
Transp Porous Med (2016) 115:327–344
DOI 10.1007/s11242-016-0686-y

Ageing Scher–Montroll Transport

Henning Krüsemann1 · Richard Schwarzl1,2 ·
Ralf Metzler1

Received: 22 January 2016 / Accepted: 4 April 2016 / Published online: 20 April 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We study the properties of ageing Scher–Montroll transport in terms of a biased
subdiffusive continuous time randomwalk in which the waiting times τ between consecutive
jumps of the charge carriers are distributed according to the power law probability ψ(t) �
t−1−α with 0 < α < 1.Aswe show, the dynamical properties of the Scher–Montroll transport
depend on the ageing time span ta between the initial preparation of the system and the start
of the observation. The Scher–Montroll transport theory was originally shown to describe
the photocurrent in amorphous solids in the presence of an external electric field, but it has
since been used in many other fields of physical sciences, in particular also in the geophysical
context for the description of the transport of tracer particles in subsurface aquifers. In the
absence of ageing (ta = 0) the photocurrent of the classical Scher–Montroll model or the
breakthrough curves in the groundwater context exhibit a crossover between two power law
regimes in time with the scaling exponents α−1 and−1−α. In the presence of ageing a new
power law regime and an initial plateau regime of the current emerge. We derive the different
power law regimes and crossover times of the ageing Scher–Montroll transport and show
excellent agreement with simulations of the process. Experimental data of ageing Scher–
Montroll transport in polymeric semiconductors are shown to agree well with the predictions
of our theory.

Keywords Anomalous diffusion · Ageing · Scher–Montroll transport

1 Introduction

Anomalous diffusion, deviations from the laws of Brownian motion quantified by the diffu-
sion equation (Fick’s second law), was reported as early as 1935 by Freundlich and Krüger
(1935) showing significant discrepancies from the predictions of Fick’s laws in an analysis of
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the 1914 experiments by Herzog and Polotzky (1914). Today, the term anomalous diffusion
in statistical physics, biological physics, and geophysics refers to processes, whose mean
squared displacement is no longer linear in time. Mostly, power laws of the form

〈x2(t)〉 � Kαt
α (1)

are studied, where we distinguish between subdiffusion for the range 0 < α < 1 of the
anomalous diffusion exponent and superdiffusion for α > 1 (Metzler and Klafter 2000a;
Bouchaud and Georges 1990). Equation (1) features the generalised diffusion coefficient Kα

of physical dimension [Kα] = cm2/sα . This unusual dimensionality can be understood from
physical models as discussed below.

Anomalous diffusion in the sense of Equation (1) was first reported by Richardson (1926)
for the relative diffusion of two tracer particles in turbulent flows. In condensedmatter physics
possibly themost influential paper on anomalous diffusion is thework on the dispersive trans-
port of charge carrier motion in amorphous semiconductors by Scher and Montroll (1975),
containing the subdiffusive formulation of theWeiss–Montroll continuous time randomwalk
(Montroll and Weiss 1965; Shlesinger 1974). In a geophysical context, anomalous diffusion
occurs frequently in the spreading of tracer chemicals in aquifers (Berkowitz et al. 2006;
Kirchner et al. 2000). Today, modern microscopic techniques unveil subdiffusion of artificial
and endogenous tracer particles of submicron size in living biological cells (Weiss et al.
2004; Jeon et al. 2011, 2013b; Golding and Cox 2006; Kepten et al. 2011; Barkai et al. 2012)
and complex (crowded) liquids (Habdas et al. 2004; Tejedor et al. 2010; Szymanski and
Weiss 2009). Recent advances in superresolution microscopy even allow experimentalists
to measure anomalous diffusion of nanometre-sized fluorescent molecules in live cells (Di
Rienzo et al. 2014) or of single lipid molecules in biological membranes at nanosecond time
scales (Honigmann et al. 2013). Due to active, energy-consuming processes in living cells,
also superdiffusion has been measured (Caspi et al. 2000; Robert et al. 2010; Reverey et al.
2015).

Ageing is awell-knownphenomenon in glass-forming systems, namely after a temperature
quench glassy systems exhibit an explicit dependence not only on the probing time but also on
the ageing time elapsing between the quench and the start of the probing experiment (Henkel
et al. 2007; Donth 2001). Monthus and Bouchaud (1996) showed that such ageing can be
understood in terms of quenched trap models with exponential distributions of well depths,
leading to diverging waiting time scales below a (glass) temperature (Bouchaud and Georges
1990). In these models a tracer particle on average falls into ever deeper traps, and thus, its
effective mobility decreases with time. However, even in living biological cells ageing was
found to govern the diffusive dynamics of channel proteins in cellular membranes (Weigel
et al. 2011; Manzo et al. 2014) as well as the motion in the cellular cytoplasm of insulin
granules (Tabei et al. 2013). Another example for ageing dynamics comes from cooling
granular gases in the homogeneous phase (Bodrova et al. 2015) and semiclassical systems
(Brokmann et al. 2003).

