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Abstract. The mean squared displacement of a tracer particle in a
single file of identical particles with excluded volume interactions shows
the famed Harris scaling 〈x2(t)〉 � K1/2t

1/2 as function of time. Here
we study what happens to this law when each particle of the single file
interacts with the environment such that it is transiently immobilised
for times τ with a power-law distribution ψ(τ) � (τ�)α, and different
ranges of the exponent α are considered. We find a dramatic slow-down
of the motion of a tracer particle from Harris’ law to an ultraslow,
logarithmic time evolution 〈x2(t)〉 � K0 log

1/2(t) when 0 < α < 1.
In the intermediate case 1 < α < 2, we observe a power-law form
for the mean squared displacement, with a modified scaling exponent
as compared to Harris’ law. Once α is larger than two, the Brownian
single file behaviour and thus Harris’ law are restored. We also point
out that this process is weakly non-ergodic in the sense that the time
and ensemble averaged mean squared displacements are disparate.

1 Introduction

The mean squared displacement of a single tracer particle in a simple liquid is typically
of the linear form

〈x2(t)〉 = 2dK1t, (1)

the characteristic scaling for a Brownian particle, where d is the embedding dimension
and K1 the diffusion coefficient. For a random walker on a d dimensional lattice with
lattice spacing a, K1 = a2/[2dτ0], where τ0 is the typical time for a single jump. In
three dimensions, as long as the density of particles is not overly large, the motion
of individual particles with excluding volume interactions will still be governed by
Brownian motion, as the probability of particle-particle encounters is relatively small.
However, when we confine the motion of the particle to one dimension, particles will
eventually bump into each other. The resulting many-body interactions severely alter
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the Brownian law. As shown by Harris in 1965, the motion of a tracer particle in such
a single file of particles is characterised by the square-root scaling

〈x2(t)〉 � K1/2t1/2 (2)

of the mean squared displacement [1]. Here K1/2 is an anomalous diffusion coefficient

of dimension cm/sec1/2 and the symbol � denotes the asymptotic equality up to a
constant prefactor. In the scenario discussed below, the Harris result (2) corresponds
to a continuous time random walk process with an exponential distribution of waiting
times.
Experimentally, single file motion was shown to be realised for colloidal particles

moving in circular groves [2], an experiment in which also the asymptotic Gaussian
character of the probability density of the particle position was demonstrated. Chan-
nels can also be realised by help of optical tweezers [3], and the motion of excluded
volume particles in such channels exhibits a turnover from initial free diffusion to
single file motion with the t1/2 scaling of the mean squared displacement [4]. Also
in this experiment the Gaussian nature of the propagator was shown [4]. Apart from
these direct single particle tracking assays, single file diffusion was also demonstrated
by pulsed field gradient NMR in zeolite structures, so-called molecular sieves [5] and
further analysed by simulations [6]. Single file diffusion is also characteristic for mole-
cular biological processes, for instance, the transport of biomolecules through cell
membranes [7]. Moreover, this type of motion is observed in microchannel setups [8]
as well as in nanochannels [9].
Single file diffusion has been studied extensively by analytical and simulations

approaches, see, for instance, Refs. [10–14] with respect to the influence of various
physical parameters such as the density of single file particles. More recently, the field
of single file diffusion has received renewed attention. We mention the description of
single file diffusion on a finite interval [15], the effect of the particle density [16], as
well as single file motion of externally driven particles [17,18]. A major step forward
in the understanding of a tagged particle in a single file is the harmonisation approach
of Ref. [19], which shows that the motion of the particle is described by a fractional
Langevin equation.
Here we consider the generalisation of the single file dynamics to a case when

the particles in the single file interact with a disordered environment. Consider a
single file of functionalised colloidal particles moving in a channel whose surface is
functionalised complementarily to the colloidal particles, effecting transient sticking
of the colloids to the wall of the channel with a power-law distribution ψ(τ) � (τ�)α.
The existence of such power-law distributed sticking times was indeed shown exper-
imentally for colloids, which bind transiently to a wall [20]. This scenario gives rise
to a logarithmic growth of the mean squared displacement instead of Harris’ law (2).
We stress that the approach taken herein–based on the physical scenario of sticky
colloid-wall interactions–is different from that of previous works [21–23].

2 Ultraslow single file diffusion

Consider first a single particle, which successively becomes immobilised for periods
τ , which are distributed according to the power-law probability density

ψ(τ) =
α

τ�[1 + τ/τ�]1+α
� (τ

�)α

τ1+α
, (3)

where the scaling exponent α > 0 and τ� is a microscopic time scale. When
0 < α < 1 the distribution ψ(τ) does not possess a finite characteristic time scale
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Fig. 1. Square of the mean squared displacement (red lines) for a labelled particle in a
single file governed by the waiting time distribution (3) with α = 0.4, 0.6, and 0.8. Note
the logarithmic abscissa. The straight behaviour indicates the 〈x2(t)〉 � K0 log1/2(t) scaling,
where the prefactor depends on the scaling exponent α. The black solid lines are fitted by
〈x2(t)〉 = c1√log t+ c2. Parameters: we present an average over 5× 103 runs for each α, on
a lattice of size 100, occupied by N = 31 particles.

