x, t) as a heat-map. The 
presented results correspond to α = 0.5, n = 2 for initial conditions (27) and (28). As this 
case is part of our discussion for diverging mean waiting time, the dominating slowly disap-
pearing maxima of p(x, t) correspond to the deterministic motion x(t) without hard velocity 
reversals. The projection of the maxima is thus given by sin(t), the solution of equation (3) for 
the selected setup. The maximum value of p(x, t) decays with time due to hard velocity rever-
sals, which eventually will occur. The decay rate is determined by α in the sense that larger 
values of α lead to more frequent randomising hard velocity reversals. Note the faint shadow 
line of the sine function shifted by half a period, δ = π. Its origin is discussed in relation to 
figure 12. The case of α < 1 when the decay of the peaks is slow, should be contrasted with 
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the case α > 1: namely, when the mean time between velocity reversals is finite, the disap-
pearance of the maxima of p(x, t) is fast.

An interesting dependence is observed for even smaller values of the stability index α, 
see top panel of figure 12. For α = 0.3 and up to intermediate times the distributions p(x) 
and p(v) exhibit two peaks. The higher dominating peak corresponds to deterministic motion 

Figure 8.  Probability densities p(x, t = 103) and p(v, t = 103) for V(x) = x2/2 with 
α = 0.5 (top) and α = 1.5 (middle). We also show the case of an exponential waiting 
time density with the scale factor λ = 1 (bottom). Solid lines correspond to the values 
in equations (21) and (22).
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without hard velocity reversals, which occur with appreciable probability due to the scale-free 
nature of the waiting time distribution. The lower, symmetrically localised peak corresponds 
to those trajectories which were immediately reversed. A significant fraction of those reversed 
trajectories continues deterministically, thus giving rise to the secondary transient peak in 
position and velocity distributions. With increasing time the height of the peaks is decreas-
ing and finally the system reaches its stationary density. The height of the secondary peak 
is decaying relatively fast with the stability index α. A relatively faint reminiscence of the 
secondary peak can also be observed for stability index α = 0.5 in figure 11. These second-
ary peaks arise due to immediately reversed trajectories and are confirmed by the cumulative 
density of waiting times, see figure 14, which shows that for small α there is a significant 
probability of (immediate) reversals.

Initial conditions (27) and (28) represent the situation when the particle motion is started in 
the minimum of the potential with the non-zero initial velocity. In the course of time velocity 
decreases as the potential energy grows. Finally, when x = xmax  the velocity becomes equal 
to 0 and a soft reversal takes place. Such an initial condition results in the maximal initial 
velocity. Consequently, an immediate hard velocity reversal is well visible and it results in 
the appearance of secondary peaks in position and velocity distributions, see top panel of 
figure 12. In contrast to (27) and (28) one can assume that a motion is started at x = xmax  
with zero initial velocity. On the one hand, both initial conditions result in the motion along 

Figure 9.  Probability densities p(x, t = 103) and p(v, t = 103) for V(x) = x4/4 with 
α = 0.5 (top) and α = 1.5 (bottom). The solid lines are calculated using Wolfram 
Mathematica.
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Figure 10.  Probability density p(x, t = 103) and p(v, t = 103) for infinite rectangular 
potential well with α = 0.5 (top panel) and α = 1.5 (bottom panel). The solid line 
represents uniform, theoretical, density.

Table 2.  Asymptotic values of the standard deviations σ(x) and σ(v) of the position and 
velocity co-ordinates for periodic motion in the potentials (4), for various values of n 
and initial conditions (27) and (28).

n σ(x) σ(v)

1
√

32/15 ≈ 1.461
√

4/3 ≈ 1.155
2

√
1/2 ≈ 0.707

√
1/2 ≈ 0.707

4 0.956 1.155
∞ √

1/3 ≈ 0.577 1

Table 1.  Periods T  of the periodic motion in potentials V(x) = |x|n/n, see relation (5), 
for various values of the power n, with initial conditions (27) and (28).

n T

1 8
2 2π ≈ 6.283
4 √

πΓ
[ 5

4

]
/Γ

[ 3
4

]
≈ 5.244

∞ 4
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the same orbit. On the other hand, zero initial velocity prevents immediate velocity rever-
sal, see bottom panel of figure 12 where the secondary peaks in p(x) and p(v) are absent. 
Nevertheless, the possibility of reversals is manifested by the extended widths of the primary 
(without velocity reversals) peaks.