In particular, ageing is observed for the Scher–Montroll transport of charge carriers in
polymeric semiconductors (Schubert et al. 2013). Experimentally, the ageing behaviour of
the charge carriers is probed as follows: charge carriers are generated by a light flash and then
allowed to subdiffuse freely in the semiconductor. After the ageing time ta an external electri-
cal driving field is switched on, and then the Scher–Montroll current recorded in time-of-flight
measurements (Schubert et al. 2013). Indeed, the experiments reveal a significant modifi-
cation of the current-time characteristic compared to non-aged, classical Scher–Montroll
transport, as evidenced in Fig. 1. Similar situations could be envisaged in a geophysical
context: imagine that some chemical tracer is spilled and allowed to mix locally in the
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Fig. 1 Electrical current in
time-of-flight experiments in
polymeric semiconductors
(Schubert et al. 2013). In the
absence of ageing (ToF) the
classical Scher–Montroll result
with two power laws is displayed.
When the system is aged
(td-ToF), the current
characteristic changes and as
shown by extrapolations based on
Monte Carlo simulations an
initial current plateau emerges
(Schubert et al. 2013)

groundwater aquifer, which was shown to be characterised by continuous time randomwalk-
like transport (Berkowitz et al. 2006; Berkowitz and Scher 1997). After an ageing period ta
a bias flow is caused by a period of rainfall. Effects on the dispersive transport of the tracer
similar to the observations in the semiconductor would be expected.

Here we extend the work of Barkai and Cheng (2003) and Barkai (2003) on the descrip-
tion of ageing Scher–Montroll behaviour and our results on ageing first passage behaviour
in subdiffusive continuous time random walk processes (Krüsemann et al. 2014, 2015) to
obtain the full analytical behaviour of the ageing Scher–Montroll dynamics. In particular,
we demonstrate the emergence of an initial plateau in the current-time characteristic and
show that the predicted scaling of the plateau value is in good agreement with experimental
results from charge carrier motion in polymeric semiconductors. Throughout the article, the
wording will be based on the concept of an electric current, but we stress that it is equivalent
to the current of tracer particles in groundwater breakthrough experiments.

2 Subdiffusive Continuous Time RandomWalks and Ageing Dynamics

Anomalous transport processes based on stationary increments such as fractional Brownian
motion or fractional Langevin motion (Mandelbrot and van Ness 1968; Goychuk 2012)
are at most transiently ageing (Kursawe et al. 2013). Ageing is indeed related to the non-
stationary nature of the process. While this includes Markovian processes with explicitly
space (Cherstvy andMetzler 2015) or time (Jeon et al. 2014) dependent diffusion coefficients,
the classical example is that of subdiffusive continuous time random walks (CTRWs). This
model, originally propagated by Scher and Montroll (1975) and Shlesinger (1974), is based
on a random walk process, in which successive jumps are separated by a random waiting
time distributed in terms of a waiting time density with power law tail

ψ(τ) � τα
0

τ 1+α
, (2)

where α > 0 and τ0 is a scaling factor of unit [τ0] = sec. When 0 < α < 1, the characteristic
waiting time 〈δτ 〉 = ∫ ∞

τψ(τ)dτ diverges and the dynamics becomes subdiffusive with
mean squared displacement (1). In the sense of the quenched energy landscape model this
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case would correspond to a system temperature below the glass temperature (Bouchaud and
Georges 1990; Monthus and Bouchaud 1996).

Indeed, power law waiting time distributions can be directly monitored on the basis of
individual trajectories of protein channels in cellular membranes (Weigel et al. 2011), the
motion of submicron tracers in gels of semiflexible filaments (Wong et al. 2004) and of
functionalised submicron tracers in the vicinity of complementarily functionalised surfaces
(Xu et al. 2011). Moreover, simulations show that a power law waiting time density can
be reconstructed from the distribution of hydraulic conductivities in porous systems (Edery
et al. 2014). The full immobilisation of a tracer particle in a trapped state in experiments
may be masked by additional environmental noise (Jeon et al. 2013a). CTRW-like motion
was also shown to be associated with submicron granule motion in living biological cells
(Jeon et al. 2013b; Tabei et al. 2013). Subdiffusive CTRWs are also underlying the tracer
particle motion in porous structures in subsurface aquifers (Berkowitz et al. 2000, 2002)
and even the blinking dynamics of quantum dots (Brokmann et al. 2003; Jung et al. 2002)
and their arrays (Sibatov 2011). We note that in an external force field subdiffusive CTRWs
are conveniently described in terms of the fractional Fokker–Planck equation (Barkai 2001;
Metzler et al. 1999; Metzler and Klafter 2000a).

