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Abstract
We show that for a subdiffusive continuous time random walk with scale-
free waiting time distribution the first-passage dynamics on a finite interval
can be optimized by introduction of a piecewise linear potential barrier.
Analytical results for the survival probability and first-passage density based
on the fractional Fokker–Planck equation are shown to agree well with Monte
Carlo simulations results. As an application we discuss an improved design
for efficient translocation of gradient copolymers compared to homopolymer
translocation in a quasi-equilibrium approximation.

Keywords: first passage, anomalous diffusion, potential landscape, polymer
translocation
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(Some figures may appear in colour only in the online journal)

1. Introduction

The first passage of a stochastic process across a certain, pre-set value renders vital information
on the underlying dynamics [1]. Thus, it quantifies how long it takes a share to cross a given
price threshold in the stock exchange. One of the famed historical versions of such a first
passage problem is the Pascal–Huygens gambler’s ruin, i.e., the number of rounds of a game
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it takes until the first gambler goes broke. For a particle diffusing in space, one is normally
interested in the time it takes the particle to reach a given position after its initial release at
some other position. Here we pursue the question of how we can optimize the first passage of
a particle from point O to X, when the values of the potential U (x) is different at these two
points. It was previously shown that for a Brownian particle the mean first passage time can be
significantly reduced in a piecewise linear potential when the particle first has to cross a large
potential barrier located close to its starting point and in exchange experiences a drift towards
the target for the remaining part of its trajectory [2].

Can similar effects be observed when instead of a Brownian particle we consider a particle
in a strongly disordered environment? To answer this question we study a particle that performs
anomalous diffusion [3]

〈x2(t)〉 � Kαtα (1)

with anomalous diffusion exponent 0 < α < 1 and the generalized diffusion coefficient Kα of
physical dimension [Kα] = cm2(sα )−1. Microscopically, we assume that the particle follows
a Scher–Montroll continuous time random walk (CTRW), in which successive jumps of the
particle are separated by independent, random waiting times τ with power-law distribution,

ψ(τ ) ∼ 1

τ �

(
τ �

τ

)1+α

, (2)

where τ � is a scaling factor of physical dimension of time, such that no characteristic time
scale 〈τ 〉 exists [4–6]. Realizations of CTRW subdiffusion were observed in a variety of
systems including charge carrier diffusion in amorphous semiconductors [5], the motion of
submicron particles in living biological cells [7], the dynamics of tracer beads in an actin mesh
[8], or the motion of functionalized colloidal particles along a complementary, functionalized
surface [9].

As we show here based on analytical calculations and numerical analyses the introduction
of a piecewise linear potential indeed renders the first passage behaviour of subdiffusive
processes more efficient. This is demonstrated in terms of the density of first passage times
and the associated survival probability, as well as a recently defined efficiency parameter. We
discuss potential applications of our findings to the translocation of polymers through narrow
channels.

2. Model and analytical results

We assume that the particle starts at point O and diffuses until it reaches the point X located
at xX = 1 in normalized units. On its way it passes through a piecewise linear potential with
a change of slope at point A at xA (see figure 1). We denote the values of potential at these
points as UO, UA, and UX = 0. Thus, by help of thermal fluctuations the particle first crosses
the potential maximum at point A before being advected towards the target X for the rest of
the way. At the starting point O a reflecting boundary condition is assumed, while at the target
we implement an absorbing boundary to account for the first passage problem [1].

The basis for the analytical description of this subdiffusion problem with given distribution
(2) of waiting times τ in the long-time limit t � τ � is given by the fractional Fokker–Planck
equation [3] which we here write in the integral form

P(x, t) − P(x, 0) = 0D−α
t

(
∂

∂x

U ′(x)

mηα

+ Kα

∂2

∂x2

)
P(x, t) (3)
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Figure 1. Sketch of a piecewise linear potential between the initial particle position in
point O and the target point X. Initially the particle needs to cross the potential barrier
culminating in A fuelled by thermal fluctuations, before a constant downward slope
pushes the particle towards X. The same result is obtained by first sliding down and
then crossing the barrier (red dashed lines).

where P(x, 0) is the initial condition, U ′(x) is the derivative of the external potential, m is
the particle mass, and ηα the friction experienced by the particle. The Riemann–Liouville
fractional integral is defined in terms of

0D−α
t P(x, t) = 1

�(α)

∫ t

0

P(x, t ′)
(t − t ′)1−α

dt ′, (4)

representing a Laplace convolution. In the Brownian limit α = 1, equation (3) reduces to the
regular Fokker–Planck equation.

