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Abstract
We study the degree of success of a single predator hunting a herd of prey on a
two-dimensional square lattice landscape. We explicitly consider the self
volume of the prey restraining their dynamics on the lattice. The movement of
both predator and prey is chosen to include an intelligent, decision making step
based on their respective sighting ranges, the radius in which they can detect the
other species (prey cannot recognise each other besides the self volume inter-
action): after spotting each other the motion of prey and predator turns from a
nearest neighbour random walk into directed escape or chase, respectively. We
consider a large range of prey densities and sighting ranges and compute the
mean first passage time for a predator to catch a prey as well as characterise the
effective dynamics of the hunted prey. We find that the preyʼs sighting range
dominates their life expectancy and the predator profits more from a bad eye-
sight of the prey than from his own good eye sight. We characterise the
dynamics in terms of the mean distance between the predator and the nearest
prey. It turns out that effectively the dynamics of this distance coordinate can be
captured in terms of a simple Ornstein–Uhlenbeck picture. Reducing the many-
body problem to a simple two-body problem by imagining predator and nearest
prey to be connected by an effective Hookean bond, all features of the model
such as prey density and sighting ranges merge into the effective binding
constant.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Every animal must eat in order to survive. For certain predator species this necessarily implies
to chase and bring down a sufficient amount of prey. With predators always on the lookout for
food, prey must constantly be on the alert. While scattering and zigzagging to confuse the
predator is a popular method of herd animals to escape an attacking predator [1, 2], if the
escape paths are not well co-ordinated individual prey may also block each other. The self
volume effect is also relevant in the hunt of killer cells (macrophages, for instance) in
biological organisms attacking bacteria, bacteria colonies or biofilms4. In this paper we study
the influence of self volume effects on a herd of non-communicating prey with the autonomy
of taking decisions on the run, as quantified by the typical time to catch a prey.

In the study of the dynamics of predator–prey systems one is generically interested in the
likelihood for the survival of the prey as a function of the parameters of the dynamics of both
prey and predator. Prototype mathematical models of predator–prey systems are reaction-
diffusion models [3–8], in which both species are assumed to move randomly. In one
dimension the survival probability of a diffusing prey exposed to a number of diffusing
predators decays as a power law in time [9, 10]. In two dimensions the predators catch the
prey with probability one, but the mean life time of the prey is infinite. The survival prob-
ability of a lamb in the presence of N lions in two-dimensions decays logarithmically slowly
as S ~ -t tlnN

N( ) ( ) [10]. In contrast, in dimensions three and above the capture is unsuc-
cessful as a consequence of the transience of random walks [11, 12]. Other features con-
sidered in predator–prey models include finite life times of the species [13] or the presence of
a third party in the form of a repellent obstructing the predator to reach the prey [14].
Moreover, three groups of species hunting each other were modelled [15], owing to the fact
that most animal predators are prey of other animals themselves. Finally, effects of safe
havens for prey animals may be considered [16].

While such continuum random walk models revealed various interesting results it is clear
that the escape and pursuit dynamics is at least partially deterministic, that is, both predator
and prey hunt or escape in some sense intelligently. A way to improve the mathematical
modelling is to assume that both species can see each other within a certain radius of vision
and try to use this as an advantage in the escape and pursuit process [17, 18]. In such a model
the motion consists of random walks which turn into directed ballistic transport once predator
and prey spot each other. As shown in [17] the probability to escape can be greatly enhanced
if the prey can see the predator and has the possibility to run away. During the pursuit the
preyʼs movement is superdiffusive. In this scenario a total of three predators may be necessary
to catch a single prey [17]. Predators may also optimise their search by sharing information
[19]. While the assumption of some level of intelligence certainly makes the model more
realistic, there is still one aspect that has up to now been ignored. Namely, in reality prey are
impenetrable bodies. Thus, in an abundant population of prey (a lion chasing a herd of
antelopes, a wolf charging at a flock of sheep, or a killer cell attacking a bacteria, bacteria
colony or biofilm) the prey species may obstruct each other while trying to escape. The self
volume (non-phantom) constraint greatly influences the single species and collective
dynamics of random walkers [20, 21] leading to qualitative differences in the walkers’

4 In the following we use the language of predator–prey systems, keeping in mind the relevance of the model for
such cellular systems.
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motion. Therefore, the dynamics and survival probability in predator prey systems at inter-
mediate and higher prey densities is expected to be equally affected. Recently a herd of prey
chased by a pack of predators including self volume effects was studied [22]. As a result the
preyʼs survival time was found to increase if the prey aim for a specific type of clustering.