After the original studies by Monthus and Bouchaud (1996) and Bouchaud and Georges
(1990) the ageing behaviour of subdiffusive CTRWs was explored by Barkai and Cheng
(2003) and Barkai (2003); see also the recent perspective article on ageing CTRWmotion and
renewal theory (Schulz et al. 2014). The existence of ageingwas also demonstrated in dynamic
maps (Akimoto and Barkai 2013; Barkai 2003). The ageing-related effect of a weakening
response to an external sinusoidal driving was revealed in subdiffusive CTRWs (Sokolov and
Klafter 2006) and correlated CTRWs (Magdziarz et al. 2012). Generally, the occurrence of
an additional time scale specified by ta gives rise to characteristic crossover behaviours of
physical observables. For instance, the mean squared displacement of an unconfined ageing
subdiffusive CTRW process reads (Barkai and Cheng 2003; Barkai 2003; Schulz et al. 2014)

〈x2a (t)〉 = 〈[x2(t) − x(ta)]2〉

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα

�(1 + α)
+ tαa

�(1 − α)
, ta � t

tα−1
a t

�(α)
, ta � t

, (3)

where by convention we count the time t from the end of the ageing period ta . For weak
ageing when t � ta a correction term emerges in the mean squared displacement. For strong
ageing with ta � t the leading term is, deceivingly, linear and suggests normally diffusive
behaviour, with a correction factor tα−1

a . Interestingly, for the corresponding time averaged
mean squared displacement the scaling in terms of the dynamical variable remains unchanged
in the presence of even strong ageing, the effect of ta entering solely in termsof amultiplicative
ageing prefactor (Schulz et al. 2013, 2014). Analogously, ageing-caused crossoverswere also
observed in the first passage density of subdiffusiveCTRWprocesses (Krüsemann et al. 2014,
2015). A significant feature of ageing CTRW motion is the splitting up of a population of
tracer particles into a discrete immobile fraction and a distributed, mobile fraction during
finite observation periods (Schulz et al. 2013, 2014). We note that a similar feature arises in
strongly varying diffusivity fields (Metzler et al. 2014; Cherstvy and Metzler 2013).

The ageing behaviour of subdiffusive CTRWs is related to weakly non-ergodic dynamics
(Metzler et al. 2014; Bouchaud 1992; Bel and Barkai 2005; Lubelski et al. 2008; He et al.
2008) according to which even in the long measurement time limit the ensemble and time
averages of physical observables such as the mean squared displacement do not converge.
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This phenomenon is also related to modifications of the Khinchin theorem (Burov et al.
2010). We also mention that certain ageing effects also occur in the range 1 < α < 2 when
we encounter a finite characteristic waiting time 〈δτ 〉 but infinite fluctuations 〈δτ 2〉 (Allegrini
et al. 2002).

3 Ageing Scher–Montroll Transport: Biased Continuous Time Random
Walks

We consider the Scher–Montroll scenario with power law waiting time density (2) and the
initial distribution of the test particle’s position,

p0(x) = 1

b
[�(x + b/2) − �(x − b/2)] , (4)

of width b in the semi-infinite domain (−∞, a), with a > b. The rescaled force

B = F

2kBT
, (5)

corresponding to the external electric field in the context of Scher–Montroll charge carrier
transport or the water drift in the geophysical setting, drives the walker towards the absorbing
boundary (counter-electrode, catchment) located at x = a such that P(a, t) = 0. Note that
in what follows we denote the Laplace transform of a function by its explicit dependence on
the Laplace variable u,

f (u) =
∫ ∞

0
e−ut f (t)dt. (6)

Introducing the abbreviations

A = 2uα−1(τ �)α, C = √
1 + 4(uτ �)α, (7)

and the time scale
τ � = (4B2Kα)−1/α, (8)

we write the non-aged, unconfined probability density function as (Barkai 2001)

P(x, u) = AB

C
exp (B [x − C |x |]). (9)

The ageing probability density is then given by Barkai and Cheng (2003), Barkai (2003),
Schulz et al. (2014), and Schulz et al. (2013)

P(x, s, u) = P0(s, u)p0(x) + h(s, u)P(x, u) ⊗ p0(x), (10)

where P0(ta, t) is the probability density of not having made a step until time t after the
ageing period of duration ta , while h(ta, t) is the density of the forward waiting or recurrence
time one has to wait for the first step to occur after the initial ageing period (Godrèche and
Luck 2001). Moreover, s is the Laplace space variable corresponding to ta and the symbol
⊗ is defined as

P(x, u) ⊗ p0(x) =
∞∫

−∞
P(x ′, u)p0(x − x ′)dx ′. (11)

We note that the statistic of h is different from that of the original ψ : for increasing ageing
period the likelihood increases that the system at the start of the measurement is locked in a
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very long trapping event, rendering the relative contribution of the factor P0(ta, t) ever more
relevant.