〈τ〉 = ∫∞
0
τψ(τ)dτ . The resulting particle motion is subdiffusive with 〈x2(t)〉 � Kαtα

[24]. This continuous time random walk scenario [25] leads to weakly non-ergodic be-
haviour in the sense that the process exhibits a disparity between ensemble averaged
mean squared displacement and the corresponding time averaged mean squared dis-
placement [26,27]. Moreover, the process is ageing: the dynamics of the traced particle
depends explicitly on the time difference between the initiation of the particle and
the start of the measurement [28–31]. In the trajectory of the particle, the scale-free
nature of the waiting time distribution (3) effects longer and longer, single waiting
times such that on average the particle appears increasingly immobile [30,31]. An
important feature of this ageing is the following. If we start measuring the particle
some time ta after its motion was initiated, the times τ1 to see the particle make
its first jump after start of the measurement are not distributed according to the
law (3), but follows the forward waiting time distribution [32]. When ta is long, the
forward waiting times τ1 can become quite long, as well, and influence the motion of
the particle until the measurement is much longer than ta [28–31]. In the Brownian
limit with α = 1 normal diffusion is restored, the process is ergodic and non-ageing.

What happens when we use the waiting time distribution (3) in a single file of
excluded volume particles in our scenario when each particle can independently bind
to the functionalised surface and become immobilised? Consider first the scale-free
case with scaling exponent 0 < α < 1 and follow a specific particle. Its diffusive
motion in the channel can become interrupted by binding to the channel surface,
and occasionally the associated sticking time can become very long, in analogy to
the trajectory of a single, free particle in the continuous time random walk. However,
when the particle is in a mobile phase, its motion can also be blocked by one of its
nearest neighbours, when that neighbour is in a long immobile period. As the typical
length of the sticking times τ increases as the whole system evolves in time, a mobile
particle will run into a blocking particle characterised by longer and longer immobile
periods.

Figure 1 shows results from simulations of a single file system, in which each
particle is independently immobilised according to the power-law distribution (3)
with diverging characteristic waiting time. As the data follow a straight line for the
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Fig. 2. Recovery of Harris’ 1/2-scaling of the mean squared displacement, corresponding to
the slope indicated by the black line.

specific scaling used in Fig. 1, the observed diffusion of the tagged particle is ultraslow
and follows the logarithmic law [33]

〈x2(t)〉 � K0 log1/2(t/t0). (4)

The prefactor on the right hand side remains a function of the scaling exponent α,
as can be seen from the different slopes in Fig. 1. Note that here we introduce the
ultraslow diffusion coefficient of physical dimension cm2, and t0 is a fundamental time
scale. How can this result be rationalised? We first note that if we were representing
the mean squared displacement as function of the number of steps of the particle and
not of the actual time elapsing until this number of steps are performed, the result
would be the Harris’ law

〈x2(n)〉 � a2n1/2 (5)

on a lattice with spacing a. To connect between this result and the logarithmic law (4)
we use the following argument. At sufficiently long times, the motion of the labelled
particle is dominated by long blocking events by a nearest neighbour. Apart from lo-
cal motion, the labelled particle can only perform significant motion events once the
blocking neighbour itself starts to move again. The progress of our labelled particle
therefore corresponds to the forward waiting time of its neighbour. After some time,
the tracer runs into another blockage, i.e., also its next time-limiting step is governed
by the forward waiting time of a neighbour. The difference is that the time since the
initial preparation of the system has increased, so statistically the new blocking neigh-
bour’s motion has continued to age and the forward waiting time typically becomes
even longer. In this simple picture every time-limiting jump of the tracer particle is
dominated by the forward waiting time, and the distribution governing this forward
waiting time is progressively ageing.
This is exactly the scenario investigated in a recent study [34], in which a counting

process n(t) is considered. Each step n→ n+1 occurs with the forward waiting time,
while the system is ageing. The result for the evolution of the mean number of jumps
with time for 0 < α < 1 is given by [34]