For segments with a linear potential in our piecewise linear form U = mηαvi the fractional
Fokker–Planck equation reduces to

Pi(x, t) − Pi(x, 0) = 0D−α
t

(
−vi

∂Pi(x, t)

∂x
+ Kα

∂2Pi(x, t)

∂x2

)
, (5)

where i = 1, 2 corresponds to the two different slopes of the piecewise linear potential.
In our choice of U the vi correspond to drift velocities, as the dimension of ηα is that of
[ηα] = secα−2 [3]. The solution of this equation with a reflective boundary condition at one
end and an absorbing boundary at the other can be found by methods similar to the Brownian
case, compare [1]. If both boundary and initial conditions are set as vanishing probability at
xX = 1, P(1, t) = 0, for the absorbing boundary, the flux condition at the origin xO = 0 of the
form j(0, t) = ∂P(0,t)

∂x − vP(0, t) = δ(t), and the initial condition P(x, 0) = 0 [1], then

Pi(x, t) = 0D−α
t

(
Kα

∂2Pi(x, t)

∂x2
− vi

∂Pi(x, t)

∂x

)
. (6)

Applying the Laplace transform

P(x, s) =
∫ ∞

0
P(x, t) e−st dt (7)
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to equation (6), we find the ordinary differential equation

sαPi(x, s) =
(

Kα

∂2Pi(x, s)

∂x2
− vi

∂P(x, s)

∂x

)
. (8)

The solution of this equation has the form P(x, s) = Ai eαix + Bi eβix with the exponents

α1,2 = (
v1,2 +

√
v2

1,2 + 4Kαsα
)/

2Kα,

β1,2 = (
v1,2 −

√
v2

1,2 + 4Kαsα
)/

2Kα. (9)

The coefficients A1,2 and B1,2 are determined by the boundary conditions P(1, t) = 0 and
j(0, t) = δ(t) as well as by the continuity of flux and distribution P at x = xA. This produces
the following system of linear equations,

A1v1 + B1v1 − Kαα1A1 − Kαβ1B1 = 1

A2 e−α2 + B2 e−β2 = 0

A1 e−α1xA + B1 e−β1xA = A2 e−α2xA + B2 e−β2xA

A1v1 e−α1xA + B1v1 e−β1xA − Kαα1A1 e−α1xA − Kαβ1B1 e−β1xA

= A2v2 e−α2xA + B2v2 e−β2xA − Kαα2A2 e−α2xA − Kαβ2B2 e−β2xA . (10)

Due to the divergence of the characteristic waiting time 〈τ 〉 for CTRW subdiffusion
processes, even in confined geometries no mean first passage time exists [10, 11]. Below we
will therefore analyse the average time for the 50% or 90% probability that the particle has
arrived in X. Analytically, the relevant quantity for this type of process is the probability
density of first arrival, ℘α(t), or the cumulative survival probability, Sα(t) = ∫ 1

0 P(x, t) dx.
Both quantities are related through ℘α(t) = −dSα(t)/dt [1]. In our case of the absorbing
boundary condition at X we obtain the first passage density in terms of the flux at x = X (= 1
in our units). In Laplace space,

℘α(s) = j(1, s) = −Kαα2A2 e−α2xA − Kαβ2B2 e−β2xA (11)

in terms of the exponents and coefficients defined in equations (9) and (10).
We note that for CTRW subdiffusion any process described by the fractional Fokker–

Planck equation (5) can be related to its Brownian counterpart simply by the method of
subordination, i.e., a transformation of the number of steps to the process time. For the first
passage process this subordination corresponds to the Laplace space rescaling [3]

℘α(s) = ℘1

(
sα ηα

η1

)
, (12)

where the factor ηα/η1 takes care of the dimensionality: [ηα/η1] = secα .
From the above expressions in Laplace space we now perform a numerical Laplace

inversion [12]4 and compare the obtained results to simulations of the CTRW process in the
external, piecewise linear potential U .