The solution for the semi-infinite geometry with an absorbing boundary is found using
the method of images (Barkai 2001; Metzler and Klafter 2000b)

P̂(x, s, u) = P (x, s, u) − M P (x − 2a, s, u) , (12)

with the boundary condition P̂(a, s, u) = 0. The solution P̂(x, t, ta) is no longer a probability
density function (PDF), as its norm decays with time. To balance for the drift when we apply
the method of images, we introduced above the proportionality coefficient

M = P(x, u) ⊗ p0(x)|a
P(x, u) ⊗ p0(x)|−a

. (13)

The convolution term introduced in Eq. (10) features the three regimes

P(x, u) ⊗ p0(x)

= A

bC

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 exp (Bx[1 + C]) sinh (Bb[1 + C]/2)/(1 + C), x < −b/2
[
exp (B[1 − C][x + b/2]) − 1

]
/(1 − C)

+ [
1 − exp (B[1 + C](x − b/2))

]
/(1 + C), −b/2 < x < b/2

2 exp (Bx[1 − C]) sinh (Bb[1 − C]/2)/(1 − C), x > b/2

(14)

and the image factor depending on the position x with respect to ±b/2 assumes the explicit
form

M = exp (2Ba)
exp (Bb[1 − C]/2) − exp (−Bb[1 − C]/2)
exp (Bb[1 + C]/2) − exp (−Bb[1 + C]/2)

1 + C

1 − C
. (15)

An important quantity in the calculation of the Scher–Montroll current is the survival.
It measures the probability that a given charge carrier has not yet been absorbed by the
counter-electrode. This survival probability is given by

S (s, u) =
a∫

−∞
P̂(x, s, u)dx . (16)

After some linear transformations of the integration variable (note that a > b/2) we find the
result

S (s, u) = P0(s, u) + h(s, u)

(∫ −b/2

−∞
I(x)dx +

∫ b/2

−b/2
II(x)dx

+
∫ a

b/2
III(x)dx − M

∫ −a

−∞
I(x)dx

)

. (17)

The Roman numerals stand for the three regimes of equation (14), respectively. The integral
of II(x) can be separated,

∫ b/2

−b/2
II(x)dx = 2A

C2 − 1
+

∫ b

0

−II(x)dx −
∫ 0

−b

+II(x)dx, (18)

where we abbreviated

∓II(x) = A

bC(1 ∓ C)
exp (B[1 ∓ C]x). (19)
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Another important quantity in the Scher–Montroll model is the average position of the
remaining (non-absorbed) particles

〈x(s, u)〉r =
a∫

−∞
x P̂(x, s, u)dx . (20)

We use coordinate shifts and integration by parts and obtain

〈x(s, u)〉r = h(s, u)

{

−M

([

2a − 1

B(1 + C)

] ∫ −a

−∞
I(x)dx + 1

B(1 + C)

[
xI(x)

]−a

−∞

)

− 1

B(1 + C)

∫ −b/2

−∞
I(x)dx + 1

B(1 + C)

[
xI(x)

]−b/2

−∞

+
(

1

B(1 + C)
− b

2

) ∫ 0

−b

+II(x)dx −
(

1

B(1 − C)
+ b

2

) ∫ b

0

−II(x)dx

− 1

B(1 + C)

[
xI(x)

]0

−b
sinh

(
Bb[1 + C]

2

)

+ 1

B(1 + C)

[
xIII(x)

]b

0
sinh

(
Bb[1 − C]

2

)

+ 1

B(1 + C)

[
xI(x)

]a

b/2
− 1

B(1 − C)

∫ a

b/2
III(x)dx

}

, (21)

where
[
xI(x)

]u

l
is defined as the product of x and the Roman numeral, evaluated at the upper

and lower values, [
xI(x)

]u

l
= u × I(u) − l × I(l) (22)

The overall mean 〈x(t, ta)〉 is a combination of the average of the remaining particles
and the share of the absorbed walkers that accumulate at the counter-electrode (catchment)
located at x = a,

〈x(s, u)〉 = 〈x(s, u)〉r + a

(
1

su
− S (s, u)

)

. (23)

Substituting the solutions, evaluating the integrals, using the property (Schulz et al. 2014)

