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Quantification of noise in bifunctionality-induced post-translational modification
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We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced
signal transduction within the members of a bacterial two-component system. The proposed model takes into
account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations
due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the
model via Langevin equations, which are then solved within the framework of linear noise approximation. The
resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile
of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra
phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of
fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics
has been analyzed.
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I. INTRODUCTION

The response of living systems to an external stimulus
is coordinated by highly specialized signal transduction
machinery. In the bacterial kingdom, this is achieved by the
well characterized two-component system (TCS) minimally
composed of the membrane bound sensor kinase (SK) and the
cytoplasmic response regulator (RR) [1–4]. The machinery of
TCS is utilized by the bacteria to process the information
of external signal in terms of phosphotransfer kinetics.
When applied, an external stimulus causes phosphorylation
at the histidine residue of SK, which then gets transferred
to the cognate (and/or noncognate) RR at its aspartate domain.
The phosphorylated RR then acts as a transcription factor for
several downstream genes, as well as for the activation or
repression of its own operon. It is now a well established
fact that in addition to being a source (kinase), some SK
can also act as a sink (phosphatase) while interacting with
an RR [3–6]. Such bifunctional behavior of SK towards RR
can altogether build a robust motif in the bacterial signal
transduction network [7–10].

The expression of proteins in individual cells is usu-
ally driven by the fluctuations present within the cellular
environment, as well as the fluctuations imposed by the
external stimulus [11–17]. This often leads to variability in the
expression level within the context of a single cell [18–21].
When observed in the bulk, such fluctuations get averaged
out over the cellular population. The prevalent fluctuations,
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whether external or internal, not only effect the dynamics
of gene expression, but also play a major role in post-
translational modification [22,23]. In this connection, it is
also important to mention the role of cellular fluctuations in
the different signal transduction motif that primarily uses a
phosphotransfer mechanism. Using a push-pull amplifier loop
mechanism, a theoretical study has been made to analyze the
signal transduction within the photoreceptor of retina [24].
A theoretical model has been proposed to study the effect of
reversibility in the phosphorylation-dephosphorylation cycle
that can generate bistable behavior in the presence of noise and
can propagate within the signaling cascade [25]. In the context
of robustness in the bacterial chemotaxis, reversibility on a
signaling cascade has been shown to exert a stabilizing effect
of adaptation through methylation [26]. Correlation between
extrinsic and intrinsic noise due to external signal and internal
biochemical pathways, respectively, has also been reported to
enhance the robustness of zero-order ultrasensitivity [27].

Post-translational modification in terms of phosphate trans-
fer is important to generate the pool of phosphorylated RRs
that acts as a transcription factor for several downstream
genes. Bifunctionality, on the other hand, plays a crucial role
in maintaining this pool as the information flows through
the phosphotransfer motif. Thus, bifunctionality and post-
translational modification work hand in hand to maintain the
optimal pool of phosphorylated RRs. Since this composite
functional behavior takes place in a noisy cellular environment,
it is worthwhile to investigate the role of cellular noise on the
bifunctionality controlled post-translational modification of
the components of the well composed TCS signal transduction
machinery. The above observations have motivated us to
develop a general model to quantify the molecular noise
in the bacterial TCS considering both the bifunctional SK
and the post-translational modification of RR. The proposed
model takes care of the elementary stochastic phosphotransfer
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FIG. 1. (Color online) Wiring diagrams for the proposed post-
translational interactions between SK and RR. The cyan circles and
magenta squares stand for SK and RR, respectively. (a) Generalized
m:n system with cognate (solid arrows) and noncognate (dotted,
dashed, and dot-dashed arrows) kinase and phosphatase interactions.
Panels (b), (c), and (d) are wiring diagrams for 1:1, 1:2, and 2:1
interactions, respectively. The boxed wiring diagram depicts the
phosphate addition (+P) and removal (−P) kinetics between a pair
of cognate and/or noncognate SK and RR that ultimately results in
phosphorylated RR (magenta square with a yellow hexagon on top).
The dotted arrow is for auto-dephosphorylation of RR. For simplicity,
we do not show the yellow hexagon in (a)–(d).

kinetics between the two members (SK and RR) of the
TCS and gives a prescription to calculate the fluctuations
associated with the phosphorylated RR, keeping in mind the
bifunctional property of the TCS. We further investigate the
role of fluctuations of the network output in the regulation of
a promoter with random activation-deactivation kinetics.