055404
t

−1

−0.5

0

0.5

1

x

0
1
2
3
4
5
6
7
8

Figure 11.  Sample time dependent probability density p(x, t) for α = 0.5, n = 2, and 
initial conditions (27) and (28) The motion appears almost fully deterministic due to 
lack of hard velocity reversals. See also the discussion in section 4.2.

Figure 12.  Distributions of p(x, t = 100) and p(v, t = 100) for α = 0.3 with n = 2 
for the initial condition given by equations (27) and (28) (top panel) and v(0) = 0 with 
x(0) = xmax (bottom panel). The solid lines are given by equations (21) and (22). The 
vertical lines indicates peaks in p(x) and p(v).
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Finally, in order to verify the hypothesis of the immediate reversal we used a different wait-
ing time distribution, namely, the Pareto density

p(τ) = α(1 + τ)−(α+1),� (30)

with α > 0. The density (30) has the same power-law asymptotics as the applied α-stable 
density, see equation (8). Figure 13 presents the same results as figure 12 for the Pareto density 
(30). It is clearly visible that for the Pareto density of wating times there are no secondary 
peaks, corresponding to the immediate velocity reversal, compare top panels of figures 12 
and 13. Additionally, the Pareto distribution also changes the structure of the peaks in the 
absence of an initial velocity, that is for v(0) = 0, see bottom panels of figures 12 and 13, 
when they become narrow in comparison to the case of an α-stable waiting time distribution. 
Comparison of figures 12 and 13 attributes the structure of the peaks and the possibility of 
immediate reversal to the central (τ ≈ 0) part of the waiting time distributions. This is further 
analysed in figure 14 in which probability densities ψ(τ) and cumulative densities

F(τ) = Prob(τ ′ � τ) =

∫ τ

0
ψ(τ ′)dτ ′� (31)

corresponding to α-stable and Pareto waiting time distributions are presented. Figure  14 
clearly demonstrates that for small values of α the central parts (τ ≈ 0) of the waiting time 

Figure 13.  Distributions of p(x, t = 100) and p(v, t = 100) for Pareto distributions 
with α = 0.3 and n = 2 for the initial condition given by equations (27) and (28) (top 
panel) and v(0) = 0 with x(0) = xmax (bottom panel). The solid lines are given by 
equations (21) and (22). The vertical lines indicates peaks in p(x) and p(v).
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distribution contain more probability mass for an α-stable density than for a Pareto distribu-
tion. In turn, this indicates that the central part of waiting time distribution controls the prob-
ability of immediate velocity reversal.

5.  Summary and conclusions

Lévy walks are continuous time random walks with a spatiotemporal coupling between jump 
lengths and waiting times. This effects that long jumps are penalised by long corresponding 
waiting times, and thus the emerging mean squared displacement is always finite, in contrast 
to uncoupled Lévy flights. For the latter the diverging variance of the long-tailed jump length 
distribution translates into the divergence of the mean squared displacement. Most frequently 
the simplest spatiotemporal coupling using a constant speed is used. In the velocity model 
[28] this means that the waiting times determine the time between velocity changes. In such 
a scenario no external forces are considered such that the absolute value of the velocity, the 
speed |v|, is always constant. Lévy walks are conservative in the sense that their kinetic energy 
is constant.

Here, we have studied an extension of Lévy walk processes to cases in which external 
forces influence the motion of the test particle. As in the standard Lévy walk scenario we 
assume that the random walker deterministically continues its motion for a random time. At 
the renewal time, a velocity reversal occurs. We call this a hard velocity reversal, as typically 

Figure 14.  The associated cumulative distributions F(τ) (top panel) and probability 
densities ψ(τ) (bottom panel) for α-stable and Pareto densities with α = 0.3, 0.5, 1.5.
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the velocity of the particle at a random instant of time is finite. In contrast to the standard Lévy 
walk model, however, the speed is no longer constant. In the conservative random walk model 
adopted here the total energy of the particle consisting of the potential energy in the external 
force field and its kinetic energy is supposed to be a constant. This necessarily requires that 
the velocity changes deterministically and perpetually, according to Newton’s second law of 
motion. This scenario then also leads to soft velocity reversals at points of maximal distance 
from the centre of the potential, when the potential energy assumes its maximum and the parti-
cle velocity is zero. In this conservative random walk model the sole source of stochasticity is 
in the velocity reversal, similar to the standard Lévy walk model. Moreover, we demonstrated 
that the relaxation dynamics of the system visible in the decay of the envelope of |〈x(t)〉| is of 
power-law form.