In this paper we study the success of a single predator hunting a flock of prey on a two-
dimensional square lattice with periodic boundary conditions taking into account the preyʼs
self volume. In addition, both species move intelligently in that they can influence their
movement by visual perception within their sighting range (figure 1). The paper is structured
as follows: First we introduce our model. Next we present the numerical and analytical results
for the mean first capture time, which is the time the predator needs to catch the first prey, as a
function of prey density and the respective sighting ranges. We find that the mean first capture
time as a function of prey density follows a power law. The (non-universal) exponent depends
on the sighting ranges of both predator and prey. For the analytical calculations we split the
predatorʼs motion into a diffusing part and a ballistic part, representing the search for the prey
and the direct chase, respectively. We then present a study of the mean distance between
predator and nearest prey, which is found to decrease exponentially in time. Using the mean
distance we show that we can capture its dynamics in terms of a simple Ornstein–Uhlenbeck
process: the relative motion of predator and nearest prey can thus effectively be viewed to be
a random process confined by an harmonic potential. Neglecting all other prey, the model
parameters such as sighting ranges and prey density can be absorbed into the associated
spring constant.

Figure 1. Predator (blue cross) and prey (red dots) on a square lattice. The pale blue and
red diamonds represent their respective sighting ranges. Due to their self volume
different prey are not allowed to share the same lattice site. Once a prey and the
predator meet at the same lattice site the predator is considered to have caught the prey.
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2. Lattice model

To study the success of a single predator hunting a herd of prey we create an agent-based
simulation in which predator and prey move on a two-dimensional square lattice with periodic
boundary conditions. Each species has its specific sighting range σ in which it can see the
other species as depicted in figure 1. Distances as well as sighting ranges are measured as
chemical distances = D + Dd x y of the added bond lengths, with lattice spacing a equal to
unity. The predator starts from the centre of the lattice and the prey are initially randomly
distributed—excluding the centre of the lattice—such that the occupancy of a single site is
less or equal to a single prey. Predators and prey move with the autonomy of decision in the
following sense. If no prey is in the sighting range of the predator and, for a given prey, the
predator is not in its sighting range, both participants perform a nearest neighbour random
walk. If a prey comes into the sighting range of the predator, the predator chooses a site
randomly, subject to the condition that the distance d to the prey necessarily decreases. Every
lattice site that minimises the distance to the prey is chosen with the same probability, lattice
sites that increase the distance cannot be chosen. Analogously, if the predator is spotted the
prey chooses a site randomly, subject to the condition that the distance to the predator
necessarily increases. If two or more prey are within the same distance to the predator the
latter chooses randomly which prey to pursue. Due to the self volume of the prey, the preyʼs
motion is restricted. In principle, there exist two possible ways to implement the self volume.
Either the prey chooses only from empty sites and always executes a jump as long as there is
at least one empty nearest neighbour site. Or the prey blindly chooses a nearest neighbour site
but only jumps if the chosen site is unoccupied; otherwise, if it is occupied, the prey retains its
location. We chose the latter scenario, as this appears closer to the situation encountered for
confused prey or for moving bacteria. Using this update strategy, we simultaneously choose
the individual moves for the prey and the predator. In each round of motion updates for the
prey we randomly choose a sequence of individuals, thus avoiding any bias among indivi-
duals [23]. According to this random sequence we then check whether the individual prey are
allowed to jump given the actual positions of all other prey. The motion of the predator takes
into account the positions of all prey at the end of the previous update. Once all inidividual
jumps of prey and predator are determined, all positions of the entire predator–prey system
are updated simultaneously.

The time unit is chosen arbitrarily and relates to the diffusion constant D

D =t
a

D4
, 1

2
( )

where a=1 is the lattice spacing5. After the individual steps of all participants are
accomplished, we check if the predator caught a prey. If the first prey is caught the simulation
terminates. The mean first capture time and the mean distance are obtained from 104

realisations and the first passage density is obtained from 106 runs.