II. THE MODEL

We start by considering a simple system describing post-
translational modification driven by phosphotransfer mech-
anism of a typical TCS, where m numbers of SK interact
with n numbers of RR, the ultimate product of which is
Rp, the phosphorylated RR. We call the proposed model the
m:n system [Fig. 1(a)] where each of the SKs and RRs and
their phosphorylated forms are designated as S, R, Sp, and
Rp, respectively. The generic model considered here involves
single pair interaction [Fig. 1(b)]. In addition, it takes care of
branched pathways [3]; for example, the 1:2 system [Fig. 1(c)]
mimics the one-to-many pathway as observed in chemotaxis
system in E. coli, where the SK CheA phosphorylates two RRs,
CheY and CheB [28]. Similarly, the 2:1 system [Fig. 1(d)]
follows the kinetics of many-to-one pathway as observed in
V. cholerae, where the SKs LuxS and CqsS phosphorylate the
RR LuxO [29].

As mentioned earlier, in typical bacterial TCS, the key steps
of phosphotransfer mechanism involve autophosphorylation at
SK, transfer of phosphate group from SK to RR, and SK medi-
ated removal of phosphate group from RR (see boxed diagram
in Fig. 1). To keep the model simple, we do not consider the
synthesis (birth) or degradation (death) of any system com-

ponent. The interaction we consider here may be of cognate
and/or noncognate type. For the m:n pair, one can consider the
specific interaction between ith SK and j th RR, where 1 �
i � m and 1 � j � n, to write the elementary kinetic steps
considering the minimal interaction between a specific pair,

Si

αi�
βi

Spi, (1a)

Spi + Rj

γij−→ Si + Rpj , (1b)

Si + Rpj

μij−→ Si + Rj , (1c)

Rpj

νj−→ Rj . (1d)

In the above kinetic steps, Eq. (1a) considers autophos-
phorylation at the histidine residue of the SK. Generally,
autophosphorylation takes place under the influence of an
external signal [1–3], which we consider to be of constant
type and is absorbed in the rate constant αi . Equations (1b)
and (1c) take into account the kinase and phosphatase activity
of the SK, respectively, thus considering the bifunctional
behavior of the SK. Note that in Eq. (1c), the SK acts as
an enzyme to control the dephosphorylation of RR; hence, it
remains unchanged [2,3,7]. Equation (1d) denotes the auto-
dephosphorylation of the RR independent of the phosphatase
effect of SK on RR [10].

Due to the inherent noisy nature of the cellular environment,
each of the four reactions mentioned above are influenced
by fluctuations and, in turn, affect the copy numbers of each
system component. To take this into account, we introduce
Langevin noise terms that can influence each of the reactions
independently given by Eqs. (1a)–(1d). The interaction of a
single SK with multiple RRs, or vice versa, in the presence of
fluctuations considered here can be compared with stochastic
system-reservoir formalism where a single system interacts
with multiple reservoirs or vice versa [30]. The stochastic
differential equations describing the phosphorylated SK and
RR in the presence of fluctuations can be written as

dSpi

dt
= αi(ST i − Spi) − βiSpi

−
n∑

j=1

γijSpi(RTj − Rpj ) + ξSpi
(t), (2a)

dRpj

dt
=

m∑
i=1

γijSpi(RTj − Rpj )

−
m∑

i=1

[μij (ST i − SPi) + νj ]Rpj + ξRpj
(t). (2b)

Here ST i = Si + Spi and RTj = Rj + Rpj stand for the
total amount of ith SK and j th RR, respectively. The additive
noise terms ξSpi

and ξRpj
take care of the fluctuations in the copy

number of Spi and Rpj , respectively. Within the framework of
linear noise approximation, we define the statistical properties
of the Langevin terms obeying the fluctuation-dissipation
relation [23,24,31–34] with zero mean, 〈ξSpi

