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We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic,
and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this
stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how
the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in
the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the bal-
listic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD tra-
jectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffu-
sive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive
UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken
under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We
also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken,
both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered,
with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles.
In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the
short time ballistic limit. The approaches developed here open ways for considering other stochastic processes
under physically important conditions when a finite particle mass and aging in the system cannot be neglected.
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I. INTRODUCTION

Anomalous diffusion processes feature a nonlinear growth
of the ensemble-averaged mean squared displacement (MSD)
of particles with time [1–13], namely,

〈x2(t)〉 =
∫ ∞

−∞
x2P (x,t)dx ∼ 2Kαtα. (1)

Here, P (x,t) is the probability density function (PDF) to
find the tracer particle at time t at position x and Kα is
the generalized diffusion coefficient with physical dimensions
[Kα] = cm2 sec−α . The anomalous, and in general time local,
scaling exponent α(t) distinguishes the regimes of subdiffusive
(0 < α < 1), normal (α = 1), and superdiffusive (α > 1) par-
ticle motions. The ballistic regime corresponds to α = 2. An
explicit time dependence of the scaling exponent α(t) indicates
that a transient non-Brownian growth of the MSD occurs in
the relevant time window (see, e.g., [14,15]). Hyperballistic
MSD growth with α > 2 can occur, for instance, for particle
diffusion in turbulent flows [16,17] or for nonequilibrium
initial conditions [18].

Anomalous particle kinetics was detected in numerous
physical and biophysical systems. From the perspective of
crowded [19–25] biological cells, the list of examples includes
protein diffusion in living cells [26–29], motion of chromo-
somal loci [30–33] and polymeric molecules [34], diffusion
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of virus particles [35], motion of lipid and insulin granules
inside cells [36,37], diffusion of membrane lipids [38–46]
and membrane-crowding proteins [14,15,47,48], dynamics of
ion channels [49–52] in biomembranes, diffusion of small
molecules near cell membranes [53–55] and their permeation
across membranes [56], active transport in cells [57–61], and,
finally, the motion on the level of entire microorganisms [62].

In contrast to the universal Gaussian normal diffusion,
anomalous diffusion processes are nonuniversal. There exist
a variety of theoretical models sharing the same form (1) of
the MSD [11], including continuous time random walks de-
scribing diffusion with a divergent waiting time scale [63–68]
and trapping models in random energy landscapes [69–77].
In addition, models for particle motion in heterogeneous
environments [78–86] and stochastic processes with dis-
tributed or time varying diffusion coefficient were consid-
ered [87–89]. Exponentially fast [90–92] and logarithmically
slow [10,93–97] anomalous diffusion processes are also
worth mentioning here. Moreover, fractional Brownian motion
and fractional Langevin equation motion with a power-law
correlated noise [98–100] can describe the dynamics of
particles in viscoelastic media such as the cell cytoplasm. Also,
correlated continuous time random walks should be mentioned
here [101–103]. The adequate description of some systems
required the coupling of more than one anomalous diffusion
mechanism [36,37,49].

Here, we consider the remaining popular anomalous
diffusion model, scaled Brownian motion (SBM), with
the time dependent diffusion coefficient of the power-law

2470-0045/2017/95(1)/012120(15) 012120-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.012120


SAFDARI, CHERSTVY, CHECHKIN, BODROVA, AND METZLER PHYSICAL REVIEW E 95, 012120 (2017)

form [104–109]

D(t) = αKαtα−1. (2)

SBM is a Gaussian and inherently nonstationary process.
The power-law dependence (2) of the particle diffusivity
was widely used to describe i.a. subdiffusion in cellular flu-
ids [110], water diffusion in cells [111], and it naturally arises
for the self-diffusion in granular gases [109,112,113]. For more
examples, the reader is refereed to our recent study [109].
The exponent of D(t) is 0 < α < 1 for subdiffusion, 1 <
α for superdiffusion, and α = 0 denotes ultraslow SBM
diffusion (considered in Ref. [96]). Note that nonstationary
processes with a fluctuating two-state diffusion coefficient
were quantified in Refs. [88,114,115] in terms of both the MSD
and the time-averaged MSD. The overdamped approximation
appears to work well there. The diffusion of massive particles
experiencing a fluctuating friction was already studied in detail
in Refs. [116].

Despite a great interest in the SBM process, the standard ap-
proaches usually deal with massless particles, the overdamped
limit of the Langevin equation [11]. The regime of under-
damped motion, when the inertial term is non-negligible [117],
is typically less studied for anomalous diffusion processes. As
exceptions we mention the fractional Langevin and fractional
Klein-Kramers equations studied in Refs. [60,61,118–121]. In
this case, under the conditions of weak coupling of particles
to the thermal bath, the ballistic diffusion is known to govern
the short time dynamics [122–124].

Recently, the first results for the underdamped SBM
(UDSBM) process were obtained by the authors in Ref. [109].
It was found [109] that for α > 1 the overdamped regime
is reached rather soon, while for small positive α values an
intermediate regime for the particle dynamics emerges and
influences the particle dynamics, both for the MSD and the
time-averaged MSD. Finally, for ultraslow SBM at α = 0
the overdamped limit is not reached at all. Thus, a finite
particle mass affects the dynamics at all time scales [109]
and the description in terms of the conventional overdamped
limit fails [96]. This present study clarifies which properties
of UDSBM introduced in Ref. [109] should be modified
in the presence of aging. The latter means that one starts
recording the particle position after some aging time ta . The
current investigation involves some advanced computations
and discovers additional diffusion regimes, as compared to
nonaging UDSBM [109]. In particular, we derive scaling
relations in the regime of strong aging in the system for the
MSD, time-averaged MSD, and ergodicity breaking parameter.

For out-of-equilibrium processes such as SBM one expects
severe effects of aging onto the particle dynamics [125,126].
Therefore, the time interval ta impacts the statistical prop-
erties [11,127,128]. Effects of aging are observed, for in-
stance, in glassy systems [129–133], homogeneously cooled
granular fluids [134], for diffusion in plasma cell mem-
branes [49,135], protein dynamics [136,137], in polymeric
semiconductors [138], as well as for blinking statistics of
quantum dots [139,140].

We here generalize the stochastic SBM process to the
underdamped and aging situation. In Sec. II we introduce the
observables and describe the routine for computer simulations.
In Sec. III we present the main findings for the MSD, the
time-averaged MSD, and the ergodicity breaking parameter of

aging UDSBM. The cases of subdiffusion and superdiffusion
are considered separately. We compare the results of analytical
calculations and extensive computer simulations in different
aging regimes. In Sec. IV the MSD and the time-averaged
MSD for the spatial case of ultraslow UDSBM are considered.
In Sec. V we discuss some applications of our results and
conclude.

II. OBSERVABLES AND SIMULATIONS MODEL

In addition to the standard characteristic of particle spread-
ing given by the ensemble-averaged MSD [1], we are interested
hereafter also in the the time-averaged MSD. The latter is
defined from a single particle trajectory x(t) as [11]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t)]2dt. (3)

The extension to higher dimensions is straightforward. Here,
the lag time � is the width of the sliding window and T is the
total trajectory length. Expression (3) is the standard measure
to quantify particle displacements in single particle tracking
experiments, when few but long time series x(t) are typically
available [141]. It is complementary to the ensemble-averaged
MSD, widely used in the theoretical analysis of stochastic
processes: there the averaging is performed at each time t over
the ensemble of N given trajectories of the same length.

When the measurement starts after time ta from the
initiation of the process, the aging time-averaged MSD is
naturally defined as [66–68]

δ2
a(�) = 1

T − �

∫ T +ta−�

ta

[x(t + �) − x(t)]2dt. (4)

The average over N realizations of the diffusion process yields
the mean time-averaged MSD,

〈
δ2(�)

〉
= 1

N

N∑
i=1

δ2
i (�), (5)

and analogously for
〈
δ2
a(�)

〉
. This trajectory based averaging

gives rise to a smoother variation of the time-averaged MSD
with the lag time, as compared to individual realizations (3).
Note that for stochastic processes with a pronounced scatter of
individual time-averaged MSD realizations, the determination
of the mean (5) requires a substantial averaging sample to be
generated [11].