3. Mean first capture time

We start by quantifying the success of the predator by computing the mean first capture time
tc⟨ ⟩, that is, the typical time the predator needs to catch the first prey. In mathematical terms
this corresponds to the preyʼs survival time. As one can easily imagine the mean first capture
time depends crucially on both sighting ranges sprey and spred as well as on the prey density

5 In these units, =D 1 4 corresponds to the diffusion coefficient for a single prey or predator moving on the lattice.
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 = N L2, where N is the number of prey and L2 is the number of lattice sites. A higher prey
density reduces the preyʼs survival expectation (figure 2). One reason is that the probability
that initially one prey sits close to the predator is higher and therefore the prey gets spotted
earlier. The second reason is that a chased prey gets trapped more easily if there are more prey
that occupy nearest neighbour sites and therefore lead to a frustration of the preyʼs mobility.

In this setup we distinguish two limiting cases: a single prey ( = L1 2) with sighting
range greater than two can never get caught, its life time is infinite. Conversely, if every lattice
spacing is occupied by a prey ( = - L1 1 2) then the predator needs exactly one time step

Figure 2. Mean first capture time as a function of the prey density, averaged over 104

realisations. (a) Blind prey, the predatorʼs sighting range increases from top to bottom:
s = 0, 1, 3, 5, 7, 9pred . (b) Blind predator, the preys’ sighting range increases from
bottom to top: s = 0, 1, 3, 5, 7, 9prey . (c) Identical sighting ranges of prey and
predator, sighting ranges increase from bottom to top, s s= = 0, 1, 3, 5, 7, 9prey pred .
The lines are power-law fits according to equation (2). The exponent β as a function of
sighting ranges is depicted in figure B2 in appendix B.
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to catch the first prey. For arbitrary densities, as a result of extensive simulations we find from
figure 2 that the mean first capture time as a function of the prey density follows a power law
behaviour

t ~ b s s- 2c
,pred prey⟨ ⟩ ( )( )

in which different combinations of sighting ranges lead to different slopes. The exponent β as
a function of the sighting range is depicted in figure B2 in the appendix. Furthermore, there
appears a crossover between two regimes for larger sighting ranges of the prey, in which we
find different slopes for the low and intermediate density range and the high density range;
see, for instance, the square symbols in figures 2(b) and (c).

In more detail, while the predatorʼs sighting range only slightly influences the preyʼs
survival, as shown in figure 2(a), the prey can increase their life expectancy significantly by a
finite sighting range of at least two, compare figure 2(b), even in the case of a long sighting
range of the predator, see figure 2(c). In both figures 2(b) and (c) a significant variation at
intermediate σ values is distinct. We note that a short sighting range of the prey (s = 1prey )
has no advantage over a vanishing one. An explanation can be found ‘microscopically’. There
are two possibilities for a prey to get caught. First, a prey gets stuck and, despite his eyesight,
cannot evade the encounter with the predator; or, second, predator and prey simultaneously
jump on the same lattice site and collide randomly, see figure 3. With sighting range zero or
one a prey cannot foresee a random collision, because the distance decreases instantly from
two to zero. Thus, the prey needs at least a sighting range of two to prevent such a situation.
These random collisions further lead to the fact that the predator is more successful with an
even sighting range s = n n2 ,pred being an integer number, than with a higher odd one
s = +n2 1pred . Since the random collision is a natural and frequent way to get caught, we
decided to eliminate these effects by treating only odd sighting ranges.

We note that we did not include error bars in our figures. A stochastic variable with
exponential (Poissonian) probability density function t= t- -p t e t1( ) has the mean τ and
variance t2 2. The mean first capture time presented in this section is the first moment of the
exponentially distributed first passage density obtained in section 4.3. The standard deviation

of this Poissonian process òs t= -
¥

t p t td
0

2 2( ) is equal to the mean τ, which is indeed

Figure 3. A short-sighted prey (sprey=1), depicted by the red dot, can get caught by
the predator (blue cross) despite his field of vision by random collision, due to
simultaneous jumps to the same lattice site.
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confirmed from our numerical results with a sample size of 104 per data point. Repeated
simulations produced practically indistinguishable results.

4. Distribution of first capture times

In comparison to an ensemble of non-interacting random walkers self volume effects and the
autonomy of decision-making of the participants limit the possibilities of analytical calcu-
lations. We succeeded in calculating the distribution of the time for catching the first prey
only in the case of blind prey. As the results are nevertheless instructive we discuss this case
here in some detail. The autonomy to switch the mode of motion of the predator can be
included by dividing the process into two subprocesses. The first one describes the diffusing
predator while looking out for a prey. The second subprocess portrays the direct chase of the
prey, which can in fact be considered as a ballistic motion in chemical space such that the
predator still has the option of choosing sites in different directions.