(t)〉 = 〈ξRpj
(t)〉 =

0 and

〈ξSpi
(t)ξSpi

(t + τ )〉 = 2αi(ST i − 〈Spi〉)δ(τ ),

〈ξRpj
(t)ξRpj

(t + τ )〉 = 2
m∑

i=1

γij 〈Spi〉(RTj − 〈Rpj 〉)δ(τ ),
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with 〈Spi〉 and 〈Rpj 〉 being the mean values at the steady state.
In addition, the noise terms are correlated [27,32]

〈ξSpi
(t)ξRpj

(t + τ )〉 = −γij 〈Spi〉(RTj − 〈Rpj 〉)δ(τ ).

Since the stochastic Langevin equations (2a) and (2b) are
nonlinear in nature, it is difficult to solve them analytically.
To make the solution tractable analytically, we employ lin-
earization of the stochastic equations. The Langevin equation
with the linear noise approximation is a valid approach
provided that the input signal is very small. In addition, such
linearization also remains valid when the time to reach the
steady state is longer than the characteristic time scale of the
birth and death rate of the system components [14,27,35].
Thus, linearizing Eqs. (2a) and (2b) around the steady state,
i.e., Spi = 〈Spi〉 + δSpi and Rpj = 〈Rpj 〉 + δRpj , we have

d

dt

(
δSpi

δRpj

)
=

( −ai

∑n
j=1 γij 〈Spi〉∑m

i=1 bij −cj

)

×
(

δSpi

δRpj

)
+

(
ξSpi

ξRpj

)
, (3)

where

ai = αiST i

〈Spi〉 , bij = (μijST i + νj )
〈Rpj 〉
〈Spi〉 ,

cj =
m∑

i=1

[μij (ST i − 〈Spi〉) + νj ]RTj

RTj − 〈Rpj 〉 .

Solving Eq. (3) and performing Fourier transformation
δX̃(ω) = ∫ ∞

−∞δX(t)e−iωtdt on the resultant solution, we have,
in matrix notation, the generalized solution for both δS̃p(ω)
and δR̃p(ω),

δS̃p(ω) = A−1
[〈SpK〉δR̃p(ω) + ξ̃Sp (ω)

]
, (4a)

δR̃p(ω) = P−1[BTA−1ξ̃ (ω) + ξ̃Rp (ω)
]
, (4b)

where P = C − BTA−1〈SpK〉. In the above expressions (4a)
and (4b), δS̃p and δR̃p are m × 1 and n × 1 dimensional
column vectors with elements δS̃pi and δR̃pj , respectively.
Likewise, ξ̃Sp and ξ̃Rp are m × 1 and n × 1 dimensional
column vectors with elements ξ̃Spi

and ξ̃Rpj
, respectively. A

and C are diagonal matrices of order m × m and n × n with
elements (iω + ai) and (iω + cj ), respectively. Additionally,
〈SpK〉 and B are matrices of order m × n with elements 〈Spi〉γij

and bij , respectively.

III. RESULTS AND DISCUSSION

Since we are interested in the effect of noise on phospho-
rylated RR, Rp, which acts as transcription factor for one
or more genes including the gene that encodes SK and RR,
we now focus on the solution of Eq. (4b) only. From the
structure of Eq. (4b), it is clear that the dynamics of Rp is now
decoupled from Sp. To understand the role of fluctuations in
phosphotransfer processes, we define noise at steady state,