For ergodic diffusion processes in the Boltzmann-Khinchin
sense the MSD (1) and the time-averaged MSD (3) coincide in
the limit �/T � 1 [11]. A quantitative measure of the ergodic
properties of a stochastic process [142–146] is the ergodicity
breaking parameter, EB, defined via the fourth moment of the
time-averaged MSD [98,147]

EB(�) =
〈
[δ2(�)]2

〉
−

〈
δ2(�)

〉2

〈
δ2(�)

〉2 = 〈ξ 2(�)〉 − 1. (6)

Here, the ratio

ξ (�) = δ2(�)〈
δ2(�)

〉 (7)
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is a dimensionless parameter that quantifies the relative
deviation [148] of individual time-averaged MSDs about their
mean. The characteristics employing the higher moments such
as skewness and kurtosis can be implemented additionally to
the EB parameter, to characterize finer details of the spread of
δ2 trajectories [99].

For SBM considered herein, we numerically solve the
stochastic Langevin equation for massive particles [109]

d2x(t)

dt2
+ γ (t)

dx(t)

dt
=

√
2D(t)γ (t)η(t), (8)

driven by the Gaussian noise η(t) with zero mean 〈η(t)〉 = 0
and unit variance 〈η(t)η(t ′)〉 = δ(t − t ′). The friction coeffi-
cient is a time dependent function γ (t) = τ−1

v (t), where

τ−1
v (t) = γ0

√
T (t)

T (0)
(9)

contains the time dependent temperature T (t). For instance,
for force-free cooling granular gases this dependence is
characterized by the law [109]

T (t) = T0

(1 + t/τ0)2−2α
. (10)

For viscoelastic granular gases the exponent is α = 1
6 , while

for granular gases with a constant restitution coefficient α =
0 [95,112,113]. Correspondingly, the time dependent diffusion
coefficient of the particles is

D(t) = D0

(1 + t/τ0)1−α
, (11)

where the initial values are T0 = T (0) and D0 = D(0). Putting
the Boltzmann constant hereafter to unity (kB = 1) we get the
time-local fluctuation-dissipation relation [109]

D(t) = T (t)

γ (t)m
. (12)

Note that the characteristic scale of the temperature variation
τ0 is much longer than the typical relaxation time in the system

τ0γ0 � 1. (13)

This condition assures the applicability of the initial Langevin
equation (8).

The second order Langevin equation (8) is equivalent to two
differential equations of the first order for the increments of
the particle position x(t) and velocity v(t) [150,151], namely
(assuming unit particle mass m = 1 from hereon),

dv(t) =
√

2D(t)γ (t)η(t)
√

dt − γ (t)v(t)dt, (14)

dx(t) = v(t)dt. (15)

We discretize this system of equations in T/δt steps and use
the unit time step in our simulations (δt = 1). Hence, on time
step tn+1 the following discrete scheme is solved:

v(tn+1) = v(tn) +
√

2D(tn)γ (tn)η(tn)
√

tn+1 − tn

− γ (tn)v(tn)(tn+1 − tn), (16)

x(tn+1) = x(tn) + v(tn)(tn+1 − tn). (17)

III. MAIN RESULTS: AGING UDSBM

In this section we present our results for the ensemble-
and time-averaged MSDs of UDSBM. We also quantify the
amplitude scatter of individual time-averaged MSD trajecto-
ries of this process. We first present the analytical results for
the UDSBM process and then compare them with computer
simulations.

A. MSD

To obtain the ensemble-averaged MSD, we start with the
velocity-velocity correlation function, that can be directly ob-
tained via integration of the Langevin equation (8): assuming
without loss of generality that t2 > t1 and applying the same
approximations as described in Ref. [109] to evaluate the
integrals, we find

〈v(t1)v(t2)〉 ≈ D0γ0

(
1 + t1

τ0

)2α−2

× exp

{
τ0γ0

α

[(
1 + t1

τ0

)α

−
(

1 + t2

τ0

)α]}
.

(18)

Note here that throughout the text the ≈ sign has the meaning
of approximate equality, the symbol ∼ means asymptotically
equal, and the sign � indicates asymptotic equality up to a
numerical prefactor.

The correlation function (18) is obtained under the condi-
tion (13). The ensemble-averaged MSD of diffusing particles
can be obtained via the integration of the correlation func-
tion (18),

〈x2(t)〉 = 2
∫ t

0
dt1

∫ t

t1

dt2〈v(t1)v(t2)〉. (19)

The reader is referred to our recent study [109] for details on
the derivation of 〈v(t1)v(t2)〉 and the MSD for the nonaging
UDSBM process. In short, at ta = 0 one gets

〈x2(t)〉 ≈ 2D0

[
τ0

α

[(
1 + t

τ0

)α

− 1

]

+ γ −1
0

(
exp

{
−τ0γ0

α

[(
1 + t

τ0

)α

− 1

]}
− 1

)]
.

(20)

In the more general situation when the recording of particle
position starts after the aging time ta, the MSD of the aging
UDSBM process is described by

〈
x2

a (t)
〉 = 2

∫ ta+t

ta

dt1

∫ ta+t

t1

dt2〈v(t1)v(t2)〉. (21)

The integration over t2 can be performed to yield

〈
x2

a (t)
〉 = 2D0τ0γ0

α

(
α

τ0γ0

) 1
α
∫ ta+t

ta

dt1

(
1 + t1

τ0

)2α−2

× exp

{
τ0γ0

α

[(
1+ t1

τ0

)α]}{
	

(
1

α
,
τ0γ0

α

[
1+ t1

τ0

]α)

−	

(
1

α
,
τ0γ0

α

[
1 + t + ta

τ0

]α)}
, (22)
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where 	(n,x) is the incomplete Gamma function [149]. Since
throughout this paper we limit ourselves to the regime (13)
and the values of the scaling exponents α are not very
large (typically, α � 2), the ratio τ0γ0/α remains large in
the arguments of the Gamma functions. Therefore, for most
realistic applications, the expansion of the Gamma functions
for large arguments can be performed. The same level of
approximations was implemented when obtaining the velocity-
velocity correlation function in Eq. (18). After expansion (up
to the appropriate order) this procedure yields the following
result for the MSD:

〈
x2

a (t)
〉 ≈ 2D0τ0

α

[(
1 + t + ta

τ0

)α

−
(

1 + ta

τ0

)α]

+ 2D0

γ0

(
exp

{
−τ0γ0

α

[(
1 + ta + t

τ0

)α

−
(

1 + ta

τ0

)α]}
− 1

)
. (23)

1. Limiting cases

Let us mention here some special cases. If we set ta = 0
in Eq. (23), the MSD of the nonaged UDSBM process (20) is
recovered. For α = 1, the MSD behaves as that for standard
Brownian motion [117], namely,〈

x2
a (t)

〉 = 〈x2(t)〉 = 2D0
{
t − γ −1

0 [1 − exp(−γ0t)]
}
. (24)

This expression and its scaling behaviors are shown in
Fig. 1(a).