3. Numerical analysis and Monte Carlo simulations

The Monte Carlo simulations of the CTRW process were performed on a lattice with N = 1001
points and the waiting times in between successive jumps were drawn from a waiting time
with asymptotic power-law decay, ψ(t) � t−1−α with 0 < α < 1, for details see [13]. In the

4 For numerical Laplace inversion the additional package by Valkó and Abate was used in Mathematica:
http://library.wolfram.com/infocenter/Demos/4738/.
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Figure 2. Mean first passage time for the 50% (left) and 90% (right) probability of
particles having arrived to X, as function of the potential amplitudes UA. The black
dotted curves (top curve on the left, bottom curve on the right) correspond to the
analytical result for normal diffusion (α = 1), see [2]. The red continuous (centre)
lines and triangles represent the numerical Laplace inversion of equation (11) and
simulations results for α = 0.75, respectively. The blue dashed curves and diamonds
stand for α = 0.5. The lattice size for the CTRW was N = 1001 and xA = 0.1 cm. Each
symbol represents 105 simulation runs.

chosen units the length of the interval OX is 1 cm, and thus the lattice constant is �x = OX/N.
For comparison with the simulations we make use of the explicit derivation of the fractional
Fokker–Planck equation [3, 14], such that in the limit τ � → 0 and �x → 0 we have

Kα ≈ 1

2N2τα
,

|v1| ≈ UA

2xAN2kBTMτα
,

|v2| ≈ UA

2(1 − xA)N2kBTMτα
, (13)

where kB is the Boltzmann factor and T the (Monte-Carlo simulations) temperature. For
simplicity we use Kα = 1 cm2(sα)−1.

Results are shown in figure 2 for the 50% and 90% probability of particle absorption
at the target point X. For each case we show results for the cases α = 1/2 and α = 3/4,
as well as include the analytical result for the Brownian case from [2]. In these simulations
the potential maximum was placed at xA = 0.1 cm. Moreover, the potential at the starting
and end points was chosen as zero: UO = UX = 0. The lines for the subdiffusive cases were
obtained from numerical Laplace inversion of equation (11) and subsequent integration such
that the plotted times t50 and t90 are implicitly defined through the integral

∫ t50

0 ℘α(t) dt =
0.5, and analogously = 0.9 for t90. The symbols are obtained from the Monte Carlo
simulations.

Figure 2 shows some remarkable properties. Thus, for the case of the 90% probability
the Brownian case exhibits the shortest absorption times, and the subdiffusive cases with
α = 3/4 and α = 1/2 become increasingly slower. This result would be naively expected.
However, for the 50% probability the behaviour is exactly opposite, i.e., the 50% first passage
is fastest for the most pronounced subdiffusion. This effect is due to the fact that one-sided
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Figure 3. Survival probability as function of time t for the Brownian case and stable
exponents α = 0.5 and α = 0.75. While for α = 1 the decay of Sα(t) is exponential,
for the subdiffusive cases a power-law behaviour is observed as t → ∞. Before the
crossover at t ≈ 1 the decay of the subdiffusive particles is faster than the Brownian
particle. Parameters: UA = 2kBT and xA = 0.1 cm.

stable distributions, to which our waiting time distribution ψ(t) belongs, have long power-
law tails, but are also more concentrated around the origin at t = 0. Thus, if we cut off
extremely long waiting times governed by the long tail of ψ(t) (particles that do not arrive up
to t50), we actually observe that the resulting process becomes faster for decreasing α. At 90%
probability this trend is inverted, as the statistics include sufficiently many long(er) waiting
times.

The second important observation is that the minima of all first passage time curves in
figure 2 are located at UA ≈ 2.2kBT for all α as well as for 50% and 90% probability. Thus, if a
certain value UA optimises the first passage behaviour for a Brownian particle, it also optimises
the corresponding subdiffusive dynamics. Namely, if we start from a trivial potential landscape
(UA(x) = const., for 0 < x < 1) the increase of the potential barrier height for fixed barrier
location at first leads to a faster first passage: the decrease in the passage time in the downhill
region outweighs the increase of the passage time in the uphill part. However, the time to
cross the barrier depends exponentially on UA, and hence above a certain value UA we obtain
a slower first passage [2]. We thus find an optimal value for UA. The value of the optimal UA

remains the same for all α is due to the fact that when the Brownian process is subordinated
to the subdiffusive one, in CTRW theory the waiting time distribution ψ(τ ) is independent of
the external potential.