P0(s, u) = 1 − sh(s, u)

su
, (24)

and by help of the additional abbreviations

D = A

BbC[1 + C]2 , E = A

BbC[1 − c]2 (25)

we obtain

〈x(s, u)〉 = h(s, u)

{
a

u
− 2Aa

C2 − 1
+ exp [B(1 + C)(b/2 − a)]M D

(

−a + 1

B(1 + C)
+ a

)

+ exp [B(1 + C)(−b/2 − a)]M D

(

a− 1

B(1 + C)
−a

)

+ exp [−B(1 + C)b]D

×
[

a + 1

B(1 + C)
+ b/2 − a − 1

B(1 + C)
+ b/2 − b

]
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+D

[

−a − 1

B(1 + C)
− b/2

]

+ E

[

a + b/2 + 1

B(1 − C)

]

+D

[

a − b/2 + 1

B(1 + C)

]

+ E

[

−a − 1

B(1 − C)
+ b/2

]

+ exp [B(1 − C)b]E

[

−a + b/2 − 1

B(1 − C)
+ a + 1

B(1 − C)
− b/2 + b

]

+ exp [B(1 − C)(a + b/2)]E

[

−a − 1

B(1 − C)
+ a

]

+ exp [B(1 − C)(a − b/2)]E

[

a + 1

B(1 − C)
− a

]}

. (26)

Here we sorted the results by exponential functions and did not cancel obvious terms to point
out the origins of the various terms. We now simplify further, using the property that

a

u
= 2Aa

C2 − 1
, b(E − D) = 4A

B(1 − C2)2
(27)

so that we obtain

〈x(s, u)〉 = h(s, u)
{[

− exp (B[1 − C][a + b/2]) + exp (B[1 − C][a − b/2])
]

+ DM

B(1 + C)

[
exp (B[1 + C][−a + b/2]) − exp (B[1 + C][−a − b/2])

]

+ 4A

B(1 − C2)2
+ E

B(1 − C)

}

. (28)

We insert the expression for M and reorganise the terms,

〈x(s, u)〉 = h(s, u)

{
exp [B(1 − C)(a + b/2)]

Bb(1 − C)

(

−E + D
1 − exp [−Bb(1 − C)]

1 − exp [−Bb(1 + C)]

)

+exp [B(1 − C)(a − b/2)]

Bb(1 − C)

(

E − D
exp [Bb(1 − C)] − 1

exp [Bb(1 + C)] − 1

)

+ 4A

B(1 − C2)2

}

(29)

= h(s, u)

{
A exp(B[1 − C]a)

B2Cb(1 − C)

[
exp (−Bb[1 − C]/2) − exp (Bb[1 − C]/2)

]

× 1

(1 − C)2

[

1 − 1

1 − exp (−Bb[1 + C]) − 1

1 − exp (Bb[1 + C])
]

+ 4A

B(1 − C2)2

}

= h(s, u)
4A

B(1 − C2)2

(
1 + exp(B[1 − C]a)

Bb(1 − C)

[
exp (−Bb[1 − C]/2)

− exp (Bb[1 − C]/2)
])

. (30)

In the amorphous semiconductor example the current induced by the hopping charge
carriers is proportional to the diffusive/dispersive velocity of the charge carriers and can thus
be derived directly from the mean. Using the Laplace transform of the time derivative we
find that (Scher and Montroll 1975; Barkai 2001)

I (s, u) � 〈v(s, u)〉 ∼ u 〈x(s, u)〉 . (31)
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We will employ this relation below.

3.1 Recovering the Result for Initial δ-Distribution

As it requires some care to show the relation of the above result for a spread out initial
condition with that for a sharp initial condition p0(x) = δ(x) we briefly show here the
consistency of the results in the limit of vanishing width b. Indeed, for small b values one
finds

[
exp (−Bb[1 − C]/2) − exp (Bb[1 − C]/2)] /[Bb(1 − C)]
= −1 + O(b2), (32)

where O(b2) denotes terms of order b2. The current for b → 0 is

Iδ,0(s, u) ∼ uh(s, u)
4A

B(1 − C2)2
(1 − exp (B[1 − C]a)) . (33)

To prove that this is indeed the correct form,we note that starting from an initial δ distribution,
one can find the result for the step initial condition in a more simple manner. If we shift the
initial peak from x = 0 to a more general position x = x0, the result will be the same, only
that a → a− x0 is shifted, since the peak gets closer to the absorbing boundary. We can now
convolve our Green’s function with the initial step and find

I (s, u) = Iδ,x0(s, u) ⊗ (
b−1 [�(x − b/2) − �(x + b/2)]

)

= b−1

b/2∫

−b/2

Iδ,x0(s, u)dx0

∼ b−1
∫ b/2

−b/2
uh(s, u)

4A

B(1 − C2)2
(1 − exp (B[1 − C](a − x0)))

=
[

1 − exp (B[1 − C]a)

(
exp (B(1 − C)b/2) − exp (−B(1 − C)b/2)

Bb(1 − C)

)]

× 4Auh(s, u)

B(1 − C2)2
, (34)

which indeed matches Eq. (30) inserted into Eq. (31).