In the limit of very long observation and long aging times,
when τ0 � ta � t , we can neglect the second square bracket
term in Eq. (23). The final MSD then coincides with the MSD
of nonaging UDSBM at long observation times [109], namely,

〈
x2

a (t)
〉 ∼ 2D0τ0

α

(
t

τ0

)α

� tα. (25)

The most interesting situation emerges when the aging time
is the longest time scale in the problem, γ −1

0 � τ0 � ta and
t � ta . For very small values of the argument (arg) of the
exponential function in Eq. (23),

arg = τ0γ0

α

[(
1 + ta + t

τ0

)α

−
(

1 + ta

τ0

)α]
� 1, (26)

after expanding Eq. (23) the aging MSD shows the initial
ballistic growth regime

〈
x2

a (t)
〉 ∼ D0γ0

(
ta

τ0

)2α−2

t2 � t2. (27)

Conversely, in the limit arg � 1 expression (23) yields the
normal diffusion regime

〈
x2

a (t)
〉 ∼ 2D0

(
τ0

ta

)1−α

t � t. (28)

This long aging time MSD behavior is equivalent to that of
aging SBM considered in Ref. [107] and it features a linear
dependence on the diffusion time t . Therefore, no anomalous
diffusion regime at all is observed for UDSBM when the aging

FIG. 1. MSD of the aging UDSBM process: analytical results
[solid lines, with the full expression of Eq. (23) and with the asymp-
totes (27) and (28) shown] and the results of computer simulations
(data points), plotted for α = 1 (a) and α = 1.4 (b) and different
aging times ta . Parameters: τ0 = 100, γ0 = 0.02, m = 1, D0 = 1,
and the observation time is T = 104. The initial temperature is T0 =
mγ0D0 = γ0. In (a) we have tmin = 50, for (b) at ta = 106,105,104 we
have, respectively, tmin ≈ 1.26,3.16,7.93. (c) Shows the MSD for the
case of strong aging ta = 106 � T and different α. For superdiffusive
UDSBM, the ballistic MSD regime shrinks to shorter times t � 1/γ0

for larger α values, in accord with the analytical prediction (31).
In (c) at ta = 106 we have tmin ≈ 1.26,7.93,50 for α = 1.4,1.2,1,
correspondingly.
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time is the longest time scale (see Fig. 1). This is a quite
remarkable effect of strong aging.

For comparison, note that for the nonaging situation the
MSD asymptotes for the initial, intermediate, and long time
behaviors of the MSD of UDSBM are, respectively,

〈x2(t)〉 ∼ D0γ0t
2, (29)

〈x2(t)〉 ∼ 2D0t, (30)

and 〈x2(t)〉 ∼ D0τ0α
−1(t/τ0)α , as derived in Ref. [109].

2. Superdiffusion versus subdiffusion

Different effects in the particle dynamics take place for
superdiffusive as compared to subdiffusive scaling exponents,
as we show here. For α > 1 and at γ −1

0 � τ0 � ta (strong
aging limit), the condition of arg � 1 is satisfied for all
diffusion times, starting from very short times

tmin ∼ γ −1
0

(
τ0

ta

)α−1

� γ −1
0 � τ0 � ta. (31)

The ballistic regime (27) is observed for t < tmin. In other
words, almost for the entire observation interval, that is, for
T > t � tmin, normal diffusion is observed. Yet, the effective
diffusion constant becomes much larger than in the nonaging
situation (29), that is,

Deff(ta) = D0

(
ta

τ0

)α−1

� D0, (32)

as follows from Eq. (28). The short initial region of ballistic
diffusion and the long domain of normal diffusion for the
situation α > 1 are clearly visible in Figs. 1(b) and 1(c).
It is also seen that the region of normal diffusion extends
towards shorter times with growing aging times and thus the
region of ballistic diffusion shrinks. This trend agrees with
the estimate (31) for tmin. This is another a priori unexpected
behavior of aging superdiffusive UDSBM.

For subdiffusive exponents 0 < α < 1 of the UDSBM
process the condition (26) is satisfied for much longer
observation times, namely,

t < tmin ∼ γ −1
0

(
ta

τ0

)1−α

� γ −1
0 . (33)

Hence, the ballistic diffusion regime (27) extends for times
much longer than the relaxation time for normal diffusion γ −1

0 .
For aging subdiffusive UDSBM, the ballistic regime persists
much longer than for the superdiffusive case. Physically, this
is consistent with the intuition that inertia effects are more
persistent in time for nonequilibrium UDSBM systems, in
which the temperature decreases with time, and thus inertia
becomes relatively more relevant. Note that the effective
diffusion constant, according to Eq. (27), follows

Deff(ta) = D0γ0

(
τ0

ta

)2−2α

, (34)

and thus for progressive aging becomes much smaller than the
basal value D0γ0 in Eq. (29). As a result, the MSD of aging
subdiffusive UDSBM develops slower with time than for the
nonaging case (see Fig. 2), despite a longer ballistic regime.

FIG. 2. Delay of the overdamping transition for aging UDSBM.
(a) Theoretical (solid lines) and computer simulation (data points) re-
sults for the MSD, obtained for α = 0.5. The initial ballistic regime is
the dashed line following Eq. (27). The intermediate normal diffusion
asymptote is the dashed line (28). The trace length is T = 105 and the
aging times ta are as indicated. Parameters: D0 = 1, γ0 = 1, τ0 = 30.
For (a) at ta = 106,103,0 we obtain tmin ≈ 183,5.77,1, respectively.
(b) Theoretical results for the MSD, plotted for different aging
times and for α = 0.5, D0 = 1, γ0 = 0.02, τ0 = 103, T = 107,
show three different scaling regimes. Note that the values of τ0, γ0,
and T in (b) differ from those in (a). For (b), at ta = 108, 106, and 0
we get tmin ≈ 15,800,1,580,50, respectively. The dashed asymptotes
are according to Eqs. (27), (28), and (35).

The temperature in the system at α < 1 drops with time
[Eq. (10)], and thus the amplitude of stochastic jiggling of the
particles gets reduced too. In contrast, for the aging superdif-
fusive UDSBM process, despite a very short initial ballistic
regime, the overall MSD magnitude at a given diffusion time,
〈x2

a (t)〉, grows with the aging time [see Fig. 1(b)]. The reason is
that the thermal agitation of particles gets more intense with the
diffusion time because of growing temperature in the system.

The MSD behavior for aging subdiffusive UDSBM is
illustrated in Fig. 2 for two sets of the model parameters. Since
the time tmin in Eq. (33) grows with the aging time ta , the region
of ballistic diffusion becomes more extended, as clearly seen
when comparing the curves for different ta values in Fig. 2.
The MSD reveals a good agreement of theory and computer
simulations, for all values of the model parameters examined.
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In Fig. 2, we show the MSD for the trace lengths T = 105

and 107 on Figs. 2(a) and 2(b), respectively. We observe that
for longer ta the region of initial ballistic diffusion and the
intermediate regime of normal diffusion are visibly prolonged.
For subdiffusive realizations, in the long time limit t � ta , the
anomalous behavior〈

x2
a (t)

〉 ∼ 2D0τ0

α

(
t

τ0

)α

� tα (35)

persists, as follows from Eq. (23). In Fig. 2, however, this
regime is realized for ta = 0 only because of a relatively short
trajectory length T . For the case of superdiffusion in Fig. 1,
this anomalous regime is not visible at all because the values of
the aging time used are large compared to the trace length T .

B. Time-averaged MSD

1. General expressions

The time-averaged MSD (4) for the aging UDSBM process
is defined as [11]〈

δ2
a(�)

〉
= 1

T − �

∫ T +ta−�

ta

dt

× [〈x2(t + �)〉 − 〈x2(t)〉 − 2A(t,�)], (36)

where the last term is computed from the nonaging velocity-
velocity correlation function (18) as

A(t,�) =
∫ t

0
dt1

∫ t+�

t

dt2〈v(t1)v(t2)〉. (37)

Following the strategy outlined in Ref. [109], we divide the
integral in Eq. (36) formally into two parts, namely,〈

δ2
a(�)

〉
=

〈
δ2

0,a(�)
〉
+ 〈
a(�)〉. (38)

The first term here corresponds to the time-averaged MSD of
the aging SBM process for massless particles [107,108]〈

δ2
0,a(�)

〉
= 2D0τ

2
0

α(1 + α)(T − �)

×
[(

1 + T + ta

τ0

)α+1

−
(

1 + ta + �

τ0

)α+1

−
(

1 + T + ta − �

τ0

)α+1

+
(

1 + ta

τ0

)α+1
]
,

(39)

corresponding to the overdamped limit of the pro-
cess [107,108]. The second term 〈
a(�)〉 is due to the inertial
term in the Langevin equation, which is absent in the standard
SBM process. Under the condition (13) we obtain the closed
form solution

〈
a(�)〉 ≈ 2D0

γ0(T − �)

∫ T +ta−�

ta

dt

×
(

exp

{
−τ0γ0

α

[(
1 + t + �

τ0

)α

−
(

1 + t

τ0

)α]}
− 1

)
. (40)

The final integration cannot be performed for arbitrary values
of α. Below, we consider the important limiting cases.