These findings are corroborated by the functional behaviour of the survival probability
S (t), as shown in figure 3. At smaller times, corresponding to a smaller percentage of the
probability of first passage, indeed the decay is faster for more pronounced subdiffusion and
slowest for normal diffusion. Approximately at unit time t = 1 a crossover is observed, and
for longer times we find the naively expected behaviour: Brownian motion effects the fastest
decay while the subdiffusive motion is slower. At long times t → ∞ the survival probability
for the subdiffusive cases exhibits the power law Sα(t) ∼ t−α , compare [3, 10, 11]. This
follows directly from the subordinated exponential decay of Brownian motion also shown in
figure 3.

6
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Figure 4. Dependence of the efficiencyE on the valueUA of the potential at the maximum
point A, for different positions of point A, xA = 0.1 cm (left, asymmetric potential) and
xA = 0.5 cm (right, symmetric potential).

Yet another way to characterize the first passage behaviour is to evaluate the average
rate 〈1/t〉, which was introduced for superdiffusive search as a non-diverging measure of
optimization [15, 16]. This quantity can be computed conveniently numerically via the relation

E =
〈

1

t

〉
=

∫ ∞

0
℘α(s) ds (14)

from the Laplace space result of the first passage density ℘α(t). The functional form of this
quantity shows another remarkable property: even in the absence of a potential the efficiency
E increases with decreasing stable exponent α. Namely, using the known result for normal
Brownian diffusion [1], from subordination we find that for U (x) = 0

℘α(s) = 2
sinh(L

√
sα/D)

sinh(2L
√

sα/D)
= 1

cosh(L
√

sα/D)
. (15)

Therefore,

E =
∫ ∞

0
cosh−1(L

√
sα/D) ds ∼ C +

∫ ∞

0
e−Lsα/2/

√
D ds, (16)

where C is a constant. In the limit α → 0 this expression reduces to

E ≈ �

(
2

α

)
, (17)

which proves the fact that the average rate increases with the decrease of the stable exponent
α. In the case of the piecewise linear potential this behaviour is indeed preserved, as shown
in figure 4. The figure also demonstrates that the maxima of the efficiency are consistent with
the minima of the 50% and 90% probability first passage times, t50 and t90 shown in figure 2.
Note that even in the case of a symmetric potential shown on the right of figure 4 the first
passage dynamics profits from the existence of the energy landscape: after crossing the peak
the diffusion back towards the starting point O is suppressed.

The dependence of the efficiency E on the position xA of the potential maximum is
displayed in figure 5, for different UA values of the potential (as indicated in the panels).
Consistently for all α the efficiency increases with growing value UA when xA shifts towards
the starting point O: the particle requires a larger thermal fluctuation to cross the initial peak

7
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Figure 5. Efficiency E as function of the position xA of the potential maximum with fixed
value UA. Note the crossover at small values of xA. A higher potential peak UA facilitates
the first passage as long as the peak location xA remains close to the starting point O. The
dotted horizontal line indicates the efficiency value in absence of an external potential,
i.e., UA = 0. The dashed red line corresponds to UA = 1, the continuous blue one to
UA = 2, and dash-dotted orange to UA = 3.

UA, but then experiences a higher, constant drift velocity towards its target X. At growing
values for xA we observe a crossover, and then a higher peak value UA effects lower efficiency.

What would happen if we let the particles age before sending them on their journey from
O to X? Ageing is a characteristic property of subdiffusive CTRW particles: the process is
highly non-stationary, and physical observables strongly depend on the ageing time ta elapsing
between system initiation and start of the measurement [17]. Due to the scale-free form of the
waiting time distribution with diverging mean waiting time 〈t〉, longer and longer waiting times
occur on average, such that effectively the particle is constantly slowing down. Physically,
in the picture of a random energy landscape this effect corresponds to the situation that the
particle discovers deeper and deeper traps on its path. After passing the ageing period, the first
step of the particle then corresponds to the forward waiting time [17, 18]

ψta (t1) = sin(πα)

π

tαa
tα1 (t1 + ta)

. (18)

For the parameters UA = 3 and xA = 0.1 we show the dependence of the efficiency E on
the ageing time ta of the process for the subdiffusive cases with α = 1/2 and α = 3/4. Indeed,
the continued slow-down of the motion due to increase of the typical waiting times leads to a
pronounced decrease of E of the power-law form

E (ta) � tα−1
a , (19)

corresponding to the product of the first passage density without ageing (ta = 0) and the
probability density of the forward waiting time [17]. This behaviour is indeed nicely observed
in our simulations, as demonstrated in figure 6.