ηRP
= σRp

/〈Rp〉,
where σRp

is the standard deviation of Rp (see Fig. 2). It is
important to mention that at times fluctuations in the biological
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FIG. 2. Plot of noise, steady state protein level, time series,
and power spectra for a 1:1 system. (a) Noise ηRp1 as a function
of log10 κ11. The noise profile has been shown to contain three
different regions: monofunctional region (κ11 < ν1), crossover region
(κ11 ≈ ν1), and bifunctional region (κ11 > ν1). In the absence of
auto-dephosphorylation kinetics [Eq. (1d)], only the bifunctional
domain exists, whereas in the absence of phosphatase kinetics
[Eq. (1c)], only the monofunctional domain becomes prevalent. The
open circles are due to Gillespie simulation [36,37]. For comparison
of the noise profile with the Fano factor, see Fig. 3. (b) Steady state
Rp1 as a function of log10 κ11. (c)–(e) Time series of Rp1 for low
(κ11 = 10−5), intermediate (κ11 = 10−2), and high (κ11 = 1) values
of κ11, respectively, generated using the Gillespie algorithm [36,37].
Note that in (d) the ordinate does not start from zero. (f) Normalized
power spectra for low (solid line), intermediate (dashed line), and
high (dotted line) values of κ11. In all the cases, α1/β1 = 5, ν1 = 0.01
and ST 1 = RT 1 = 20.

systems are quantified using a Fano factor, σ 2
Rp

/〈Rp〉, where

σ 2
Rp

is the variance of Rp (see Fig. 3). Note that in the rest
of the discussion we have analyzed our results in terms of
steady-state noise ηRP

only.
While calculating the noise for the three different systems

(1:1, 1:2, and 2:1) mentioned in Fig. 1, we only focus
on the noise level of Rp1, the phosphorylated form of R1.
Noise generated due to other interactions (S1 and R2, and
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FIG. 3. Plot of Fano factor as a function of log10 κ11 for 1:1
system. The solid line is due to the theoretical calculation and the
open circles are generated using the Gillespie simulation [36,37].
The values of other parameters are same as in Fig. 2.
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S2 and R1) is considered to add extra layers of information
on the noise profile of Rp1. During the calculation of noise
and power spectra we have considered γij ≈ μij ≈ κij (i,j =
1,2) for simplicity in the strong limit of protein-protein
interaction between SK and RR [10]. It is important to note
that while interacting with its partner, an SK shows both
monofunctional and bifunctional behavior for νj > κij and
νj < κij , respectively. At νj ≈ κij (cross over regime), the
system makes a transition from mono- to bifunctional domain.

In Fig. 2(a) the noise profile of Rp1 has been shown in
a semilog plot. For a 1:1 system, at a low value of κ11,
noise has a nonzero value, which goes down as κ11 value
increases. As the κ11 value increases further, noise increases
and reaches a high value. As evident from the definition, noise
is inversely proportional to the population of steady state Rp1.
To check the role of 〈Rp1〉 on steady state noise, we have
calculated 〈Rp1〉 as a function of log10 κ11 [Fig. 2(b)] from
which it is evident that the protein profile develops exactly
in a way opposite to the noise profile and imparts an inverse
effect on the noise development. For a low value of κ11, the
auto-dephosphorylation ν1 dominates over the phosphatase
activity of SK on RR (κ11 < ν1). In this regime, the sensor
shows monofunctional activity by acting as a kinase only,
which is still lower than ν1. This effectively reduces the Rp1

level [Fig. 2(c)] and increases the noise of the system. In the
limit κ11 ≈ ν1 [vertical dotted line in Fig. 2(a)], Rp1 level
reaches its maximum [Figs. 2(b) and 2(d)] while reducing
the noise. When κ11 exceeds ν1 (κ11 > ν1), the phosphatase
activity of SK starts to show up in addition to its kinase activity.
In this regime, the bifunctional property of SK comes into play,
reducing the copy of Rp1 [Fig. 2(e)], henceforth increasing the
noise of the system. To compare the noise profile of Rp1 given
in Fig. 2(a) with the Fano factor (σ 2

Rp1
/〈Rp1〉) of the same

quantity, we have shown the dependence of the Fano factor
on κ11 in Fig. 3. To understand how the system relaxes under
the influence of the protein-protein interaction, we calculate
the power spectra S(ω) = 〈δR̃p1(ω)δR̃p1(ω′)〉 [Fig. 2(f)]. The
resultant spectral lines are plotted for low, intermediate, and
high κ11 values. As expected, the power spectra relaxes faster
for a low κ11 value compared to an intermediate κ11 value,
which again relaxes faster compared to a high κ11 value. For a
low value of κ11, the conversion of R into Rp is a slow process
and hence fast fluctuations in the copy number have minimal
effect on the power spectrum. As the κ11 value increases, the
conversion rate increases and thus gets affected by the noise
in the copy number, which results in slower relaxation.