4.1. Searching the prey

The first subprocess describes the random motion of the predator while looking out for a prey.
According to the model during that time the predator performs a nearest neighbour random
walk on the lattice. We are interested in the first passage density function of the predator to
find the first prey, that is, until the first prey enters the predatorʼs sighting range. For sim-
plification we use a continuous radial coordinate and ignore the fact that the participants move
on a lattice. We assume that there exists an effective radius reff around the predator in which
he will not encounter a prey. This radius has a natural lower bound which is the initial
distance between predator and nearest prey (at time t=0), calculated in section 5. If the
predator hits this effective radius, he spots the prey and will from there on switch his motion
to the direct chase calculated in the next subsection.

We consider the predator as a diffusing particle in two-dimensions and calculate his first
passage time to escape a sphere with radius s-reff pred. For simplification we let the particle
diffuse between concentric spheres with an inner reflecting boundary at radius -R , which will
later tend to zero, and an outer absorbing boundary at radius +R , representing the point where
the predator spots a prey. +R is thus the distance between predator and prey minus the
sighting range of the predator. The predator starts inside the interval < <- +R r R0 . We will
later let r0 tend to -R to capture the predatorʼs starting position correctly. The diffusing
particle can be described by the radial diffusion equation

⎛
⎝⎜

⎞
⎠⎟

¶
¶

=
¶
¶

¶
¶

p r t

t
D

r r
r

r
p r t

, 1
, 3

2
2( ) ( ) ( )

for the probability density function p r t,( ) to find the predator at radius r at time t. The initial
condition we choose as d p= = -p r t r r r, 0 20 0( ) ( ) ( ), that is, the particle starts at =r r0.
We impose the absorbing boundary condition =+p R t, 0( ) at +R and the reflecting boundary
condition - ¶ ¶ =-p r t r, 0R[ ( ) ] at = -r R . After Laplace transform

L ò= =
¥

-f s f t s f t te d 4st

0
˜ ( ) { ( )}( ) ( ) ( )
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and with =x r s D the diffusion equation is reduced to the ordinary differential equation

d
p

-
¶

¶
-

¶
¶

=
-

p x s
x

p x s

x

p x s

x D

x x

x
,

1 , , 1

2
. 5

2

2
0

0
˜ ( ) ˜ ( ) ˜ ( ) ( ) ( )

For <x x0 and >x x0 this is the modified Bessel equation of zero order with known solution
= +p x s C I x C K x, 1 0 2 0˜ ( ) ( ) ( ) for ¹x x0 [24], where I x0 ( ) and K x0 ( ) are the modified Bessel

functions of first and second kind. We solve this equation by imposing the continuity
condition =< >p x s p x s, ,0 0˜ ( ) ˜ ( ) and the jump-discontinuity

p
-

¶

¶
+

¶

¶
=> <p x s

x

p x s

x Dx

, , 1

2
, 6

x x 0
0 0

˜ ( ) ˜ ( )
( )

where <p x s,˜ ( ) is the solution in the range <x x0 and >p x s,˜ ( ) is the solution in the range
>x x0. With the shorthand notations = -n n n n nC a b I a K b K a I b,( ) ( ) ( ) ( ) ( ) and

= +n n n n n  D a b I a K b K a I b,, 1 1( ) ( ) ( ) ( ) ( ) [26] the solution yields in the form

p
=

-

+

- + +
+ - -

- -

p x s
C x x

Dx D x x
,

,

2 ,
. 7

C x x C x x

D x x

0

0
, ,

, 1, 0
0 0 1 0

0, 0( )˜( ) ( )

( )
( )

( ) ( )
( )

If the particle starts at the inner boundary = -r R0 , corresponding to -x in the reduced coordinates,

p
= -


>

+

- + +-

p x s
C x x

Dx D x x
lim ,

,

2 ,
8

x x

0

0 1, 00

˜ ( ) ( )
( )

( )

we calculate the flux through the outer boundary as

p-
¶

¶
=+

>
- - + - +

-

+

x D
p x s

x
x D x x2

,
, . 9

x

1,
1

˜ ( )
( ( )) ( )

When -x approaches zero, we therefore find that

Ã = =


+
-

+
-

-

s I x I R s Dlim , 10
x 0

search 0
1

0
1( ( ))˜ ( ) ( ( )) ( )

where on the right-hand side we restored the original variables. This is but the first passage
time density function in Laplace space of the predator to spot a prey. From that time the
predator will chase the prey directly, this part being calculated in the next subsection.