4. Discussion and conclusions

The study of the mean first passage behaviour in finite, flat potential landscapes has experienced
remarkable progress during the last few years [19]. In particular, the distinction of compact
versus non-compact exploration strategies led to the concept of ‘geometry-controlled kinetics’
[20]. Moreover, the trajectory-to-trajectory variation of first passage times have been studied
on finite domains of various shapes recently [21]. Much less is known about the first passage
in potential landscapes.

Previously we found that for normal Brownian diffusion the first passage in a finite
interval can be sped up significantly by introducing a potential landscape [2]. For the case of a

8
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Figure 6. Dependence of the search efficiency E on the ageing time ta elapsing between
initiation of the process and start of our observation of the particle at xO, for α = 0.5
(left) and α = 0.75 (right). We observe that E (ta) � tα−1

a , as predicted by equation (19).
Parameters: UA = 3 and xA = 0.1. The red lines show the linear interpolation of the
results on the log–log scales.

piecewise linear potential, the role of the potential is intuitively clear: after crossing an initial
potential barrier, the particle continuously slides down towards the target. When the position
of the barrier successively approaches the point of release and the barrier height increases, the
mean first passage time decreases [2].

Here we studied the behaviour in such a piecewise linear potential for the case of a
subdiffusing particle whose dynamics is governed by a long-tailed waiting time distribution
with a diverging characteristic waiting time. From analysis of the probability percentage of
the first passage, the survival probability, and the efficiency parameter we found a number
of remarkable properties. Namely, as in the Brownian case the introduction of the barrier
indeed leads to a more efficient (i.e., faster) first passage behaviour for a given value α of the
anomalous diffusion exponent. At short times, somewhat surprisingly the more subdiffusive
particle performs better than the Brownian particle, while at longer times the less subdiffusive
particle wins out. The optimal height of the potential barrier is thereby conserved for varying
α. Moreover, the efficiency increases dramatically when the position of the potential maximum
is shifted towards the particle origin O. Finally, the ageing of the particle leads to a power-law
decay of the efficiency as function of the ageing time. It will be interesting to study whether
similar effects arise for different boundary conditions.

As in the Brownian case [2] a faster first passage of particles through the interval OX in the
presence of the potential barrier does not contradict the corresponding result of the (fractional)
Kramers escape [22]. The distribution of escape times for CTRW subdiffusion becomes [22]

℘K
α (t) = Eα

( − r(α)
K tα

)
(20)

where Eα is the Mittag–Leffler function

Eα(−z) =
∞∑

n=0

(−z)n/�(1 + αn) (21)

with Eα(−z) ∼ 1/z at z → ∞. The (fractional) rate coefficient r(α)
K is given by

r(α)
K =

√
U ′′(xmin)U ′′(xmax)

2πmηα

exp

(
−�U

kBT

)
. (22)
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Thus shifting the maximum at xA towards point O leads to an increase of the curvatures at the
maximum and minimum positions in equation (22), and hence speeds up the rate in the same
way as observed in [2], if UA is kept constant.

Let us briefly discuss a technologically relevant, physical application of the above results.
Namely, we consider the passage of a polymer chain through a narrow channel, the so-called
translocation process [23]. Indeed, in terms of the translocation co-ordinate m (the number
of monomers crossing the exit of the channel) the translocation becomes subdiffusive, see,
for instance, [24, 25]. The fractional Fokker–Planck equation was proposed to model this
subdiffusive behaviour, and shown to capture the first passage behaviour of the translocating
polymer chain in comparison to simulations [26]. More recently, it has become clear that the
translocation of a polymer through a narrow channel without interactions between channel
wall and polymer chain is stochastically described by fractional Langevin equation motion
driven by long-ranged Gaussian noise [27]. However, the long-time translocation dynamics
of a polymer may still be governed by the fractional Fokker–Planck equation if the motion
of the chain features monomer-channel interactions, transient binding of the chain to the wall
carrying the pore, or extra-channel inhibitors (for instance, binding proteins) such that the
chain becomes successively immobilized with power-law distributed waiting times. When
such long pausing events occur, the approach by the free energy barrier may still be a good
approximation to the process. We investigate this simplified model here as case study going
beyond the pure polymer dynamics considered in most translocation papers.