〈n(t)〉 � μ−1 log(t/t0) (6)

where μ = −Γ′(α)/Γ(α) − γ involving the complete Gamma function Γ(α) and
the Euler constant γ = 0.5772 . . .. In particular, it can be shown that the relative
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fluctuations of n(t) versus the mean 〈n(t)〉 decay as function of time and in this sense
n(t) becomes deterministic. With this argument we explain the logarithmic evolution
(4) demonstrated in Fig. 1 through replacing n by log(t) in Eq. (5) [33].
A more intricate situation arises when the scaling exponent assumes intermediate

values, 1 < α < 2. Here, the mean of the counting process, 〈n(t)〉, remains of the same
order as the standard deviation. A more sophisticated argument to connect between
the scaling exponent α of the waiting times and the time dependence of the mean
squared displacement of the tracer particle in the single file is needed to explain the
observed non-universal power-law scaling [33]. When α > 2, the Harris’ law (2) for the
tracer particle is recovered [33]. Figure 2 shows the initial convergence of the tracer
motion to the 1/2-scaling indicated by the black line. Eventually the tracer motion is
limited by the finite size of the simulations box, effecting the plateau at longer times.

3 Discussion

Single file dynamics occurs quite widely in microscopic systems in both biology and
technology. From a physics point of view the single file dynamics is of fundamental
interest, as it combines stochastic motion with the interactions of a many-body sys-
tem. We here showed that when the single file system is put in a strongly disordered
environment, the famed Harris’ scaling of the mean squared displacement changes
drastically to an ultraslow, logarithmic scaling as function of time. For technological
applications, this effect would offer the possibility of long-time storage of molecules
in a narrow channel without the need to engineer removable lids, thus significantly
improving the regular single file result described in Ref. [9]. While some molecules at
the ends of the channel will diffuse out of the channel, the ultraslow motion of the
remaining particles effect a massive retention, as shown here in the simulations for a
relatively small system.
For the counting process n(t) discussed above it can be shown that the dy-

namics is weakly non-ergodic in the sense that the scaling of the mean number
〈n(t)〉 of counts (6) as function of time differs from the scaling of the correspond-
ing time average as function of the lag time. If we use the counting process as a
timer for a random walk process in dimension d = 3, the mean squared displace-
ment in the interesting range 0 < α < 1 according to Eq. (6) would be ultraslow,
〈x2(t)〉 � K0 log(t/t0). Concurrently, the time averaged mean squared displacement

δ2(Δ) = 1
t−Δ
∫ t−Δ
0
[x(t′ +Δ)− x(t′)]2 dt′ used to evaluate sufficiently long single par-

ticle trajectories, would exhibit the scaling 〈δ2(Δ)〉 � log(t/t0)Δ/t as function of the
lag time Δ and the length t of the corresponding time series [27]. The angular brackets
in the latter expression denote an average over an ensemble of trajectories [27]. The
inequivalence between the two kinds of averages will also affect the behaviour of the
single file system governed by the distribution (3) of immobilisation times.
Generally, weakly non-ergodic behaviour is discussed in terms of the disparity

〈x2(Δ)〉 �= limt→∞ δ2(Δ) of the ensemble averaged mean squared displacement 〈x2(t)〉
and the time averaged mean squared displacement δ2(Δ) even in the limit of long
measurement times t [26,27,35–38]. Such behaviour was originally studied in the
context of the inhomogeneous exploration of phase space in a single trajectory of
processes governed by scale-free waiting time distributions of the kind (3) such that
long waiting times effect the particle to remain longer in some areas even in the
long time limit [39–43]. However, similar weakly non-ergodic behaviour was found
in numerous other anomalous diffusion systems, including subdiffusive continuous
time random walks with superimposed noise [44], diffusion with space-dependent
[45–48] or time-dependent [49–51] diffusivities, continuous time random walk
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processes with correlated waiting times [52,53], strong anomalous diffusion systems
[54], and even superdiffusive Lévy walks [55,57–59]. The cognisance of the weakly
non-ergodic behaviour is relevant for the understanding of single particle tracking
data in complex fluids, including the crowded cytoplasm and membranes of biological
cells [27,60–64].
Weakly non-ergodic behaviour, apart from its experimental relevance, touches

upon the fundamental concepts of statistical mechanics. To find out how diverging
time scales due to the power-law waiting time distribution ψ(τ) with 0 < α < 1
and many-particle interactions conspire and which effects will arise, will certainly be
interesting. The current generalised single file system could be an excellent basis for
such studies. How this can be done exactly, is currently under investigation.

TA and LL are grateful for funding from the Swedish Research Council (grant numbers 2009-
2924 and 2012-4526). RM acknowledges funding from the Academy of Finland (FiDiPro
scheme).
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45. A. Fuliński, Phys. Rev. E 83, 061140 (2011)
46. A.G. Cherstvy, A.V. Chechkin, R. Metzler, New J. Phys. 15, 083039 (2013)
47. A.G. Cherstvy, R. Metzler, Phys. Chem. Chem. Phys. 15, 20220 (2013)
48. P. Massignan, C. Manzo, J.A. Torreno-Pina, M.F. Garćıa-Parako, M. Lewenstein, G.L.
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