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Abstract. Wealth and income distributions are known to feature country-specific Pareto exponents for
their long power-law tails. To propose a rationale for this, we introduce an agent-based dynamic model
and use Monte Carlo simulations to unveil the wealth distributions in closed and open economical systems.
The standard money-exchange scenario is supplemented with the position-exchange agent dynamics that
vitally affects the Pareto law. Specifically, in closed systems with position-exchange dynamics the power
law changes to an exponential shape, while for open systems with traps the Pareto law remains valid.

1 Introduction

For a long time economists, econophysisists, and “inter-
disciplinary” scientists have been unveiling the reasons
of inequality [1–7] and proposing methods to quantify
income, wealth, or money1 distributions in different soci-
eties [8–19]. Pareto was the first to find [1] that wealth
distributions in European countries have power-law tails.
For m ≥ mc they obey PPar(m) ∝ m−(1+ν), while below
a threshold value m < mc of money one gets P (m) ∝
mαe−m/m. Hereafter, P (m) denotes the number-density
of people with money m. The decay of PPar(m) for large
m is the Pareto law with exponent ν. The power law for
large-income tails of P (m) was confirmed [13], while a
close-to-exponential distribution was found at low incomes
[20,21].2 Despite decades [19] of intense research and
data analysis, the exact physical mechanisms of wealth
distributions are not yet fully understood.
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1 These three terms are coupled, but clearly not equivalent in

terms of their evolution and mathematical description (statistics,
distributions, etc.). While salary multiplied by time yields the total
amount of money earned by an individual, other sources of income
exist as well, generating the total wealth of a person. All income
sources have different liquidity and are subject to varying specific
inflationary, political, personal and other risks. Our simplistic agent-
based model operates solely with the final product: the formal and
instantly exchangeable money. We use the term “money” in the
model section.

2 The latter offers a well equilibrated subsystem with the mean
value of money in subpopulation acting as temperature in a
statistical sense [9,13].

A number of statistical-mechanics models have been
proposed to unravel the observed trends, including
ideal-gas-like saving-based models for closed and open
systems in the absence of position-exchange dynamics
[11,13,14,22–33]. Models of these types yield the Pareto
law with a certain ν value. However, the analysis of
real data revealed variations of ν for different societies,
government forms, time evolution of ν [34] and its sub-
population dependence [19]. Different Pareto exponents
were found for income distributions for the US, the EU,
China, Germany, Russia, France, etc. [17,35–38]. Agent-
based models without position exchanges of agents face
problems explaining these facts that motivated us to
propose/examine a model with certain position-exchange
dynamics.

2 Money-exchange models

In a one-dimensional model in the absence of position-
exchange dynamics the ith agent at time t – the time
passed from the start of simulations from the initial state
– has an amount of money mi(t). The total amount of

money of all N agents is conserved, M(t) =
∑N
i=1mi(t) =

const. In a trading event, a pair of neighboring agents i
and j exchange their money, see Figure 1. Also, a sav-
ing propensity [11,13] λ is introduced: the ith agent saves
a fraction 0 ≤ λ ≤ 1 of its money and randomly trades
the remaining amount. Mathematically, this scheme is
mi(t + 1) = λimi(t) + εij [(1 − λi)mi(t) + (1 − λj)mj(t)]
and mj(t+ 1) = λjmj(t) + (1− εij)[(1− λi)mi(t) + (1−
λj)mj(t)], see references [11,14,22–33]. Here, a set of uni-
formly distributed random numbers 0 ≤ εij ≤ 1 is chosen
for each exchange of money [33,40]. For a model with
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Fig. 1. Schematics of an agent-based economic model on a
one-dimensional lattice. Money and position exchange in the
presence of traps (the black sites) are shown as arrows for the
respective pairs of agents.

constant λ the saving propensity assumes a single value,
while for a model with distributed λ we assign a random
number for each agent (0 ≤ λi < 1, with 1 ≤ i ≤ N) in
each realization.

Markets obeying the models without any position-
exchange dynamics at a fixed λ value are non-interacting
at λ = 1 (the system is “frozen” at this special value of
λ), while at λ = 0 no savings are allowed in the model
(trading-only strategy) [11]. For a fixed λ the steady-state
distribution P (m) decays exponentially for large m [11].
The most probable amount of money is zero at λ = 0
(Gibbs distribution), while the average amount 〈m〉 =∫∞
0
mP (m)dm is finite at λ→ 1, see references [11,14,33].