4.2. Chasing the prey

The second subprocess, which describes the predatorʼs movement from the moment of spotting
the prey until the prey is caught, can be reduced to a one-dimensional problem. Remember that
the decision for every step of the predator is constrained by the following rule: the distance to
the prey has to necessarily decrease. For the prey, analogously, the goal is to increase the
distance. Consequently after a combined predator and prey step the distance between predator
and prey can either stay the same or decrease by one lattice spacing if the chosen site of the prey
is already occupied and the prey remains at its site. The first capture time can thus be calculated
exactly from the number of times a prey remains at its location. A large sighting range of the
prey renders the analysis of the chasing process more difficult as all prey try to escape from the
predator and will eventually build a cluster that moves away from the predator. Due to the
random order of the updates, one cannot say which of the prey remains sitting. Therefore, we
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confine ourselves to the case of blind prey. In this case the prey undergoes normal diffusion and
the predator moves constantly towards the prey. We therefore consider the predator to be a
moving cliff towards a diffusing particle, the blind prey. The survival probability of a diffusing
particle in presence of a ballistically moving cliff decays exponentially [26],

S t t- -t t e . 11t1 2( ) ( ) ( )
The associated first passage density SÃ = -t t td d( ) ( ) then becomes

⎛
⎝⎜

⎞
⎠⎟

t
t

t
t

Ã +t-
- -

t
t t

e
2

. 12t
chase

1 2 3 2
( ) ( ) ( ) ( )

With the Laplace transform tÃ ~ + -s s1chase
1 2˜ ( ) ( ) in the long time limit corresponding to a

small s expansion, we finally get tÃ ~ + -s s1 2chase
1˜ ( ) ( ) .

Using the first passage time densities of the subprocesses of search and chase we cal-
culate the total first capture time density function in the next subsection.

4.3. Density of first capture time

The distribution of the first capture time is now given by the convolution of results
Ã = +

-s I R s Dsearch 0
1˜ ( ) ( ( )) and tÃ ~ + -s s1 2chase

1˜ ( ) ( ) ,

òÃ = Ã ¢ Ã - ¢ ¢t t t t td 13
t

0
search chase( ) ( ) ( ) ( )

which designates the probability that the predator spots the first prey at time ¢t and catches the
prey during the time span - ¢t t . In Laplace space this convolution simplifies to the product
Ã = Ã Ãs s ssearch chase˜ ( ) ˜ ( ) ˜ ( ). The inverse Laplace transform can be obtained in the long time
limit, corresponding to taking s 0. We thus need to invert

k l klÃ + + + -s s s1 , 142 1˜( ) ( ( ) ) ( )

Figure 4. First passage density for the case of blind prey and a short-sighted predator
(s = 1pred ) for different prey densities. Each data point shows the mean result from 106

realisations. The error bars were computed from splitting up the 106 independent runs
into ten runs of 105 runs. Inset: same plot for prey density  = 0.052 on a larger scale.
The lines are exponential fits according to equation (15). The exponent λ as a function
of prey density is depicted in figure B1 in appendix B.
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where k = +R D42 ( ) and l t= 2. Taking the leading terms for small Ã s t, ( )
L + L- -s11 1{( ) } with k lL = + , the inverse Laplace transform yields the final result

Ã L- - Lt e . 15t1( ) ( )

This density of first capture is thus an exponential distribution, where the rate L-1 is a function
of the prey density and the predatorʼs sighting range. Figure 4 shows the numerical data of
our simulation for the case of blind prey and a short sighting range of the predator (s = 1pred ).
The exponential form (15) agrees quite well with the data over the whole density range.

5. Mean distance between predator and nearest prey

We now turn to study the dynamics of the mean distance between the predator and the nearest
prey in more detail. In figure 5 our simulation results for this mean distance are plotted for a
low prey density  = 0.104 in the upper row (panels (a), (c) and (e)) and for an intermediate
density  = 0.520 in the lower row (panels (b), (d) and (f)). The distance decreases expo-
nentially in time except for the case when a blind predator is combined with a low prey
density (figure 5 (a)) or with a very good eye-sight of the prey (figure 5(b)). In these cases the
distance is approximately constant in the shown time window. In case of identical sighting
ranges the distance between short-sighted species decreases faster than the distance between
blind species. This phenomenon is due to the random collisions explained in section 3.