In Figs. 4(a)–4(c), we show the noise, ηRp1 , for 1:2 and 2:1
systems as a function of κ11 in a semilog plot. For comparison,
we refer to the noise profile of 1:1 system shown in Fig. 2(a).
In the 1:2 system, a single SK, S1, interacts with two RRs, R1

and R2, with its bifunctional properties acting on both of the
RRs. In Fig. 4(a), we show the noise generated for Rp1 while
considering the kinase and phosphatase rates (γ12 ≈ μ12 ≈
κ12) between S1 and R2 to be low (κ12 = 10−5), intermediate
(κ12 = 10−2), and high (κ12 = 1). For low and intermediate
κ12 values, the noise profile looks almost like that of the 1:1
system as κ11 is varied. This happens as the interaction between
S1 and R2 adds a weak layer of information on R1 due to
monofunctional property of S1 on R2 (ν2 � κ12). On the other
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FIG. 4. Plot of noise and steady state protein level for branched
(1:2 and 2:1) pathways. (a),(c) Noise profiles for the 1:2 and 2:1
systems, respectively, as a function of log10 κ11. The solid, dashed,
and dotted lines are for low (10−5), intermediate (10−2), and high (1)
values of κ12 (for 1:2) and κ21 (for 2:1). (b),(d) Steady state level of
Rp1 for the same values of κ12 and κ21 as in (a),(c). For all the cases,
αi/βi = 5, νj = 0.01, and ST i = RTj = 20.

hand, for a high κ12 value, a huge amplification of noise occurs
[dotted line in Fig. 4(a)]. In this domain, as ν2 < κ12, SK starts
to show its bifunctional property and is more active in its
interaction with R2, rather than with R1. Such active interaction
between S1 and R2 adds an extra layer of outflux of phosphate
group from R1 [dotted line in Fig. 4(b)], thus leading to a low
level of 〈Rp1〉 and an enhancement of noise.

In the 2:1 system, a single RR, R1, interacts with two SKs,
S1 and S2. In Fig. 4(c), we show the noise generated for Rp1

while taking into account the kinase and phosphatase rates
(γ21 ≈ μ21 ≈ κ21) between S2 and R1 to be low (κ21 = 10−5),
intermediate (κ21 = 10−2), and high (κ21 = 1). For a low value
of κ21, the noise profile is similar to that of a 1:1 system as κ11

is increased. Although in this domain S2 acts as kinase only,
it provides a low level of input on R1 as ν1 > κ21. Interesting
behavior emerges as κ21 takes intermediate and high values. In
the intermediate domain, a maximal level of 〈Rp1〉 is produced
due to extra influx of the phosphate group. This large influx
due to κ21 can overpower the low kinase effect of κ11 and
hence increase the steady state level of Rp1 as an effect of
which the noise level attains a minimum value. For high κ21,
ν1 < κ21, where S2 starts to show its bifunctional property
via phosphate input and removal. This helps the composite
system to maintain a high value of noise for a wide range.
Note that, compared to the low and intermediate domains, the
protein level in this region goes down drastically due to strong
phosphatase activity of S2 on R1. It is interesting to note that
for intermediate and high κ21 value, the composite system loses
it monofunctional behavior almost completely [Fig. 4(d)].

To check the effect of the network in the regulation of
the downstream promoter activity, one needs to consider the
fluctuations in Rp level as extrinsic noise while the promoter
activation-inactivation is governed by the intrinsic molecular
fluctuations [35,38]. The time scale for the relaxation of
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the network is given by τin, where τin = c−1
j . The promoter

switching kinetics, driven by output of the network (i.e., Rp),
can be modeled as

off
konRp(t)

�
koff

on. (5)