4 Long Time Behaviour

Instead of directly analysing the long time behaviour of the current, it is more convenient
to inspect the small u behaviour in Laplace space and invert these terms using Tauberian
theorems (Davies 2002; Feller 1971)—the dominant terms in the limit u → 0 correspond
to the leading terms as t → ∞. For our expansion we use the variable q = 4(uτ �)α as the
small parameter. The following relations are exact:

uA = q/2, C = √
1 + q, 1 − C2 = −q. (35)

123



336 H. Krüsemann et al.

Expansion for small values of q yields

exp (−Bb[1 − C]/2) − exp (Bb[1 − C]/2)
≈

(

1 + Bb

4
q + 1

8

[
B2b2

4
− Bb

2

]

q2 + 1

48

[
B3b3

8
− 3B2b2

4
+ 3Bb

2

]

q3
)

−
(

1 − Bb

4
q + 1

8

[
B2b2

4
+ Bb

2

]

q2 + 1

48

[

− B3b3

8
− 3B2b2

4
− 3Bb

2

]

q3
)

= 1

2
Bbq

[

1 − q

4
+ q2

8

(

1 + B2b2

12

)]

. (36)

Moreover,

(1 − C)−1 ≈ 2

q

(

1 + q

4
− q2

16

)

(37)

and

exp (Ba[1 − C]) ≈ 1 − Ba

2
q + q2

8

[
B2a2 + Ba

]
. (38)

Thus, we arrive at the following asymptotic behaviour for the electrical current in Laplace
space,

I (u) ∼ h(s, u)

{
2q

Bq2

[

1 −
(

1 − Ba

2
q + q2

8

[
B2a2 + Ba

]
)

× 2

q

(

1 + q

4
− q2

16

)
1

2
Bbq

(

1 − q

4
+ q2

8

[

1 + B2b2

12

])

/Bb

]}

= h(s, u)

[

a −
(
a

4
(1 + Ba) + Bb2

48

)

q + O(q2)

]

, (39)

where the symbol O(q2) denotes terms of order q2. If we compare in this result the contri-
bution of the δ initial condition with that containing the width,

h(s, u)
Bb2

48
q, (40)

we find that this is negligible, since it has to be compared to the term

h(s, u)
Ba2

4
q, (41)

where a > b. The asymptotic behaviour is thus independent of the finite width of the initial
conditions, as it should.

4.1 Freely Subdiffusing Biased Particle (Dispersive Transport)

If the barrier is sufficiently far away, the current will for shorter—but still sufficiently long—
times be dominated by the long time behaviour of a biased diffusion without boundary.
The boundary effects only play a role when the mean of the distribution has reached the
boundary. This is the reason for the two regimes in the Scher–Montroll transport (Scher
and Montroll 1975). The mean of unbounded biased subdiffusion starting from the initial
condition p0(x) = δ(x − x0) is (Barkai and Cheng 2003)

〈x(s, u)〉 = x0 + h(s, u)

2B
u−α−1τ−α. (42)
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The convolution with the step initial condition just eliminates the value x0, as the step is sym-
metric around zero. The initial current in theScher–Montroll transport thus follows in the form

II (s, u) ∼ h(s, u)

2B
(uτ)−α. (43)

This result was derived previously by Barkai and Cheng (2003).

5 Scaling Regimes in Ageing Scher–Montroll Transport

We now expand the forward waiting time density to find the leading order results for the
Scher–Montroll current in different regimes defined by combinations of the relevant time
scales. The exact form for a subdiffusive CTRW in Laplace space is (Schulz et al. 2014)

h(ta, u) = exp (uta)
�(α, tau)

�(α)
. (44)

We need to consider two cases, since the incomplete Gamma function has two different
expansions when the second argument tends to infinity or to zero (Krüsemann et al. 2015).
For strong ageing (ta � t) the product uta → ∞ and the forward waiting time density
becomes

h(ta, u) ∼ (uta)α−1

�(α)
. (45)

For weak ageing (ta � t) the product tends to zero and the result is

h(ta, u) ∼ 1 − (tau)α

�(1 + α)
. (46)

If we plug this into expressions (39) and (43), setting b = 0 for a δ initial condition for the
PDF, and reinsert q = 4(uτ �)α we find

II (ta, t) ∼ kBT

F (τ �)α
tα−1
a

�(α)
(47)