2. Limiting cases

At ta → 0 we recover the time-averaged MSD of the nonag-
ing UDSBM process (see Eqs. (42) and (43) in Ref. [109]).
For normal diffusion at α = 1 from Eqs. (38), (39), and (40)
we observe, as expected, no dependence on the aging time:〈

δ2
a(�)

〉
= 〈

x2
a (�)

〉 = 〈x2(�)〉
= 2D0

{
� − γ −1

0

[
1 − exp(−γ0�)

]}
. (41)

In the most interesting limit of strong aging, when the
condition

ta � T � {�,τ0} (42)

is satisfied, the leading order term in Eq. (39) grows linearly
with the lag time,〈

δ2
0,a(�)

〉
∼ 2D0�

(
ta

τ0

)α−1

� �. (43)

In the same limit, Eq. (40) can be represented by

〈
a(�)〉 ≈ −2D0

γ0

{
1 − 1

T − �

∫ T +ta−�

ta

dt

×exp

[
−γ0�

(
t

τ0

)α−1
]}

. (44)

This expression will be used below, for instance, to estimate
the time intervals for the initial ballistic behavior of the time-
averaged MSD of aging UDSBM. We consider the limit of
strong aging in Sec. III B 3, while the limit of short aging
times is presented in Sec. III B 4, for the sake of completeness.
Note also that for nonaging UDSBM in the intermediate lag
time regime τ0 � � � T the leading scaling for the time-
averaged MSD is linear, similar to that of the overdamped
SBM process [109]〈

δ2
0(�)

〉
∼ 2D0�

α

(
T

τ0

)α−1

� �. (45)

3. Superdiffusion versus subdiffusion: Strong aging

We start our analysis with the case of superdiffusion,
presented in Fig. 3. As one can see, the argument of the
exponential function in Eq. (44) in the limit of strong aging
becomes very large already for lag times much shorter than
the characteristic relaxation time 1/γ0. The contribution of
the term 〈
a(�)〉 to the time-averaged MSD (38) can then be
neglected, as compared to the leading Brownian term given
by Eq. (43). The initial ballistic regime in the time-averaged
MSD in this limit ta � T is then observed only for very short
times

� � 1/γ0,

as indeed demonstrated in Fig. 3.
Here, we observe an interesting effect, namely, with

increasing lag times the MSD scaling exponent changes from
the ballistic value of α = 2 to the normal diffusion value α = 1
and then back to a higher value of α = 1.5. The reader is also
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FIG. 3. Analytical results for the MSD (solid lines) and time-
averaged MSD (data points) of aging superdiffusive UDSBM at
α = 1.5. The asymptotes for the initial ballistic, intermediate linear,
and long time anomalous behavior are according to Eqs. (27), (28),
and (25), respectively. Note that long aging times diminish and
eventually remove the weak ergodicity breaking. Parameters: T =
105, τ0 = 103, and γ0 = 0.02. For these parameters, at ta = 106, 104,
and 0 the ballistic regime is expected to range in t < tmin ≈
1.58, 15.8, and 50, respectively. Also note the almost fully super-
imposing time-averaged MSD data points at aging times ta = 0 and
ta = 104.

referred to Fig. 1 of Ref. [109] for the behavior of nonaging
UDSBM. With growing aging time, the initial ballistic regime
of the MSD shortens severely [compare the curves and the
values of tmin(ta) in the caption of Fig. 3]. Also, it is important
to note that for longer aging times, the aging superdiffusive
UDSBM process becomes more ergodic, as one can judge from
Fig. 3. In this limit, the ensemble- and time-averaged MSD
nearly coincide in the range of diffusion times we examined.

In the case of subdiffusion (Fig. 4), we expand the
exponential function in Eq. (40) or (44) up to the second
order in � and then integrate. The terms linear in the lag
time from the main contribution (39) and from the additional
term (44) vanish, while the second order in � produces for the
time-averaged MSD the initial ballistic regime〈

δ2
a(�)

〉
∼ D0γ0

(
ta

τ0

)2α−2

�2 � �2. (46)

This regime extends up to lag times

� < �min ∼ (ta/τ0)1−α/γ0, (47)

that is much longer than the characteristic time 1/γ0 as ta/τ0 is
a large parameter. Therefore, comparing Eq. (27) for the MSD
and Eq. (46) for the time-averaged MSD, one can conclude
that the initial ballistic behavior of strongly aging subdiffusive
UDSBM is nearly ergodic. This important effect is illustrated
in Fig. 5(b), which also shows how the ergodicity of aging
UDSBM is recovered in the limit of long aging times.

The short lag time asymptote (46) and the full expression
given by Eqs. (39) and (40) are in a good agreement with the
results of our numerical modeling of the Langevin equation
(see Fig. 4). In the regime of strong aging when ta � T , for
strongly subdiffusive UDSBM (α = 1

6 ) the quadratic scaling

FIG. 4. Theoretical [solid curves, Eqs. (39) and (40)] and com-
puter simulation results (data points) for the time-averaged MSD of
aging subdiffusive UDSBM processes. The asymptotes shown as the
dashed lines are according to Eqs. (46) and Eqs. (43) and (45) for short
and intermediate lag times, respectively. The findings are plotted for
α = 1

6 (a) and α = 1
2 (b), with T = 105, τ0 = 102, and γ0 = 0.1.

of
〈
δ2
a(�)

〉
with the lag time extends up to the entire observation

period [see Fig. 4(a)]. This is another a priori surprising
feature, rendering a purely overdamped description invalid in
this regime of diffusion times.

The effects of varying aging time for the small value of
α = 1

6 , relevant to the behavior of granular gases [95,109],
can be seen in Fig. 6 for rather long traces with T = 107.
When the aging time is shorter than the observation time and
the relation T � � � τ0 is satisfied, the time-averaged MSD
has an extended intermediate linear scaling regime, in accord
with the analytical prediction (45). This regime disappears in
the limit of strong aging by virtue of the fact that the initial
ballistic regime for small α values extends to much longer
times, in accord with Eq. (47) [see also the curve for ta = 106

in Fig. 4(a)]. This intermediate Fickean diffusion regime exists
also for nonaging UDSBM [109].

4. Superdiffusion versus subdiffusion: Weak aging

When the lag time � is the shortest time scale, we

expand the contribution to the time-averaged MSD
〈
δ2

0,a(�)
〉

in

012120-7



SAFDARI, CHERSTVY, CHECHKIN, BODROVA, AND METZLER PHYSICAL REVIEW E 95, 012120 (2017)

FIG. 5. MSD (blue points and dashed lines) and time-averaged
MSD (green lines and solid black line) for the aging subdiffusive
UDSBM processes, for α = 1

2 and two different aging times ta as
indicated in (a) and (b). The analytical expressions for the MSD and
time-averaged MSD are given by Eqs. (23) and (38), respectively.
The red curves represent individual time-averaged MSD realizations.
Other parameters are the same as in Fig. 2(a).

FIG. 6. Analytical results for the time-averaged MSD of aging
UDSBM, plotted for α = 1

6 and varying aging times. The asymptotes
are according to Eqs. (46) and (45). Parameters: T = 107, τ0 = 103,
and γ0 = 0.02.

