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Experimental studies of the diffusion of biomolecules within biological cells are routinely confronted
with multiple sources of stochasticity, whose identification renders the detailed data analysis of single
molecule trajectories quite intricate. Here, we consider subdiffusive continuous time random walks
that represent a seminal model for the anomalous diffusion of tracer particles in complex environ-
ments. This motion is characterized by multiple trapping events with infinite mean sojourn time.
In real physical situations, however, instead of the full immobilization predicted by the continuous
time random walk model, the motion of the tracer particle shows additional jiggling, for instance,
due to thermal agitation of the environment. We here present and analyze in detail an extension of
the continuous time random walk model. Superimposing the multiple trapping behavior with addi-
tive Gaussian noise of variable strength, we demonstrate that the resulting process exhibits a rich
variety of apparent dynamic regimes. In particular, such noisy continuous time random walks may
appear ergodic, while the bare continuous time random walk exhibits weak ergodicity breaking. De-
tailed knowledge of this behavior will be useful for the truthful physical analysis of experimentally
observed subdiffusion. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816635]

I. INTRODUCTION

In a series of experiments in the Weitz lab at Harvard,
Wong et al.1 observed that the motion of plastic tracer mi-
crobeads in a reconstituted mesh of cross-linked actin fila-
ments is characterized by anomalous diffusion of the form

〈r2(t)〉 =
∫

r2P (r, t)dr � Kαtα (1)

of the ensemble averaged mean squared displacement (MSD).
Here, Kα is the anomalous diffusion constant of physical di-
mension [Kα] = cm2/sα , and the anomalous diffusion expo-
nent α is in the subdiffusive range 0 < α < 1. P (r, t) is the
probability density function to find the test particle at posi-
tion r at time t. Wong et al. demonstrated that the motion of
the microbeads is represented by a random walk with subse-
quent immobilization events of the beads in “cages” within
the network.1 The durations τ of these immobilization peri-
ods were shown to follow the distribution

ψ(τ ) ∼ τα
0

τ 1+α
, (2)

with the scaling exponent α. The exponent α turns out to be
a function of the ratio between the bead size and the typical
mesh size. Thus, when the bead size is larger than the mesh
size, the bead becomes fully immobilized, α = 0. Conversely,
when the bead is much smaller than the typical mesh size, it
moves like a Brownian particle [α = 1, in Eq. (1)], almost
undisturbed by the actin mesh. However, when the bead size
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is comparable to the mesh size, the motion of the bead is im-
peded by the mesh, giving rise to a saltatory bead motion in
between cages. While the measured distribution (2) of immo-
bilization times indeed captures the statistics of the long time
movement of the beads, the measured trajectories also exhibit
an additional noise, superimposed to the jump motion accord-
ing to the law (2).1 This additional noise is visible as jiggling
around a typical position during sojourn periods of the bead,
and appears like regular white noise.

Above example is representative for the task of physi-
cal analysis of single particle tracking experiments. Indeed,
following single particles such as large labeled molecules,
viruses, or artificial tracers in the environment of living cells
has become a standard technique in many laboratories, since
it reveals the individual trajectories without the problem of
ensemble averaging. However, the large amount of poten-
tially noisy data also poses a practical challenge. In physics
and mathematics, ideal stochastic processes have been in-
vestigated for many years, including Brownian motion, frac-
tional Brownian motion (FBM), continuous time random
walks (CTRW), Lévy flights, etc. While these can be rea-
sonable approximations for the physical reality, they rarely
represent the whole story. In many cases, a superposition of
at least two types of stochastic motion is found, such as the
“contamination” of the pure stop-and-go motion described by
the waiting time distribution (2) with additional noise in the
above example of the tracer beads in the actin mesh. Sim-
ilarly, Weigel et al. in their study of protein channel mo-
tion in the walls of living human kidney cells observed a
superposition of stochastic motion governed by the law (2),
and motion patterns corresponding to diffusion on a fractal.2

Tabei et al. show that the motion of insulin granules in liv-
ing MIN6 cells is best explained by a hybrid model in which
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fractional Brownian motion is subordinated to continuous
time random walk subdiffusion.3 Finally, Jeon et al. find that
the motion of lipid granules in living yeast cells is governed
by continuous time random walk motion at short times, turn-
ing over to fractional Brownian motion at longer times.4 Even
if the trajectories are ideal, in the lab we always have to
deal with additional sources of noise, for instance, the mo-
tion within the sample may become disturbed by a slow, ran-
dom drift of the object stage in the microscope setup, or
simply by the diffusive motion on the cover slip of a living
cell, inside which the actual motion occurs that we want to
follow.