As intuitively expected, the distance between the predator and the nearest prey decreases
faster in the case of a large sighting range of the predator. However when the preyʼs sighting
range is large it softens the decay of the distance. A high prey density also leads to a faster

Figure 5. Mean distance between the predator and the nearest prey as function of time,
averaged over 104 realisations. The upper row (panels (a), (d), (e)) shows the case of a
low density  = 0.104 and the lower row (panels (b), (d), (f)) represents the case of an
intermediate density  = 0.520. The two left panels (a) and (b) represent the case of a
blind predator, the preys’ sighting range decreases from top to bottom
(s = 9, 7, 5, 3, 1, 0prey ). The two middle panels (c) and (d) represent the case of
blind prey. The predatorʼs sighting range increases from top to bottom
(s = 0, 1, 3, 5, 7, 9pred ). The two panels on the right (e) and (f) show the mean
distance in case of identical sighting ranges (s s= = 0, 1, 3, 5, 7, 9pred prey ). They
decrease from top to bottom. The lines are exponential fits according to equation (18).
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decay of the distance between the predator and the nearest prey, because it implies more prey-
prey obstruction events for the chased prey, and with every one such event the distance is
reduced by one lattice spacing.

A naive model that captures the effective interaction between two diffusive particles such
as the predator and the nearest prey turns out to be the Ornstein–Uhlenbeck process [25]. It is
defined in terms of the stochastic differential equation

= - +x t e cx t t b W td d d 16( ) ( ( )) ( ) ( )
with non-negative parameters e b, , and c. W t( ) denotes the Wiener process [27]. The
Ornstein–Uhlenbeck process describes the relaxation of the variable x with initial value

= =x t x0 0( ) to the mean value e/c in the presence of Gaussian white noise. The first
moment is given by the exponential decay

= - - + -x t
e

c
ct x ct1 exp exp . 170⟨ ( )⟩ [ ( )] ( ) ( )

Comparing the first moment to the observed simulated decay of the mean distance between
the predator and the nearest prey (figure 5),

q-d e , 18n
t⟨ ⟩ ( )

we see that the mean distance decreases as a special case of the Ornstein–Uhlenbeck process
with vanishing excentricity parameter, e=0.

A popular application of the Ornstein–Uhlenbeck process in physics is a Hookean spring
with spring constant k, whose dynamics is highly overdamped with friction coefficient γ in
the presence of thermal fluctuations. Therefore we can imagine the predator and the nearest
prey to be connected by a Hookean spring and being driven by an external Wiener noise. The
corresponding mean relaxes to zero. The equilibrium length of the spring is therefore zero.
The bottom of the corresponding harmonic potential thus represents the capture of the prey by
the predator. Due to the analogy, the respective sighting ranges and the prey density affect the
stiffness of the spring. The spring constant is easily related to the decay rate θ of the mean
distance,  q s s= k, , 2( ) ( ) . As shown in figure 6 the fitted values for the spring constant
display the power law behaviour

~ nk . 19( )
The exponent ν as a function of the sighting range is depicted in figure B2 in the appendix.
The spring constant corresponds to the slopes of the functions in figure 5, extracted from the
exponential fit and plotted as a function of the prey density. It relates to the mean first capture
time discussed in section 3 in the following way. The exponential decay of the mean distance
between predator and nearest prey has a mean life time related to the decay rate

t
q

=
1

. 20( )

Since the nearest prey is the one that will get caught, its mean first capture time is related to
the mean life time of the mean distance and consequently to the inverse of the decay rate,
compare figures 2 and 6.

5.1. Initial distance analysis

We finally mention an analytical approximation for the distance between the predator and the
nearest prey. Since we want to capture the whole dynamics we first need to determine the
initial distance between predator and nearest prey at time t=0. In the simulation we place the
predator in the centre and place the prey randomly around him including the self volume
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interaction. Then we measure the distance between the predator and the nearest prey. In
section 4.1 we used an effective radius reff within which the predator does not encounter a
prey. Although we cannot calculate this effective radius a natural lower bound is the initial
mean distance =dn t 0⟨ ⟩ between the predator and the nearest prey. Within this distance there is
no prey present and therefore it is impossible for the predator to encounter a prey.