Now following Ref. [38], we associate a variable D with the
switching process of the promoter, where D takes the value
0 and 1 for the “off” and the “on” states of the promoter,
respectively. The stochastic Langevin equation associated with
D can be written as [23]

dD

dt
= konRp(1 − D) − koffD + ξD(t), (6)

where 〈ξD(t)〉 = 0 and

〈ξD(t)ξD(t + τ )〉 = 2koff〈D〉δ(τ ),

with steady state value 〈D〉 = 〈Rp〉/(〈Rp〉 + Kd ) and Kd =
koff/kon. The Langevin equation is simply a noisy version
of the deterministic chemical kinetics, which on the noise
averaged level would yield the average value of the variable
D for the on state of the promoter. Following Eq. (6), we
associate a time scale for the promoter switching kinetics τout,
where τout = (kon〈Rp〉 + koff)−1, a characteristic of a noiseless
input model. Now linearizing Eq. (6) and performing Fourier
transformation of the linearized equation, one arrives at [23]

δD̃(ω) = ξ̃D(ω)

iω + τ−1
out

+ kon(1 − 〈D〉)
iω + τ−1

out

δR̃p(ω). (7)

Note that the first term on the right hand side of Eq. (7)
arises due to the noiseless input model (mean field input of
Rp) and incorporates only the fluctuations in the promoter
switching kinetics, whereas the second term appears via the
noisy input due to the fluctuations in the Rp level. We now
define the total variance associated with D at steady state for
the noisy input model as

σ 2
D = Kd〈Rp〉

(〈Rp〉 + Kd )2
+ Kdkoff

(〈Rp〉 + Kd )3
σ 2

Rp
, (8)

where σ 2
D = (1/2π )

∫
dω〈|δD̃(ω)|2〉. Here the first and the

second terms on the right hand side of Eq. (8) arise due
to noiseless input model and fluctuations in the Rp level,
respectively. At this point, it is important to mention that an
almost similar expression for the variance σ 2

D was obtained
by Hu et al. in their recent work on the role of input noise
in genetic switch (see Eq. (14) of Ref. [38]). To be explicit,
Ref. [38] shows that for a noisy input model, the value of
〈D〉 itself changes in comparison to the noiseless input model
(constant Rp), which eventually changes the variance. Thus,
considering the kinetics of promoter switching as a simple
binary process in the presence of noisy input one arrives at the
aforesaid expression of σ 2

D , which incorporates the essential
features of the noiseless input model as well as the fluctuations
in the Rp level [via δR̃p(ω); see Eq. (4b)]. This result suggests
that the variance due to the noiseless input model gets modified
in the presence of a noisy input and is in agreement with the
result shown in Ref. [38].

To check how the time scale of the noisy input (fluctuations
in the Rp level) affects the promoter switching kinetics, we
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FIG. 5. (a)–(c) Plot of ηD as a function of promoter switching
time scale τout, for κ11 = 4 × 10−4,10−2, and 0.4, respectively. The
solid (with open squares) and the dashed (with open circles) lines are
for noiseless and noisy input models, respectively. (d) Contributions
due to fluctuations in the Rp level. The solid (with open squares),
dashed (with open circles), and dotted (with open triangles) lines are
due to κ11 = 4 × 10−4,10−2, and 0.4, respectively. In all the panels,
lines are drawn using Eq. (9) and the symbols are generated using the
Gillespie simulation [36,37].

define noise associated with the promoter switching at steady
state for the noisy input model as ηD = σD/〈D〉, where

ηD =
[

Kd

〈Rp〉 + Kdkoff

(〈Rp〉 + Kd )
η2

Rp

]1/2

. (9)

The first and the second term on the right hand side of Eq. (9)
is due to the noiseless input model and the fluctuations in
the Rp level, respectively, as suggested by Eq. (8). In Fig. 5,
we show the dependence of ηD on the promoter switching
time scale τout for the 1:1 system for low, intermediate,
and high values of κ11. The three values of κ11 have been
chosen from the monofunctional, crossover, and bifunctional
regimes, respectively, of the TCS signal transduction motif
[see Fig. 2(a)]. Figure 5 suggests that for low and high values
of κ11, the fluctuations associated with the promoter switching
kinetics due to the noisy input model are higher [dashed line
with open circles in Figs. 5(a) and 5(c) as the fluctuations due
to the Rp level [ηRp