From analytical calculations and numerical results we calculated the velocity and position 
distributions for Lévy walks in single well potentials of the form V(x) = |x|n/n with n = 1, 
2, 4, and ∞. The exact solutions we obtained agree perfectly with the shapes of the densi-
ties estimated from Monte Carlo simulations of the underlying motion. For waiting times 
with diverging mean (with power law exponent 0 < α < 1) the densities are decorated with 
distinct peaks, which slowly decay as function of time. Regardless of the potential type, the 
peak height decays as a power-law function of time, with the decay rate depending on the 
scaling exponent α, see table A1 and figure A3. For more details see the appendix. These 
peaks quickly disappear when the mean waiting time is finite, corresponding to the cases of 
power law waiting time distributions with 1 < α � 2 or exponential waiting time distribu-
tions. When the motion occurs in symmetric single well potentials with n = 2  or 4, the dis-
tribution of both velocity and position are U-shaped. For the rectangular potential well both 
distributions are flat. In the intermediate case n = 1 the position distribution is U-shaped 
while the velocity distribution is flat. The central properties for the different relevant cases 
are summarised in table 3.

The studied extension of the Lévy walk scenario provides a possibility to verify which 
details of the dynamics are sensitive to the tails and which are sensitive to the central parts 
of the waiting time distributions. Namely, the tail of the waiting time distribution controls 
the rate of convergence to the stationary state. Therefore, for α < 1, it is responsible for the 
appearance of the slowly vanishing peaks decorating the stationary states. The width of the 
central part of the waiting time distribution around τ ≈ 0 is responsible for the appearance of 

Table 3.  Probability densities for conservative random walks in single well potentials 
for different values of the power exponent n of the external potential as well as for 
waiting time densities of power law form with diverging (0 < α < 1) and finite 
(1 < α � 2) mean waiting time. For exponential waiting times the same behaviour is 
found as for the case 1 < α � 2.

n = 1 1 < n < ∞ n = ∞

p(τ) ∝ τ−α−1 
(0 < α < 1)

p(v)    uniform p(v)    U-shaped p(v) = 1
2 [δ(v − v0) + δ(v + v0)]

p(x)    U-shaped 
slowly decaying 
peaks in both PDFs

p(x)    U-shaped slowly 
decaying peaks in both 
PDFs

p(x)    uniform slowly  
decaying peaks in p(x) only

p(τ) ∝ τ−α−1 
(1 < α � 2)

p(v)    uniform p(v)    U-shaped p(v) = 1
2 [δ(v − v0) + δ(v + v0)]

p(x)    U-shaped 
fast decaying peaks 
in both PDFs

p(x)    U-shaped fast 
decaying peaks in both 
PDFs

p(x)    uniform fast decaying 
peaks in p(x) only
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secondary peaks in the position and velocity distributions which originate in the significant 
possibility of immediate velocity reversal. Consequently, there are two control mechanisms 
that allow one to eliminate secondary peaks. The first possibility is to use v(0) = 0 initial con-
dition. The second option is to use a narrower waiting time distribution. The former scenario 
diminishes secondary peaks but still preserves the non-zero width of primary peaks. The latter 
scenario not only eliminates secondary peaks but also reduces the width of the primary peaks. 
We note again that regardless of the existence or divergence of the mean waiting time, in the 
long time limit the peaks disappear.

The studied model provides a possible generalisation of the Lévy walk model which 
accounts for external forces. Within this model, in analogy to free Lévy walks the system is 
conservative. The system energy consists of kinetic and potential energy. The studied model 
can be contrasted with other, non-conservative extensions of Lévy walks [48–51].
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Appendix.  Further details on the conservative Lévy walk dynamics

Figure A1 complements figure 4 and investigates the role of randomness in the system dynam-
ics. In contrast to figure 4, it presents three sample trajectories for α = 0.5 (top panel) and 
α = 1.5 (bottom panel) for n = 4 corresponding to the same initial conditions. The trajecto-
ries start with identical initial conditions but soon become randomised due to hard velocity 
reversals. Figure A1 demonstrates that with increasing value of α a larger number of hard 
velocity reversal is observed.