I (ta, t) ∼ a
tα−1
a t−α

�(α)�(1 − α)
(48)

for strong ageing (ta � t) and

II (ta, t) ∼ kBT

F (τ �)α
tα−1

�(α)
(49)

I (ta, t) ∼
[

aα
(
τ �

)α + a2αF (τ �)α

2kBT
+ aαtαa

�[1 + α]
]

t−1−α

�(1 − α)
(50)

for weak ageing (ta � t).
The transition from the initial (II ) to the final behaviour (I ) occurs at the classical crossover

time (Barkai 2001)

tc =
[

�(1 + α)

2�(1 − α)

]1/2α (
a

2BKα

)1/α

. (51)

Here tc is defined as the time when the mean of the distribution of charge carriers has reached
the boundary at x = a. In a strongly aged system a large part of the diffusing particles is
immobile (Schulz et al. 2013, 2014). The current is generated solely by the mobile part,
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which behaves like the non-aged system so that the crossover at tc also characterises the aged
system. Depending on the value of tc and the ageing time ta the current undergoes one or
two crossovers between the above regimes. Using the definition (8) for the time scale τ � we
find the following regimes

I (ta, t) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FKα

kBT

tα−1
a

�(α)
, t � ta, tc

FKα

kBT

tα−1

�(α)
, ta � t � tc

a
tα−1
a t−α

�(α)�(1 − α)
, tc � t � ta

[
aα(kBT )2

F2Kα

+ a2αkBT

2FKα

+ aαtαa
�[1 + α]

]
t−1−α

�(1 − α)
, t � ta, tc

. (52)

This detailed crossover behaviour is the main result of this work. The initial plateau regime
was already mentioned by Barkai and Cheng (2003). The second and the fourth regimes are
the slightly modified standard Scher–Montroll power laws for non-ageing systems. The third
regime is given directly by the forward waiting time density at long ageing times, while both
ageing regimes reflect the fact that the first step in an ageing CTRWonly occurs after a power
law waiting time drawn from h(ta, t). Apart from this additional scaling regime what is new
here is the explicit calculation of the coefficients in the four power law regimes. Furthermore,
depending on the times ta , tc, and the observation time window, we can now predict up to
two crossovers between different power law regimes in a single Scher–Montroll experiment.

6 Numerical Simulation

Using Mathematica (Wolfram 1991) we calculated the derivative of the mean position,
d
dt 〈x(ta, t)〉 numerically, based on the exact expression

u 〈x(ta, u)〉 = u exp (tau)�(α, tau)�−1(α)

× 4A

B(1 − C2)2
(1 − exp (B[1 − C]a)) (53)

in Laplace space for the δ initial condition, given by Eqs. (33) and (44). The Laplace inversion
(u → t) is performed using the Mathematica function GWR. As predicted, the four panels
in Fig. 2 exhibit the appearance of two or three different power law regimes and the plateau
in the current characteristic (52), depending on the values of the relevant time scales ta and
tc. We find the two classical Scher–Montroll regimes in the non-ageing case when ta is zero,
as demonstrated in the top left of Fig. 2. In the case when ta = tc leaving only a single
characteristic time, the plateau crosses over directly to the final power law, as shown in the
bottom left panel of Fig. 2. For ta � tc and ta � tc we observed the predicted three regimes,
as shown in the two right panels in Fig. 2.

In the ageing current characteristics shown in the top right and the two bottom panels of
Fig. 2we see the constant initial plateau. The value of this plateau decays as a power law of the
ageing time ta , as given by Eq. (47). We calculated the value I (t = 500) of the current at t =
500 for different values of ta and find good agreementwith Eq. (47), as demonstrated in Fig. 3.

We also consider the case of a broad initial distribution ofwidth bwhich leads to the Scher–
Montroll current described by Eq. (39) in the long time limit. We find that the difference to
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Fig. 2 Scher–Montroll current I (t) for different values of the ageing time ta and the crossover time tc for
α = 2/5. Top left: ta = 0, tc = 3890. Top right: ta = 150, tc = 2.37 × 106. Bottom left: ta = tc = 3890.
Bottom right: ta = 2 × 107, tc = 110

Fig. 3 Initial plateau value (red
line) of the Scher–Montroll
current at t = 500 as function of
the ageing time ta from exact
Laplace inversion. The black
dashed line is the theoretical
power law (47)
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the current produced by an initial δ distribution is only marginal in the long time limit, as
shown in Sect. 3. Figure 4 corroborates numerically that both cases lead to almost identical
current characteristic in this long time limit. Since the difference is invisible in this graph,
we also show the non-normalised difference on the right of Fig. 4 and find that the behaviour
is indeed given by the power law term (40).