The translocation time of a polymer through a channel consists of three distinct
contributions [28]: (i) the time needed for the free polymer chain on the cis side of the
channel to diffuse to the channel entrance, (ii) the time for one of the chain ends to thread into
the channel entrance, and (iii) the passage of the chain through the channel across the entropic
potential describing the reduction of the polymer’s accessible degrees of freedom due to the
imposed constraints plus some external driving potential. With the translocation co-ordinate
m for a polymer with N monomers, this gives rise to the free energy landscape [29]

F (m) = −kBT (N ln μ + (γ1 − 1) ln [(N − m)m]) , (23)

where μ is the (non-universal) lattice connectivity (e.g., μ = 6 on a cubic lattice) and γ1 is
the topological critical exponent for a self-avoiding chain attached to a wall, γ1 = 0.680 for a
self-avoiding chain in three dimensions. For translocation processes only the second term of
the free energy function (23) depends on the translocation co-ordinate m and thus matters to our
analysis. The entropic free energy barrier in equation (23) clearly slows down the translocation
of the chain. In the mathematical description in the pseudo-equilibrium approximation
[28–30], we are only interested in the very translocation dynamics of the chain, and we
therefore impose a reflecting boundary condition at x = 0, in order to prevent the chain from
escaping the channel.

What happens when instead of a homogeneous polymer chain we consider a gradient or
tapered copolymer with a sequence of monomers of different types with different monomer-
channel interactions? Gradient copolymers show a quite special behaviour with respect to
their thermodynamic properties, contrasting other copolymer sequences [31–34]. The effects
of interactions between translocating chain and channel were indeed studied previously for the
passage of heteropolymers [35]. To demonstrate the possibility of modifying the translocation
time statistics for such inhomogeneous polymer chains we imagine a polymer sequence, that
gives rise to a piecewise linear potential of the shape studied above. Combining this with the
translocation free energy (23), we obtain the landscape portrayed in figure 7.

Simulations of this modified translocation process produce the 50% and 90% probabilities
for translocation across the combined free energy landscape shown in figure 8. Evidently the

10
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Figure 7. Potential landscape for the translocation of a gradient copolymer in the quasi-
equilibrium approximation. The black dotted curve depicts the entropic contribution
of the polymer chain. The red dashed line is the piecewise linear potential, which
characterizes the interactions, see text. The blue continuous curve is the sum of these
contributions which represents the actual potential for the translocation process.

Figure 8. Simulated translocation times with 50% and 90% translocation probability for
the combined free energy landscape of figure 7 for a chain with N = 1001 monomers.
The maximum of the piecewise linear potential component is at xA = 100. Red circles
show the simulations results for α = 0.5, blue squares for α = 0.75, and black triangles
for the Brownian case. 105 simulation runs were performed to obtain the data points.

piecewise linear potential can lower the translocation time. As above, the position of the
optimum (at around UA ≈ 1.5kBT , different from the value without the entropic potential)
is independent of the exponent α and whether we consider the 50% or 90% case. Notably,
while the overall translocation times are higher in the 90% case, the effect of the potential is
strongest for α = 1/2.
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Thus the sequence of the copolymer may have a significant influence on the translocation
times. This statement itself was already confirmed by Monte-Carlo simulations [36], in which
the authors found a distinct variation of up to three orders of magnitude in translocation
times for different sequences but same composition. However, they did not report the effect
of decreased translocation times in comparison with the homopolymer by adding slower
translocating segments. We mention that an essential part of this brief discussion relies on the
quasi-equilibrium approximation, necessary to apply a free energy picture [24], which was
shown to be inapplicable in many cases of translocation [24, 37]. However, we assume that these
effects on polymer translocation times will remain relevant for non-equilibrium situations, as
well. It is feasible that parts of biopolymer sequences may have gradient or tapered parts which
assist translocation. These specific interaction potentials may also originate from combination
of complex pore structure and copolymer sequence as in [35]. Further studies of this problem
are expected to shed new light on the biophysics of translocation processes.
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