In recent years, a tool box for data analysis was devel-
oped by several groups, in particular, in the context of diffu-
sion of tracers in the microscopic cellular environment. These
also include fundamental aspects of statistical physics such
as the ergodic properties of the underlying process and the
irreproducible nature of the time averages of the data.5 How-
ever, to the best of our knowledge these analysis methods and
the fundamental properties of statistical mechanics (that is,
ergodicity) have not been tested in the presence of additional
noise. For instance, if we encounter a non-ergodic process su-
perimposed with an ergodic one, as defined precisely below,
what will we find as the result of such an experiment? Here,
we develop and study in detail a new framework for the mo-
tion of a test particle, the noisy continuous time random walk
(nCTRW) subject simultaneously to a power-law distribution
(2) of sojourn times and additional Gaussian noise. Interest-
ingly, the noise turns out to have a dramatic effect on the time
averaged MSD, typically evaluated in single particle track-
ing experiments, but a trivial effect on the ensemble averaged
MSD. We hope that this contribution will be a step towards
more realistic modeling of trajectories of single molecules,
but also of other diffusive motions of particles in complex
environments.

Our analysis is based on two different scenarios for the
additional Gaussian noise. Thus, we will consider (i) a reg-
ular diffusive motion (Wiener process) on top of the power-
law sojourn times (2). This scenario mirrors effects such
as the diffusion on the cover slip of the biological cell, in
which the actual motion occurs that we want to monitor. (ii)
We study an Ornstein-Uhlenbeck noise with a typical ampli-
tude, which may reflect an intrinsically noisy environment,
such as in the case of the tracer beads in the actin network.
We will study the MSD of the resulting motion both in the
sense of the conventional ensemble average and, for its rel-
evance in the analysis of single particle tracking measure-
ment, the time average. Moreover, we demonstrate how a
varying strength of the additional noise may blur the result
of stochastic diagnosis methods introduced recently, such as
the scatter of amplitudes of time averaged MSDs around the
average over an ensemble of trajectories, or the p-variation
method.

The paper is organized as follows. In Sec. II A, we
briefly discuss the concepts of anomalous diffusion and sin-
gle particle tracking along with the role of (non-)ergodicity
in the context of ensemble versus time averaged MSDs. In
Sec. II B, we review some methods of single particle track-
ing analysis. Section III then introduces our nCTRW model

consisting of a random walk with long sojourn times super-
imposed with Gaussian noise, and we explain the simulation
scheme. The main results and discussions are presented in
Secs. IV and V: in Sec. IV, we study the statistical behav-
ior of nCTRW motion in the presence of superimposed free
Brownian motion, while Sec. V is devoted to the motion dis-
turbed by Ornstein-Uhlenbeck noise. Finally, the conclusions
and an outlook are presented in Sec. VI. In the Appendix, we
provide a brief outline of the stochastic analysis tools used
to quantify the nCTRW processes studied in Secs. IV and V.
Note that in the following, for simplicity, we concentrate on
the one-dimensional case; all results can easily be generalized
to higher dimensions.

II. ANOMALOUS DIFFUSION AND SINGLE
PARTICLE TRACKING

In this section, we briefly review the CTRW model and
the behavior of CTRW time series. Moreover, we present
some common methods to analyze traces obtained from single
particle tracking experiments or simulations.