Clearly, other money-exchange scenarios are also possible
(multiplicative, greedy exchange, etc. [41]). Various mod-
ifications of this model can be proposed, including money
exchange with all agents (as in Ref. [24]), money influx in
the system, different starting conditions, specific exchange
rules, etc. Note that kinetic money-exchange agent-based
economic models for growing markets also exist [28].

Recently, we studied the agent-based model without
position exchange but with traps by means of com-
puter simulations [33]. These traps on the lattice act as
money “sinks”: an agent trading with a trap loses the
traded money (mimicking unfair trading partners, events
of bankruptcy, etc.) [33]. Closed and open systems, with
fixed and uniform saving propensities λ, have resulted in
a single value of exponent ν [33]. Below, we closely follow
the model of reference [33] adding a new important ele-
ment: a fraction 2f/N of traders (random or fixed) can
now exchange their positions.

Such moves mimic “migration” of agents in a trad-
ing community (geographic, corporate, etc.). In computer
simulations, we consider the scenarios of fixed and ran-
dom number of agent pairs that exchange positions. For
instance, at a fixed value f = 10 during each money-
exchange simulation step 20% of agents are chosen ran-
domly to exchange their positions. For the model with
position-exchange dynamics at a variable value of f on
each simulation step – in addition to a random number of
agent pairs (from 0 to N/2) exchanging random amounts
of money – a random number of pairs of agents (from 0
to (f/100) × N) are randomly chosen on the lattice to
swap their positions. The model is called “fully dynamic”
when f = 50 and potentially all agents can swap their

positions at each step of money exchange. Note here that
traps also change their positions in our computational
algorithm. Moreover, if traps are present in the system,
they are randomly distributed with density ρ. Thus, three
or more random-number distributions are used on each
step for simulating our kinetic agent-based model with
position-exchange dynamics.

The lattice-based system of agents studied below is peri-
odic: the first agent is the same as the last one. Initially,
each agent holds a unit amount of money, mi(t = 0) = 1.
Money is a positively defined measure, so no debt is
allowed in the system, see also reference [39]. For all results
below, the simulations are run for T ≥ 104 Monte Carlo
steps (the number of steps is equivalent to time t because
the time step equals unity), the lattice has N = 102

sites, and statistical averaging for P (m) is performed over
R = 103 realizations. Each realization here corresponds to
a set of λi and εij values being generated and (if applica-
ble) to a set of traps with density ρ being distributed on
the lattice. Note that each site corresponds to a trader in
closed systems or a trader or a trap for open systems. The
steady state is reached after T steps for all parameters
used. We separately simulate closed and open systems,
each for the scenario without and with position-exchange
dynamics of agents. In the simulations values λi ∈ [0, 1)
are assigned to each agent and remain constant. Thus, for
models with position exchanges certain mixing of agents
results in other-than-Pareto distributions of money in the
steady-state, as shown below.

3 Closed systems

In Figure S1 (see Supplementary material) we present
the results of simulations for the trap-free model without
and with position-exchange dynamics featuring a ran-
dom saving propensity λ. We find rather unexpectedly
that P (m) for the model with position-exchange dynam-
ics gives rise to the exponential tail, with P (m) ∝ e−m/m
and 1/m ≈ 1.29, as shown in Figure S1b. This exponen-
tial decay of P (m) in the large-m regime is our first
result. This contrasts the power-law behavior for the
model without position-exchange dynamics (at f = 0)
[11,22–24,31,32], with the Pareto exponent (1 + ν) ≈
2.01 ± 0.02, see Figure S1a. We checked that simula-
tions for larger systems and more realizations produced
the same Pareto exponents for the trap-free model with-
out position-exchange dynamics. We also checked that
dramatic changes in the money distribution – from the
standard Pareto to the exponential law for the system
with position exchange – are independent of the system
size and number of realizations in computer simulations,
see Figure S2 (Supplementary material).