, see also Fig. 2(a)] at these parameter
regimes are high. However, for the intermediate κ11 value, the
fluctuations are minimum [dashed line with open circles in
Fig. 5(b)] as the TCS maintains a minimum noise level at this
κ11 value. For reference, we show the fluctuations associated
with the noiseless input model in Figs. 5(a)–5(c) (solid line
with open squares), which clearly explains enhancement of
noise for the noisy input model due to fluctuations in the Rp

level [Fig. 5(d)].
Figure 5(d) shows that as τout increases, the contribution due

to the Rp level fluctuations in the promoter switching kinetics
decreases, which is a general trend for all the κ11 values. In the
limit of fast promoter switching rate (low τout) compared to
the time scale of the Rp level fluctuations (τin), τout 	 τin. At
this limit, the contribution due to noisy input is high and the
output of the network (TCS) affects the promoter switching
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kinetics maximally. On the other hand, when the promoter
switching rate is slow (high τout) compared to the variation of
network output time scale such that τout 
 τin, the network
output exerts a mean field effect on the promoter switching
rate. At this limit contribution due to the noisy input reduces
drastically [second term on the right-hand side of Eq. (9)] and
one recovers the behavior of the noiseless input model.

IV. CONCLUSION

To conclude, we have provided a generic description for the
calculation of noise due to post-translational modification in
the bacterial TCS. From exact analytical calculation within the
purview of linear noise approximation, it is possible to quantify
the steady state noise for the single pair and for the branched
pathways. For the single pair system, our analysis shows the
effect of bifunctionality of SK on noise generation and can
differentiate the mono- and the bifunctional domain in the
noise profile. The calculation for the branched pathways shows
enhancement and reduction of noise for the composite system
in terms of extra phosphate outflux and influx, respectively.
Our analysis suggests that in one-to-many systems, as in the
chemotaxis pathway of E. coli, enhancement of fluctuations
happens due to extra outflux of phosphate groups within
the members of a TCS. On the other hand, for many-to-one
systems mimicking the quorum sensing network of V. cholerae,
an optimal level of noise can be maintained via extra influx of
phosphate groups. To maintain such low noise activity, SKs of
the V. cholerae phosphotransfer circuit might prefer to operate
in the crossover domain.

The motif of TCS in the bacterial kingdom reliably trans-
mits the information of the changes made in the extracellular
environment within the cell. This happens via the formation of
the pool of Rp, which acts as a transcription factor for several
genes, including the genes encoding the TCS. The molecular
fluctuations due to the post-translational modification during
the formation of Rp play an important role in the fluctuations of
the gene expression mechanism. While acting as a transcription
factor the noise due to Rp level fluctuations acts as a noisy input
in the gene expression mechanism. On the other hand, the

promoter activation-inactivation mechanism is characterized
by the intrinsic molecular fluctuations. Keeping this in mind,
we have investigated the possible role of the network output
on the promoter switching kinetics. The fluctuations associated
with the promoter switching mechanism have been quantified
by the total noise at steady state associated with the active
state of the promoter. Our analysis suggests that the total noise
ηD at steady state is composed of two parts; the first part
arises due to the noiseless input model while the second part
is due to the noisy contribution of the TCS network output. If
the fluctuations in the Rp level occur on a faster time scale, it
hardly affects the process of transcription as the DNA promoter
activation-inactivation mechanism gets weakly affected. In
such a situation, the transcription factor Rp exerts a mean
field effect in the process of transcription and fluctuations in
the promoter switching kinetics are predominantly governed
by the intrinsic molecular noise, a typical characteristic of the
noiseless input model. On the other hand, when the time scale
of Rp fluctuations is slower than or comparable to the promoter
switching rate, it exerts a considerable effect on the promoter
switching mechanism. In other words, when the fluctuations in
the Rp level maintain an optimal level and are comparable with
the time scale of the DNA promoter switching rate, the latter
gets highly affected by the changes made in the extracellular
environment which has been reliably transmitted through the
TCS. The formalism we present in this work gives an idea
of the optimal level of fluctuations within the TCS, which
is necessary for reliable transmission of signal to control the
regulation of biochemical switch present within the bacterial
cell.
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