7 Experimental Ageing Scher–Montroll Current

The relevance of our calculations from an experimental point of view is shown by the Scher–
Montroll current characteristic shown in Fig. 1. In the underlying experiment time-of-flight
measurements are performed in a dioctyl substituted copolymer PFTBTT (alt-PF8TBTT)
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Fig. 4 Scher–Montroll current for initial widths b = a/5 (blue) and b = 0 (yellow) of the charge carrier
distribution, for B = 1/5, α = 3/5, Kα = 1/5, a = 10, and in the absence of ageing. Left: absolute values
of the current. Right: non-normalised difference, the drop at around 2 × 103 is due to numerical issues. The
power law (40) is shown in red. Both panels demonstrate that in the long time limit the width of the initial
distribution is irrelevant

Fig. 5 Initial plateau value of the
time-of-flight current in
Ref. Schubert et al. (2013). The
red points represent the
experimental data and the full
line is the best power law fit to
Eq. (47), from which we find the
scaling exponent α − 1 = −0.67
is extracted, corresponding to
α = 0.33
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(Schubert et al. 2013). The charge carriers are created in a charge generation layer. The bias
field is switched on only after an ageing period, and it is shown that the system can indeed be
described by the CTRW statistics of the Scher–Montroll model. The experiment is repeated
for different ageing times, and the measured curves are fitted to Monte Carlo simulations
results based on the Scher–Montroll model. The fits to the simulations in Ref. Schubert et al.
(2013) allow us to use their plateau values for comparison with Eq. (47). Figure 5 shows
very good scaling of the experimental values, and from a least squares fit and comparison
of the slope with Eq. (47) we obtain the anomalous diffusion exponent α = 0.33. This also
compares well with the value α = 0.38 found in Ref. Schubert et al. (2013) from the slope
of the current characteristic. Note that the crossover between the power laws and thus also
the power law exponents of the current also change with the delay time, as predicted by our
theory, as shown in Fig. 1. While the crossovers indeed occur at the value of the ageing time,
the exponents cannot be read off from the data as the intervals between ta and tc are too short
to see a reliable power law behaviour.

8 Discussion

Wediscussed the effect of ageing on the current characteristic of the classical Scher–Montroll
transport. We showed that the ageing time represents a second relevant time scale in addition

123



Ageing Scher–Montroll Transport 341

to the characteristic crossover time of the non-aged Scher–Montroll transport. Depending
on these time scales an additional intermediate time power law regime and an initial plateau
behaviour of the Scher–Montroll current may emerge. Specifically, for short ageing times
ta � tc the current shows the regular Scher–Montroll regimes, following an initial constant
regime for t � ta which is relevant only as long as the ageing time ta is not too short. For
long ageing times ta � ta the three different regimes can be found, separated by the normal
crossover time and the ageing time. If the ageing time is of order of the normal crossover
time, the current crosses over directly to the last regime and the intermediate regime does
not exist. In the long time limit t � ta all curves show the same power law behaviour. In
particular, the plateau value connected to the constant velocity of the diffusing charge carriers
in this initial regime has a power law dependence on the ageing time. We also demonstrated
that there is no significant effect of a broad initial charge carrier distribution on the long time
behaviour, as expected.We note that the power law regimes found for the first passage density
previously (Krüsemann et al. 2014, 2015) are represented in the results derived here, as the
first passage time contributes to the Scher–Montroll current through the time derivative of
the survival probability, which enters the equations according to Eq. (23).

Our results may, in principle, be used in experiments to determine the age of an observed
Scher–Montroll process from the crossover time and the different slopes. In a non-aged
process the sum of the slopes is exactly −2 whereas in the aged case one finds different
results, depending on the values of the crossover time tc and the ageing time ta . In turn, if the
age is known the dependence of the initial plateau value of the Scher–Montroll current on
the ageing time ta can be used to determine the anomalous scaling exponent of the waiting
time distribution as was shown here using experimental (Schubert et al. 2013). To clearly
distinguish three different regimes in an experiment, the observation time should span about
nine decades, as the crossovers are no sharp transitions. While this is likely not achievable in
many experimental realisations, by sweeping the parameters it should be possible to explore
different windows of the entire first passage distribution and thus observe all occurring power
laws.

We stress again that while we discussed our results in the language of electrical charge
carriers and currents, this model may equally be used for tracer dispersion in subsurface
aquifers. Assume that a chemical tracer substance enters the aquifer and then diffuses in the
porous environment.As long as there is no significant bias current in the soil, the free diffusion
of the tracer corresponds to the ageing period discussed here.After some (ageing) time rainfall
causes the build up of a hydraulic current and drives the tracer towards a catchment. The
resulting current characteristic should display the same crossover behaviours as predicted
here.
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