We find that, as the intensity of position exchange f
grows, the Pareto law observed at f = 0 gradually turns
into an exponential P (m) decay, see Figure 2, as one can
expect. The results for both the scenario of constant f
value and a variable number of agents exchanging their
positions are shown in this plot. The value of f , there-
fore, controls the transition between the two forms of the
steady-state money distribution. Concurrently, as in the
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Fig. 2. Distribution P (m) for a closed system for varying
intensity f of position exchange of agents, plotted both for
constant-f and random-f scenarios.

constant-f scenario the values of f increase, the maximum
of P (m) shifts slightly towards larger m values. Thus, in
the steady state of this model the fractions of very poor
and very rich agents is diminished in favor of middle-class
agents (as shown in Fig. 2).

4 Open systems

As in reference [33], a non-conservative nature of trading
events is implemented in the current model via randomly-
distributed traps with occupation fraction ρ, see Figure 1.
Traps mimic unsuccessful trading events [33]. Figure S3
(Supplementary material) shows the results of simula-
tions for the models in the absence and in the presence
of position-exchange dynamics for trap fraction ρ and
varying values of f . The open system with the highest
position-exchange fraction of agents f is found to have
a larger Pareto exponent than the closed system without
position-exchange dynamics, with (1 + ν) ≈ 2.0. Thus, for
the models with position-exchange dynamics the presence
of traps recovers the Paretian decay of P (m), as com-
pared to the exponential decay for trap-free models with
position-exchange dynamics (compare Figs. S1 and 2).
This observation is our second key result. Note that the
value of ν for the system in the absence of position-
exchange dynamics (see Fig. S2) is found to be almost
insensitive to ρ, see also reference [33].

The distributions P (m) for the model with the position-
exchange dynamics and traps are shown in Figure 3 for
fixed ρ values and for both constant-f and random-f
position-exchange scenarios. The Pareto exponent changes
gradually with f from its value for a model in the absence
of position-exchange dynamics for a vanishing f, finally to

Fig. 3. Power-law P (m) in a closed system without position-
exchange (red circles) and an open system with position-
exchange dynamics in the presence of traps with density
ρ = 1/20 plotted for a varying fraction of agents exchanging
their positions, f . The Pareto exponents are provided in the
graph.

the exponential distribution for the system with position-
exchange dynamics at fully random fractions f . The
explicit values of ν are given in Figure 3. The trap density
ρ tunes the Pareto exponent and, therefore, offers a realis-
tic control parameter to describe the observed variations
of ν. This is our third result.

Finally, in Figure S4 (Supplementary material) we show
the simulated power-law tails of P (m) for rather small ρ,
both for finite f values and for random fractions of agents
exchanging their positions. Naturally, for larger trap den-
sities the magnitude of non-normalized P (m) decreases:
for larger ρ more money “leaks out” of the system via
the traps (after a fixed number of simulation steps). The
Pareto exponents are found almost independent of ρ,
reaching (1 + ν) ≈ 4.5 for fully random fractions f , see
Figure S4. This is our fourth key result.

5 Conclusions

We found that a possibility of exchange of positions of the
agents in a kinetic economic model has severe implications
on the Pareto paradigm for the distribution of money,
P (m). We employed Monte Carlo simulations to exam-
ine the steady state of this kinetic model, both without
and with trapping-agents. Notably, for a closed economic
system the Pareto law of P (m) for a system with position-
exchange dynamics was demonstrated to turn into an
exponential decay as the intensity of position exchange
grows, see Figure 2. The physical rationale is as follows:
progressive annealing or mixing of the system due to the
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position-exchange dynamics of agents implies an effec-
tive “temperature” in the system [13] that establishes the
Boltzmann-Gibbs exponential distribution of money, as
expected statistically. This is in contrast to the power-law
distribution in a less equilibrated system (in the absence
of any position-exchange dynamics). For an open system
with position-exchange dynamics, the distribution P (m)
revealed again a power law, with the exponents controlled
by the intensity of position exchange of the agents, see
Figure 3. Lastly, the density of traps in the system was
shown not to change considerably the power-law expo-
nent in open systems with position-exchange dynamics,
see Figure S4.

Clearly, with this primitive model we do not pretend
to explain the realm of extremely rich wealth and income
distributions observed for different countries [13,17]. How-
ever, we emphasize that the open model in the presence
of position-exchange dynamics behaves fundamentally
different than the closed model in the absence of position-
exchange dynamics, with its paradigmatic Pareto law for
P (m). Different mobilities of agents in a global trading
system may thus create an impetus for country-specific
Pareto exponents, as indeed observed. The traders in their
environments possess specific mobilities and trapping
partners that possibly affects the forms and exponents of
tails of P (m) distributions.
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