Eq. (39) as well as the integrand of 〈
a(�)〉 in Eq. (40) for short
lag times up to the second order. Taking the integral in Eq. (40)
and summing the two terms, we find that the contributions
linear in � cancel and the leading order is quadratic in �. This
approximate expression for 〈δ2

a(�)〉 at the conditions of weak
aging ta � T and in the physically relevant limit of τ0/T � 1
for 0 < α < 1

2 has the form〈
δ2
a(�)

〉
∼ D0γ0τ0

(1 − 2α)T
�2, (48)

while at α > 1
2 the leading order is

〈
δ2
a(�)

〉
∼ D0γ0

(2α − 1)

(
T

τ0

)2α−2

�2. (49)

At α = 1 this approximate procedure yields〈
δ2
a(�)

〉
∼ D0γ0�

2, (50)

as follows also from Eq. (41). The critical value of α = 1
2

demarcates the boundary for different scalings of the 〈δ2
a(�)〉

prefactors with the trace length T in the short lag time
limits [Eqs. (48) and (49)]. At α = 1

2 the prefactor becomes
a logarithmic rather than a power-law function of the trace
length, namely,〈

δ2
a(�)

〉
∼ D0τ0γ0

T
ln

(
1 + T

τ0

)
�2. (51)

5. Time-averaged MSD enhancement or suppression function

Let us now consider the degree of enhancement or sup-
pression of the time-averaged MSD due to the presence of
aging [66–68] in the UDSBM process. It is quantified by
the ratio of the aging versus nonaging time-averaged MSD
magnitudes

�α(ta,�) =
〈
δ2
a(�)

〉
〈
δ2(�)

〉 . (52)

Using the relations (46), (48), (49), and (51) for short lag
times (corresponding to the ballistic regime), long particle
trajectories {�,τ0} � T , and strong aging ta � T one gets
the following asymptotic form:

�α(ta) ∼

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2α) T
τ0

(
ta
τ0

)2α−2
, α < 1/2

T/τ0

ln(1+T/τ0)

(
ta
τ0

)2α−2
, α = 1/2

(2α − 1)
(

ta
T

)2α−2
, α > 1/2.

(53)

In this limit, the quadratic dependence of �α on the lag time �

in time-averaged MSDs cancels out in (53) and the universal
power-law scaling (in the leading order) is

�α(ta) � t2α−2
a . (54)

Note that for the standard overdamped SBM process the
suppression (enhancement) function �α for subdiffusive (su-
perdiffusive) realizations of the exponent α is [85,107]

�α(ta) ≈
(

1 + ta

T

)α

−
(

ta

T

)α

. (55)
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FIG. 7. Ratio of the aging versus nonaging time-averaged MSDs
of UDSBM, �α(ta), as obtained from our computer simulations,
plotted as a function of the aging time ta for � = 1 and different values
of the scaling exponents. Parameters: T = 104, τ0 = 30, N = 103.
The analytical asymptotes in the limit of long aging times (53) are
shown by the dashed lines.

This power-law function is similar to that observed for
aging continuous time random walks [66–68] and aging
heterogeneous diffusion processes [83].

For aging superdiffusive UDSBM processes, as predicted
by Eq. (53) at α > 1, the magnitude of the time-averaged MSD
gets enhanced with the aging time, while for subdiffusive
UDSBMs realized at α < 1 the time-averaged MSD gets

suppressed with increasing ta . The analytical estimate (53) is
in good agreement with our computer simulations of aging
UDSBM, as presented in Fig. 7 for systematically varied
scaling exponent α. We mention that the smaller the exponent
α, the more pronounced is the decrease of the time-averaged
MSD with the aging time ta , while for α > 1 the enhancement
of the time-averaged MSD is observed, in accord with Eq. (54).
In Fig. 5, for a special value of α = 1

2 we also observe that
the time-averaged MSD gets reduced for longer aging times.
Finally, note a different dependence of �α(ta) in Eq. (53) on
the length of the particle trajectory T for subdiffusive versus
superdiffusive UDSBM processes, as well as for the critical
value of α = 1

2 .

C. Scatter of time-averaged MSDs and ergodicity
breaking parameter

For a finite trajectory length, all stochastic processes exhibit
trajectory-to-trajectory fluctuations. These lead to fluctuating
apparent mobilities of the particles. Figure 5 illustrates the am-
plitude scatter of individual time-averaged MSD trajectories
of both aging and nonaging UDSBM processes. It appears to
be quite narrow and thus the process is fairly reproducible.
In particular, the amplitude spread of the δ2 traces changes
only moderately with the aging time. At short lag times � the
spread is rather small, similar to that for the Brownian motion
with the same trace length T [11].

Figure 8 shows the amplitude scatter of individual time-
averaged MSD traces, φ(ξ), for both the aging and nonaging

FIG. 8. (a), (b) Distribution φ(ξ ) of the relative amplitude of the time-averaged MSD for nonaging UDSBM at α = 1
2 and ultraslow

UDSBM, computed for different lag times, as indicated in the panels. For longer lag times, the distribution gets progressively wider and
becomes asymmetric. (c) Comparison between φ(ξ ) for aging and nonaging UDSBM processes for α = 0.5 and lag time � = 1. In the strong
aging regime, the distribution becomes slightly wider. (d) Distributions φ(ξ ) for the nonaging UDSBM process for different α exponents, as
indicated in the plot, and for � = 1. Parameters for all the plots: T = 104 and N = 104.
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FIG. 9. EB parameter obtained from computer simulations versus
the aging time ta for the aging UDSBM process, computed for traces
with T = 104 steps and averaged over N = 103 trajectories, for
different α values (as denoted in the plot) and � = 1. The black
dashed lines show the phenomenological strong aging scaling rela-
tion (56). The parameters used here are T = 104, τ0 = 30, τv = 1,
and D0 = 1.

UDSBM processes, for a set of values of the diffusion exponent
α, lag time �, and aging time ta . We first start with UDSBM in
the absence of aging, complementing the results of Ref. [109].
As follows from Figs. 8(a) and 8(b) evaluated at ta = 0,
larger values of � lead to more asymmetric, noncentered
φ(ξ ) distributions. Comparing φ(ξ ) for nonaging ultraslow
(α = 0) and subdiffusive (α = 1

2 ) UDSBM [see Figs. 8(a)
and 8(b)], we clearly see a broader spread of time-averaged
MSD realizations for α = 0 situation.

Systematically larger values of the EB parameter found in
simulations of aging UDSBM at α = 0, as demonstrated in
Fig. 9, are in line with this larger width of φ(ξ ) distributions
for the ultraslow UDSBM process (see Sec. IV). In contrast, for
superdiffusive realizations the amplitude spread of the time-
averaged MSD traces and the magnitudes of the corresponding
ergodicity breaking parameters EB are smaller (compare the
curves for different α values in Fig. 9). Note that this behavior
is quite different from the aging effects for the canonical SBM
process. Namely, for the latter in the limit of strong aging
ta � T the dependence of EB on the aging time ta scales out
from the final result. In the strong aging limit and for short lag
times �/T � 1 the system approaches the ergodic behavior,
with EBSBM(ta,�) → EB(�)BM = 4�/(3T ), independent on
aging time and α. The reader is referred to Eqs. (44) and (45)
and Figs. 5 and 6 in Ref. [108]. The EB(ta) dependence for
UDSBM processes we detect in the strong aging limit in
Fig. 9 is valid in the ballistic regime of the corresponding
time-averaged MSD.

For fixed � and α values, the presence of aging in the
system makes the distributions of the time-averaged MSDs
slightly wider [see Fig. 8(c)]. According to Fig. 8(d), showing
the results for nonaging UDSBM, by increasing the scaling
exponent α up to unity the distributions φ(ξ ) become narrower.
For more superdiffusive α values, however, the distribution
φ(ξ ) becomes slightly broader again. This effect is similar to
the dependence of the EB parameter for the standard SBM
process as a function of α (see the description and Fig. 3(a) in
Ref. [108]).