We determine the initial distance between the predator and the nearest prey on a square
lattice with edge length L. The predator sits in the centre of the lattice and the prey are
randomly distributed on the remaining = -N L 1S

2 sites. As the prey have a self volume, a
lattice site can only be occupied by a single prey. The probability for the distance between

Figure 6. Effective spring constant k of our Ornstein–Uhlenbeck model as function of
the prey density for (a) blind prey: s = 0, 1, 3, 5, 7, 9pred , increases from bottom to
top. (b) Blind predator: s = 0, 1, 3, 5, 7, 9,prey increases from top to bottom. (c)
Identical sighting ranges: s s= = 0, 1, 3, 5, 7, 9prey pred , increases from top to bottom.
The lines are power law fits according to equation (19). The exponent ν as a function of
sighting ranges is depicted in figure B2 in appendix B.
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predator and nearest prey dn to be equal to d is

 = = - +P d d P d d P d d 1 . 21n n n( ) ( ) ( ) ( )

We then calculate the probability P d dn( ) using combinatorics. The detailed calculation
can be found in appendix A. For the probability function of the distance between predator and
nearest prey we obtain

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟å= -

+

=
P d

N d

N

N d

N

N d

N

1
, 22n

R

P

R

P i

d
R i

P1

max

( ) ( ) ( ) ( ) ( )

where we define dmax as the maximal possible distance between the predator and the nearest
prey. The expectation value of the initial distance from the predator to the nearest prey,

= å =d p d dn d
d

i i1 min, min,
i
max⟨ ⟩ ( ) then yields in the form
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The probability distribution of the initial distance to the nearest prey is shown in figure 7 and
the related initial mean distance as a function of prey density can be seen in figure 8. We
simulated both the initial distance distribution and the initial mean distance between the predator
and the nearest prey by placing all participants on the lattice under the model conditions with 104

iterations. Both analytical and numerical results show excellent agreement in figures 7 and 8.

6. Discussion

We studied the predator–prey dynamics of a single predator hunting a herd of prey on a
square lattice with decision-making species. While many predator–prey models deal with
collective predation [28–32] or the search for the optimal number of predators given the

Figure 7. Probability distribution of the initial distance between the predator and the
nearest prey for the case of different numbers NP of prey on a square lattice with edge
length L=31. The crosses represent the numerical data, averaged over 104

realisations. The lines show the analytical result (22).
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number of prey [33], we chose a model consisting of one predator and many prey, which is
often found in Nature. Solitary hunters such as tigers, bears, or sea turtles often have herd
animals as their target. A tiger, for example, hunts a herd of antelopes or a flock of sheep, a
bear fishing a salmon out of a stream. Similarly individual killer cells in biological organisms
may attack a bacteria, colony of bacteria or a biofilm.

A major ingredient of our model is the self volume of the prey, such that no two prey are
allowed on a given lattice site. We showed that in the case of impenetrable prey the predator hunts
more successfully if the prey have worse eyesight. Moreover, we found that the predator benefits
more from a deterioration of the preyʼs eyesight than from an improvement of his own eyesight.

While trapping reaction models obtain a minor influence of the preyʼs long time survival
probability by their diffusion constant [5, 6] we found the preyʼs sighting range and thereby
motion predominating their survival probability. Due to self volume interactions the prey are
forced to improve their eye-sight, and with a good field of vision can drastically increase their
chances of survival even in the range of high densities.

The prey only profit from a sighting range of at least two. A very short eyesight does not
at all improve its survival probability with respect to being blind. This is attributed to random
collisions between predator and prey. Using a simplified analytic approach we showed that in
the long time limit the first passage density of the predator to catch a blind prey decays
exponentially in time with a nonlinear dependence of the decay rate on the prey density.

The effective motion during the chase (described in terms of the distance between the
predator and the chased prey) can be effectively described as a linear relaxation process in an
harmonic potential with a stochastic driving where the density and sighting ranges determine
the stiffness of the corresponding Hookean spring. All nonlinear effects entering the motion
due to self volume interactions can thus effectively be described with a single parameter.