In order to quantify how the stationary state is reached we analyse the dependence of 
〈x(t)〉 in more detail. From 〈x(t)〉 shown in figure  7 the absolute value |〈x(t)〉| was calcu-
lated. We then determined the envelope |〈x(t)〉|e corresponding to the local maxima of |〈x(t)〉|. 
These envelopes were then fitted by a power-law. Figure A2 presents the envelope |〈x(t)〉|e for 
α = 0.5 (top panel) and α = 1.5 (bottom panel) for n = 1, 2, 4. From figure A2 it is clearly 
visible that for α = 0.5 the envelope |〈x(t)〉|e decays as a power-law with exponent = −0.4, 
which is close to the value 0.5 of α, independent of the steepness of the potential characterised 
by n. For α = 1.5, in contrast, the power-law decay is significantly faster with an exponent 
depending on n.

Finally, in order to measure the convergence rate to the stationary state we extracted the 
relative heights h(t) of the deterministic peaks decorating the probability densities. From this 
data we constructed time series showing peak heights measured from the background given by 
the density without peaks. These time series were then used to fit the power-law decay

hv(t) = βv × tαv� (A.1)

and

hx(t) = βx × tαx .� (A.2)
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Figure A1.  Three sample trajectories for α = 0.5 (top panel) and α = 1.5 (bottom 
panel) for n = 4 with identical initial conditions. In the left column we show the velocity 
v(t), the right column depicts the position x(t). The plots evidence the randomisation of 
sample paths due to hard velocity reversals.

Figure A2.  Decay of the envelope |〈x(t)〉|e representing the local maxima of |〈x(t)〉|, for 
α = 0.5 (top panel) and α = 1.5 (bottom panel). The scaling exponents for the apparent 
power-law behaviour are indicated in the panels.
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Figure A3 presents results for the harmonic potential. Empty symbols show the peak heights 
in the velocity distribution while full symbols refer to the position distribution. In both distri-
butions the dependence of the peak height is practically identical. For α < 2, the decay rate is 
of power-law type. The scaling exponent characterising the decay is very sensitive to the value 
of the stability index α, see table A1. For α < 1 the decay is very slow, consequently peaks 
decorating the time dependent densities take a very long time to disappear. In contrast, for 
1 < α < 2 the decay still seems to be of power-law type but it is fast enough to diminish the 
peaks practically quite fast. Therefore, on the one hand, regardless of value of α there is the 
same mechanism responsible for the decay of memory about initial conditions. On the other 
hand, the observed time scales strongly depend on α. Interestingly, the exponents describing 
the decay are weakly sensitive to the potential type, see table A1.

Figure A3.  Decay of peak height hv(t) decorating velocity (empty symbols) and 
position hx(t) (full symbols) distributions along with fitted slopes, see table A1.

Table A1.  Exponents characterising the decay of the peaks decorating velocity (αv) 
and position (αx) distributions as a function of the stability index α and the potential 
steepness n.

n α αv ±∆αv αx ±∆αx

1 0.3 −0.237 ± 0.001 −0.238 ± 0.001
1 0.5 −0.441 ± 0.001 −0.441 ± 0.001
1 1 −0.929 ± 0.003 −0.936 ± 0.003
1 1.5 −1.684 ± 0.009 −1.647 ± 0.017
2 0.3 −0.239 ± 0.001 −0.240 ± 0.001
2 0.5 −0.444 ± 0.001 −0.445 ± 0.001
2 1 −0.914 ± 0.003 −0.913 ± 0.003
2 1.5 −1.561 ± 0.013 −1.573 ± 0.012
4 0.3 −0.238 ± 0.001 −0.243 ± 0.001
4 0.5 −0.439 ± 0.001 −0.443 ± 0.001
4 1 −0.898 ± 0.004 −0.901 ± 0.003
4 1.5 −1.394 ± 0.027 −1.621 ± 0.007
6 0.3 −0.223 ± 0.002 −0.231 ± 0.001
6 0.5 −0.440 ± 0.002 −0.442 ± 0.001
6 1 −0.905 ± 0.004 −0.921 ± 0.003
6 1.5 −1.298 ± 0.041 −1.632 ± 0.009
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