A fairly reproducible behavior of time-averaged MSDs, that
is, narrow φ(ξ ) distributions observed here, is similar to that of
otherwise ergodic fractional Brownian motion and fractional
Langevin equation motion [98,118,152]. Note that for these
processes the effects of transient aging and weak ergodicity
breaking were also studied [119,153,154]. This reproducibility
of δ2 for aging UDSBM is in strong contrast, for instance,
to continuous time random walks in which time averages of
physical observables remain random quantities, even in the
limit T → ∞ [11,146].

A commonly used measure of these amplitude fluctua-
tions of δ2 trajectories for UDSBM and other anomalous
diffusion processes is the ergodicity breaking parameter, EB
[Eq. (6)] [11]. In Fig. 9, we present the variation of EB for aging
UDSBM with the aging time ta , as obtained from our computer
simulations. Performing a fitting to data points, we find that
for strong aging the following phenomenological scaling is
valid:

EB(ta) � t1−α
a . (56)

Therefore, with increasing aging time the EB parameter, for
the same value of the lag time, decreases for superdiffusive and
grows for subdiffusive aging UDSBM (Fig. 9). The physical
explanation is that for subdiffusive cases, the typical rate for
jump events of the particle is perpetually decreasing, and along
with it the variance of interjump intervals. Thus, the spread
between individual trajectories is expected to increase with the
aging time. The opposite, a focusing of the interjump intervals,
occurs for superdiffusive systems. Note that the full analytical
evaluation for the dependence of the EB parameter on the aging
time and the scaling exponent for UDSBM is a nontrivial and
quite complicated mathematical task, surely beyond the scope
of this study. Note that even for the standard SBM process, with
a simple particle position correlation function 〈x(t1)x(t2)〉, a
nontrivial behavior was revealed for the EB(ta,�) dependence
in our recent investigation (see Ref. [108]). For the UDSBM
processes, the problem of computing the fourth moment of
the time-averaged MSD is expected to be even harder than for
SBM and thus deserves separate attention.

We note here that the number of traces needed to reach
a satisfactory statistics for the EB parameter, containing
the fourth moment of the time-averaged MSDs, is typically
considerably larger than that required for the convergence of
〈δ2

a(�)〉 [108].
The dependence of the EB parameter on the trajectory

length T is presented in Fig. 10, for both nonaging and aging
UDSBM. In the absence of aging, as shown in Fig. 10(a),
the EB parameter in the limit of long trajectories varies as

EBnonaging(T ) � 1/T α. (57)

Note that this scaling for UDSBM at short lag times and thus in
the ballistic regime of the time-averaged MSD, as those shown
in Fig. 10(a), is different from that for the standard SBM. For
the latter, the dependence is EB(T ) � 1/T 2α for 0 < α < 1

2
and EB(T ) � 1/T for α > 1

2 [108]. However, in the limit of
strong aging, the decay of EB is inversely proportional with
the trace length T :

EBaging(T ) � 1/T , (58)
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FIG. 10. Ergodicity breaking parameter variation with the trace length T , computed for different scaling exponents α in the absence of
aging (a) and for rather strong aging (b), after averaging over N = 103 trajectories. The value of the lag time is � = 1 for both panels so that
�/T � 1. The asymptotes shown in (a) and (b) are Eqs. (57) and (58), in the limit of short and long aging times, respectively.

[see Fig. 10(b)], shown again for a short lag time � = 1. The
same scaling relation of EB is observed also for longer lag
times (not shown). Note that this inverse proportionality of the
EB parameter with the trace length is typical for a number of
other anomalous diffusion processes [11].

IV. MAIN RESULTS: AGING ULTRASLOW UDSBM

Let us now consider inertial effects for the aging UDSBM
process at α = 0. The motion of massive particles in this case
is governed by the underdamped Langevin equation [109]

m
d2x(t)

dt2
+ γ0

(1 + t/τ0)

dx(t)

dt
=

√
2D0

1 + t/τ0

γ0η(t)

(1 + t/τ0)
. (59)

A. MSD

We straightforwardly obtain the velocity autocorrelation
and find in the limit τ0γ0 � 1 that

〈v(t1)v(t2)〉 ≈ T (0)

m

(
1 + t1/τ0

1 + t2/τ0

)τ0γ0 1

(1 + t1/τ0)2
. (60)

This expression can be directly obtained from Eq. (18) by
putting α → 0. After some simplifications, the MSD of aging
ultraslow UDSBM acquires both a logarithmic and power-law
function of the diffusion time t :〈

x2
a (t)

〉 ∼ 2D0τ0 ln

(
1 + t

ta + τ0

)

+ 2D0

γ0

[(
1 + t

ta + τ0

)−τ0γ0

− 1

]
. (61)

We restrict the analysis of this equation to the most interesting
situation of strong aging,

ta � {t,τ0}. (62)

In this limit, Eq. (61) can be approximated by

〈
x2

a (t)
〉 ∼ 2D0τ0

t

ta
− 2D0

γ0

(
1 − exp

[
− t

ta
τ0γ0

])
. (63)

In the argument of the exponent we thus observe a product of
a large parameter τ0γ0 and a small parameter t/ta . Therefore,
for the range of diffusion times up to

t < tmin ∼ ta/(τ0γ0), (64)

the leading order expansion of Eq. (63), the MSD of aging
ultraslow UDSBM, similarly to the MSD for the nonaging
UDSBM process [109], shows the ballistic regime

〈
x2

a (t)
〉 ∼ D0τ

2
0 γ0

t2
a

t2 � t2. (65)

Figure 11(a) shows that this regime extends to times much
longer than the relaxation time 1/γ0 for standard diffu-
sion [117] of massive Brownian particles.

For the subsequent diffusion regime satisfying the condition
t > tmin ∼ ta/(τ0γ0), the first term in Eq. (63) dominates,
yielding the linear MSD growth with time〈

x2
a (t)

〉 ∼ 2D0τ0
t

ta
� t. (66)

Similarly to nonaging UDSBM [109], for long observation
times t � {ta,τ0} the MSD of the aging ultraslow UDSBM
process demonstrates (as expected) a logarithmic dependence
on the diffusion time〈

x2
a (t)

〉 ∼ 2D0τ0 ln

(
t

ta

)
. (67)

B. Time-averaged MSD

The aging time-averaged MSD of the ultraslow UDSBM
process acquires a form similar to Eq. (38), namely, a
combination of two terms. Here, the main contribution to
the time-averaged MSD coincides with that of the nonaging
ultraslow UDSBM process in the limit (13), that is (see Eq. (61)
in Ref. [109]),〈

δ2
0,a(�)

〉
≈ 2D0τ0

T − �

∫ T +ta−�

ta

dt ′ ln

(
1 + �

τ0 + t ′

)

= 2D0τ0

T − �

[
(T + ta + τ0) ln

(
1 + T + ta

τ0

)

−(ta + τ0 + �) ln

(
1 + ta + �

τ0

)

− (T + ta + τ0 − �) ln

(
1 + T + ta − �

τ0

)

+ (ta + τ0) ln

(
1 + ta

τ0

)]
. (68)
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FIG. 11. MSD (a) and time-averaged MSD (b) as obtained from
computer simulations (data points) and theoretically [solid lines;
Eq. (61) for the MSD and Eqs. (68) and (69) for the time-averaged
MSD] for the aging ultraslow UDSBM process at α = 0. The short
time ballistic asymptote and the long time logarithmic behavior of
the MSD are shown as dashed lines, plotted according to Eqs. (65)
and (67), correspondingly. The ballistic asymptotes for the time-
averaged MSD are the dashed lines [Eq. (70)]. The values of the
aging time ta are as indicated in the plots. Other parameters are
D0 = 1, γ0 = 1, and τ0 = 30.