There exist a range of further open questions. To imitate natural environment one could
extend the dynamics by introducing (time or sighting range dependent) waiting times. One
could choose different rates of motion for predator and prey as well or even distribute the
rates within the prey to simulate old, sick or infant animals. Additionally, many prey live in
herds, so one could let the prey be clustered as the initial condition. Last but not least,

Figure 8. Initial value of the mean distance between the predator and the nearest prey as
a function of prey density on a square lattice with edge length L=31. The symbols
represent the numerical data, averaged over 104 realisations, and the dashed line the
analytical result (23).
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communication between the prey is a reasonable thing to assume. Once one of the prey spots
the predator, immediately all of them are informed (similar to stamping of rabbits or the
cheeping calls of groundhogs), that is, a collective response of prey.

We finally note that random search processes with non-Brownian search dynamics are
also widely discussed in literature. While Brownian motion is an advantageous process to find
nearby targets [34], it is known that pure stochastic motion leads to oversampling of the area
on longer time scales. Hence, the optimal number of encounters with prey can be found by
switching between search modes [35, 36]. Representative for such a process is for example
the intermittent search strategy which combines phases of slow motion, allowing the searcher
to detect the target, and phases of fast motion during which targets cannot be detected
[37, 38]. Another widely applicable process concerning optimal search strategies are Lévy
flights, which are based on random walk processes with long- tailed jump length distributions
and are known to be an efficient strategy for finding a target of unknown place [39, 40]. A
species which is known to move in Lévy patterns are wandering albatrosses [41, 42] or
marine predators as sharks, bony fishes, sea turtles and penguins [43, 44]. It would thus be
interesting to study effects of self volume in these models as well.
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Appendix A. Initial distance between predator and nearest prey

We determine the initial distance between the predator and the nearest prey on a two-
dimensional square lattice with edge length L. The predator sits in the centre of the lattice and
the prey are randomly distributed on the remaining = -N L 1S

2 sites. As the prey have a self
volume, a lattice site can only be occupied by a single prey. The probability for the minimal
distance between predator and nearest prey dn to be equal to d is

 = = - +P d d P d d P d d 1 . A.1n n n( ) ( ) ( ) ( )
We calculate the probability function p d dn( ) using combinatorics. If d dn all sites
within distance d (up to distance -d 1) must be unoccupied. To obtain the number of these
sites we count all sites at exactly distance d and add them from distance 1 up to -d 1. The
number of sites at distance d can be shown to be
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N d
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Counting all empty sites within the distance d from the predator leads to
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Due to the predator sitting in the centre there are in general = -N L 1S
2 possible sites for the

prey to be placed on. Under the assumption that the minimal distance is d, i.e., M d( ) sites are
vacant, there are = -N d N M dR S( ) ( ) remaining sites for the prey. The probability for the
minimal distance to be greater or equal d is the number of possibilities to place the prey at the
remaining sites N dR ( ) over the possibilities to place the prey at sites greater equal every
possible distance (1 to dmax )

⎛
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For the probability function of dn using equation (21) we obtain
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where we define dmax as the maximal possible distance between the predator and the nearest
prey. It is determined by the number of prey (due to the self volume of the prey) and can be
calculated by allocating all prey as greatest distance as possible starting at = -d L 1. Then
the first fully unoccupied diamond at distance d is the maximal possible distance dmax . There
exist the following condition to place all prey  -N N M dP S max( ),
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We then get the maximal possible distance as a function of prey
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where  Îx m m xmax⌊ ⌋ ≔ { ∣ } is the floor function. We now obtain the expectation value
of the initial distance from the predator to the nearest prey
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Appendix B. Exponents of figures 2, 4 and 6

We here present plots depicting the dependence of the parameter Λ from figure 4 versus the
prey density (figure B1) as well as of the scaling exponents β and ν from figures 2 and 6.
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Figure B1. Parameter Λ from the exponential fits in figure 4 as function of prey density.

Figure B2. Left: exponents of the power-law fits in figure 2(a) as function of the preys’
sighting range in case of a blind predator, (b) as function of the predatorʼs sighting
range in case of blind prey, (c) as function of the sighting range in case of identical
sighting ranges. Right: exponents of the power-law fits in figure 6(a) as function of the
preys’ sighting range in case of a blind predator, (b) as function of the predatorʼs
sighting range in case of blind prey, (c) as function of the sighting range in case of
identical sighting ranges. The lines are meant to guide the eye.
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