The second contribution to the time-averaged MSD describes
the inertial term in the original Langevin equation (59), namely,

〈
a(�)〉 ≈ 2D0

γ0(T − �)

∫ T +ta−�

ta

dt ′

×
[(

1 + �

t ′ + τ0

)−τ0γ0

− 1

]
. (69)

Using for Eq. (69) the exponential representation analogous
to that used for Eq. (44) in the limit of long aging times, ta �
{T ,�}, we get the initial ballistic regime of the time-averaged
MSD: 〈

δ2
a(�)

〉
∼ D0γ0

(
τ0

ta

)2

�2 � �2. (70)

Note that this relation can be also directly obtained from
Eq. (46) by setting α → 0. The ballistic regime (70) extends

up to lag times satisfying the condition

� < �min ∼ ta/(τ0γ0), (71)

that is much longer that the relaxation time 1/γ0. We remind
the reader that the latter defines the time scale of the ballistic
regime for ordinary Brownian motion [Eq. (29)]. Note that the
effective diffusion constant for the aging ultraslow UDSBM
process,

Deff(ta) = D0γ0

(
τ0

ta

)2

, (72)

in this limit of strong aging becomes much smaller than for
normal Brownian motion, D0γ0. Figure 11 demonstrates a
good agreement between our computer simulations of the
underdamped equation (59) for the aging ultraslow UDSBM
process and the theoretical results, for both the MSD and
the time-averaged MSD. Finally, the scatter of time-averaged
MSDs for nonaging ultraslow UDSBM is illustrated in
Fig. 8(a).

V. DISCUSSION AND CONCLUSIONS

In this study, we rationalized the effects of aging on
the ensemble-averaged MSD, the time-averaged MSD, and
the ergodic properties of the underdamped SBM process
(UDSBM). We explicitly considered the effects of a finite
particle mass on the magnitude and duration of the short time
ballistic regime, both for the MSD and the time-averaged
MSD. The thorough investigation of the effects of aging on
the UDSBM process complements and completes our recent
study [109] of nonaging UDSBM. Our findings support the
idea that in nonstationary diffusive systems the presence of
aging can drastically alter the particle dynamics, at short,
intermediate, and long time limits. Additionally, the current
study extends the range of scaling behaviors predicted for the
nonaging UDSBM processes [109].

The existence and unexpectedly long persistence of the
short time ballistic regime for nonaging UDSBM was first
predicted in Ref. [109]. In the presence of aging, however, the
duration of this regime depends on the anomalous exponent
as well as the aging time. For subdiffusive exponents, both
the MSD and the time-averaged MSD of aging UDSBM
show a ballistic behavior for times considerably longer than
that for ordinary Brownian motion, 1/γ0, namely for (t,�) <

(t,�)min ∼ γ −1
0 ( ta

τ0
)1−α [Eqs. (33) and (47)]. At later times, a

transition to normal diffusion is observed for the aging and
nonaging UDSBM processes. In contrast, for superdiffusive
exponents α > 1 the normal diffusive regime dominates the
MSD in the intermediate and long time regime, while the
ballistic regime exists only at very short times, t < tmin ∼
γ −1

0 ( τ0
ta

)α−1 [Eq. (31)]. Our analytical results are supported by
the findings of extensive computer simulations of the stochastic
Langevin equation for massive particles in a medium with time
varying diffusivity.

We characterized the behavior of the system both for
subdiffusive and superdiffusive scaling exponents α, as well
as for the limiting value of α = 0. The latter gives rise to
ultraslow UDSBM, with a characteristic combined logarithmic
and power-law time dependence of the averaged particle
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displacement. The ballistic regime of aging ultraslow UDSBM
extends up to (t,�)min ∼ ta/(τ0γ0), both for the MSD and
time-averaged MSD [Eqs. (64) and (71)]. Particularly for
subdiffusive UDSBM processes we demonstrated that in the
limit of long aging times, the overdamping approximation
fails entirely. Instead, the initial ballistic regime expected for
massive particles extends for large ta values up to the entire
trace length, i.e., times much longer than typical relaxation
time 1/γ0.

Aging is shown to reduce the magnitude of the time-
averaged MSD for the case of subdiffusion and to increase it
in the superdiffusion case, in accord with the universal scaling
�α � t2α−2

a at strong aging [Eq. (54)]. We also showed that for
long aging times in the ballistic regime, the MSD converges
to the time-averaged MSD and thus ergodicity is restored
for the aging UDSBM processes, both for subdiffusive and
superdiffusive situations. We also analyzed the nonergodicity
of aging UDSBM based on the ergodicity breaking parameter,
EB. Based on computer simulations, we demonstrated that

the presence of aging changes the decay of EB. Specifically,
for long observation times the EB of the UDSBM process
in the limit of strong aging decays as EB � T −1 [Eq. (58)],
contrasting the asymptotic scaling EB � T −α for nonaging
UDSBM [Eq (57)].

The applications of our results to real physical
systems include the behavior and dynamics of particles
in granular gases, with the power-law decrease of the medium
temperature [95,109,112]. It will be interesting to compare
our results to more detailed simulations of these systems.
The development of underdamped particle dynamics and
approaches for other anomalous diffusion processes is also of
great interest. For instance, the limits of applicability of the
commonly used overdamping approximation for continuous
time random walks, known to be connected to SBM in a mean
field sense [106], would be intriguing to unravel in the future.
Finally, the definition of applicability criteria of overdamped
approximation for other anomalous diffusion processes is of
vital importance.
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[128] H. Krüsemann, R. Schwarzl, and R. Metzler, Transp. Porous

Media 115, 327 (2016).
[129] H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Phys.

Rev. E 71, 021402 (2005).
[130] R. E. Courtland and E. R. Weeks, J. Phys.: Condens. Matter

15, S359 (2003).
[131] P. Wang, C. Song, and H. A. Makse, Nat. Phys. 2, 526 (2006).

[132] S. Boettcher and P. Sibani, J. Phys.: Condens. Matter 23,
065103 (2011).

[133] D. El Masri, L. Berthier, and L. Cipelletti, Phys. Rev. E 82,
031503 (2010).

[134] J. J. Brey, A. Prados, M. I. Garca de Soria, and P. Maynar,
J. Phys. A: Math. Gen. 40, 14331 (2007).

[135] A. V. Weigel, M. M. Tamkun, and D. Krapf, Proc. Natl. Acad.
Sci. USA 110, E4591 (2013).

[136] R. Metzler, Nat. Phys. 12, 113 (2016).
[137] X. Hu, L. Hong, M. D. Smith, T. Neusius, X. Cheng, and J. C.

Smith, Nat. Phys. 12, 171 (2016).
[138] M. Schubert, E. Preis, J. C. Blakesley, P. Pingel, U. Scherf, and

D. Neher, Phys. Rev. B 87, 024203 (2013).
[139] F. D. Stefani, J. P. Hoogenboom, and E. Barkai, Phys. Today

62(2), 34 (2009).
[140] G. Margolin and E. Barkai, Phys. Rev. Lett. 94, 080601 (2005).
[141] Y. M. Wang, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 97,

048302 (2006).
[142] J.-P. Bouchaud, J. Phys. I 2, 1705 (1992).
[143] G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602 (2005).
[144] A. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601

(2007).
[145] J. L. Lebowitz and O. Penrose, Phys. Today 26(2), 23 (1973).
[146] A. Lubelski, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett. 100,

250602 (2008).
[147] S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles

of Statistical Radiophysics 1: Elements of Random Process
Theory (Springer, Heidelberg, 1987).

[148] T. Uneyama, T. Miyaguchi, and T. Akimoto, Phys. Rev. E 92,
032140 (2015).

[149] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Washington, DC
(Dover, New York, 1972).

[150] N. Van Kampen, Stochastic Processes in Physics and Chem-
istry, 3rd ed. (Elsevier, Amsterdam, 2007).

[151] H. Risken and T. Frank, The Fokker-Planck Equation: Methods
of Solution and Applications (Springer, Berlin, 1996).

[152] J.-H. Jeon and R. Metzler, J. Phys. A: Math. Theor. 43, 252001
(2010).

[153] J. Kursawe, J. Schulz, and R. Metzler, Phys. Rev. E 88, 062124
(2013).

[154] J.-H. Jeon, N. Leijnse, L. B. Oddershede, and R. Metzler, New
J. Phys. 15, 045011 (2013).

012120-15

https://doi.org/10.1088/1751-8113/48/37/375002
https://doi.org/10.1088/1751-8113/48/37/375002
https://doi.org/10.1088/1751-8113/48/37/375002
https://doi.org/10.1088/1751-8113/48/37/375002
https://doi.org/10.1038/srep30520
https://doi.org/10.1038/srep30520
https://doi.org/10.1038/srep30520
https://doi.org/10.1038/srep30520
https://doi.org/10.1529/biophysj.106.099267
https://doi.org/10.1529/biophysj.106.099267
https://doi.org/10.1529/biophysj.106.099267
https://doi.org/10.1529/biophysj.106.099267
https://doi.org/10.1073/pnas.91.4.1229
https://doi.org/10.1073/pnas.91.4.1229
https://doi.org/10.1073/pnas.91.4.1229
https://doi.org/10.1073/pnas.91.4.1229
https://doi.org/10.1103/PhysRevE.61.1716
https://doi.org/10.1103/PhysRevE.61.1716
https://doi.org/10.1103/PhysRevE.61.1716
https://doi.org/10.1103/PhysRevE.61.1716
https://doi.org/10.1103/PhysRevE.94.012109
https://doi.org/10.1103/PhysRevE.94.012109
https://doi.org/10.1103/PhysRevE.94.012109
https://doi.org/10.1103/PhysRevE.94.012109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1016/S0375-9601(98)00823-8
https://doi.org/10.1016/S0375-9601(98)00823-8
https://doi.org/10.1016/S0375-9601(98)00823-8
https://doi.org/10.1016/S0375-9601(98)00823-8
https://doi.org/10.1016/S0378-4371(99)00574-9
https://doi.org/10.1016/S0378-4371(99)00574-9
https://doi.org/10.1016/S0378-4371(99)00574-9
https://doi.org/10.1016/S0378-4371(99)00574-9
https://doi.org/10.1016/0375-9601(92)90607-N
https://doi.org/10.1016/0375-9601(92)90607-N
https://doi.org/10.1016/0375-9601(92)90607-N
https://doi.org/10.1016/0375-9601(92)90607-N
https://doi.org/10.1088/0305-4470/26/19/018
https://doi.org/10.1088/0305-4470/26/19/018
https://doi.org/10.1088/0305-4470/26/19/018
https://doi.org/10.1088/0305-4470/26/19/018
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.80.046125
https://doi.org/10.1103/PhysRevE.80.046125
https://doi.org/10.1103/PhysRevE.80.046125
https://doi.org/10.1103/PhysRevE.80.046125
https://doi.org/10.1103/PhysRevE.85.021147
https://doi.org/10.1103/PhysRevE.85.021147
https://doi.org/10.1103/PhysRevE.85.021147
https://doi.org/10.1103/PhysRevE.85.021147
https://doi.org/10.1021/jp9934329
https://doi.org/10.1021/jp9934329
https://doi.org/10.1021/jp9934329
https://doi.org/10.1021/jp9934329
https://doi.org/10.1021/jp993491m
https://doi.org/10.1021/jp993491m
https://doi.org/10.1021/jp993491m
https://doi.org/10.1021/jp993491m
https://doi.org/10.1142/S0219477508004453
https://doi.org/10.1142/S0219477508004453
https://doi.org/10.1142/S0219477508004453
https://doi.org/10.1142/S0219477508004453
https://doi.org/10.1103/PhysRevB.71.115422
https://doi.org/10.1103/PhysRevB.71.115422
https://doi.org/10.1103/PhysRevB.71.115422
https://doi.org/10.1103/PhysRevB.71.115422
https://doi.org/10.1103/PhysRevE.90.062901
https://doi.org/10.1103/PhysRevE.90.062901
https://doi.org/10.1103/PhysRevE.90.062901
https://doi.org/10.1103/PhysRevE.90.062901
https://doi.org/10.1007/s11242-016-0686-y
https://doi.org/10.1007/s11242-016-0686-y
https://doi.org/10.1007/s11242-016-0686-y
https://doi.org/10.1007/s11242-016-0686-y
https://doi.org/10.1103/PhysRevE.71.021402
https://doi.org/10.1103/PhysRevE.71.021402
https://doi.org/10.1103/PhysRevE.71.021402
https://doi.org/10.1103/PhysRevE.71.021402
https://doi.org/10.1088/0953-8984/15/1/349
https://doi.org/10.1088/0953-8984/15/1/349
https://doi.org/10.1088/0953-8984/15/1/349
https://doi.org/10.1088/0953-8984/15/1/349
https://doi.org/10.1038/nphys366
https://doi.org/10.1038/nphys366
https://doi.org/10.1038/nphys366
https://doi.org/10.1038/nphys366
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1103/PhysRevE.82.031503
https://doi.org/10.1103/PhysRevE.82.031503
https://doi.org/10.1103/PhysRevE.82.031503
https://doi.org/10.1103/PhysRevE.82.031503
https://doi.org/10.1088/1751-8113/40/48/001
https://doi.org/10.1088/1751-8113/40/48/001
https://doi.org/10.1088/1751-8113/40/48/001
https://doi.org/10.1088/1751-8113/40/48/001
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1038/nphys3585
https://doi.org/10.1038/nphys3585
https://doi.org/10.1038/nphys3585
https://doi.org/10.1038/nphys3585
https://doi.org/10.1038/nphys3553
https://doi.org/10.1038/nphys3553
https://doi.org/10.1038/nphys3553
https://doi.org/10.1038/nphys3553
https://doi.org/10.1103/PhysRevB.87.024203
https://doi.org/10.1103/PhysRevB.87.024203
https://doi.org/10.1103/PhysRevB.87.024203
https://doi.org/10.1103/PhysRevB.87.024203
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1063/1.3086100
https://doi.org/10.1103/PhysRevLett.94.080601
https://doi.org/10.1103/PhysRevLett.94.080601
https://doi.org/10.1103/PhysRevLett.94.080601
https://doi.org/10.1103/PhysRevLett.94.080601
https://doi.org/10.1103/PhysRevLett.97.048302
https://doi.org/10.1103/PhysRevLett.97.048302
https://doi.org/10.1103/PhysRevLett.97.048302
https://doi.org/10.1103/PhysRevLett.97.048302
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.99.210601
https://doi.org/10.1103/PhysRevLett.99.210601
https://doi.org/10.1103/PhysRevLett.99.210601
https://doi.org/10.1103/PhysRevLett.99.210601
https://doi.org/10.1063/1.3127948
https://doi.org/10.1063/1.3127948
https://doi.org/10.1063/1.3127948
https://doi.org/10.1063/1.3127948
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevE.92.032140
https://doi.org/10.1103/PhysRevE.92.032140
https://doi.org/10.1103/PhysRevE.92.032140
https://doi.org/10.1103/PhysRevE.92.032140
https://doi.org/10.1088/1751-8113/43/25/252001
https://doi.org/10.1088/1751-8113/43/25/252001
https://doi.org/10.1088/1751-8113/43/25/252001
https://doi.org/10.1088/1751-8113/43/25/252001
https://doi.org/10.1103/PhysRevE.88.062124
https://doi.org/10.1103/PhysRevE.88.062124
https://doi.org/10.1103/PhysRevE.88.062124
https://doi.org/10.1103/PhysRevE.88.062124
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1088/1367-2630/15/4/045011