A. Continuous time random walks and time-averaged
mean squared displacement

Anomalous diffusion of the subdiffusive form (1) with
0 < α < 1 is quite commonly observed in a large variety
of systems and on many different scales.6–12 A prominent
model to describe the subdiffusion law (1) is given by the
Montroll-Weiss-Scher CTRW.13, 14 Originally applied to de-
scribe extensive data from the stochastic motion of charge
carriers in amorphous semiconductors,13 the CTRW model
finds applications in many areas. Inter alia, CTRW subdif-
fusion was shown to underlie the motion of microbeads in
reconstituted actin networks,1 the subdiffusion of lipid gran-
ules in living yeast cells4, 15 of protein channels in human kid-
ney cells,2 and of insulin granules in MIN6 cells,3 as well
as the temporal spreading of tracer chemicals in groundwater
aquifers.16, 17 While the sojourn times in a subdiffusive CTRW
follow the law (2), the length of individual jumps is governed
by a distribution λ(x) of jump lengths, with finite variance
σ 2 = ∫

x2λ(x)dx. In the simplest case of a jump process on a
lattice, each jump is of the length of the lattice constant. Phys-
ically, the power-law form (2) of sojourn times may arise due
to multiple trapping events in a quenched energy landscape
with exponentially distributed depths of traps.18, 19 Subdiffu-
sive CTRWs macroscopically exhibit long-tailed memory ef-
fects as characterized by the dynamic equation for the proba-
bility density function P(x, t) containing fractional differential
operators, see below.20

Usually, we think in terms of the ensemble average (1)
when we talk about the MSD of a diffusive process. How-
ever, starting with Nordlund’s seminal study of the Brow-
nian motion of a slowly sedimenting mercury droplet21

and now routinely performed even on the level of single
molecules,1–4, 10, 15, 22–29 the time series x(t) obtained from
measuring the trajectory of an individual particle is evaluated
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in terms of the time averaged MSD,

δ2(�) = 1

T − �

∫ T −�

0
(x(t + �) − x(t))2dt, (3)

where � is the so-called lag time, and T is the overall
measurement time. For Brownian motion, the time averaged
MSD (3) is equivalent to the ensemble averaged MSD (1),
〈x2(�)〉 = δ2(�), if only the measurement time T is suffi-
ciently long to ensure self-averaging of the process along the
trajectory. This fact is a direct consequence of the ergodic na-
ture of Brownian motion.5, 30 To obtain reliable behaviors for
the time averaged MSD for trajectories with finite T, one often
introduces the average

〈
δ2(�)

〉
= 1

N

N∑
i=1

δ2
i (�) (4)

over several individual trajectories δ2
i (�).

What happens when the process is anomalous, of the
form (1)? There exist anomalous diffusion processes that are
ergodic in the above sense that for sufficiently long T we
observe the equivalence 〈x2(�)〉 = δ2(�). Prominent exam-
ples are given by diffusion on random fractal geometries,31 as
well as fractional Brownian motion and the related fractional
Langevin equation motion for which ergodicity is approached
algebraically.32–35 Such behavior was in fact corroborated in
particle tracking experiments in crowded environments23–25

and simulations of lipid bilayer systems.36, 37 In superdiffu-
sive Lévy walks time and ensemble averaged MSDs differ
merely by a factor.38–40 However, the diverging sojourn time
in the subdiffusive CTRW processes naturally causes weak
ergodicity breaking in the sense that even for extremely long
measurement time T, ensemble and time averages no longer
coincide.41–43 For the time averaged MSD, the consequences
are far-reaching. Thus, for subdiffusive CTRWs, we find the
somewhat counterintuitive result that the time averaged MSD
for free motion (unbiased motion in unbounded space) scales
linearly with the lag time, 〈δ2(�,T )〉 � Kα�/T 1−α for �

� T, and thus 〈x2(�)〉 �= δ2(�).44, 45 In particular, the result
〈δ2(�)〉 decreases with the measurement time T, an effect of
ageing. Concurrently, the MSD of subdiffusive CTRWs de-
pends on the time difference between the preparation of the
system and the start of the measurement.46 Under confine-
ment, while the ensemble averaged MSD saturates towards
the thermal value, the time averaged MSD continues to grow
as 〈δ2(�)〉 � �1−α as long as � � T.47, 48 Another impor-
tant consequence of the weakly non-ergodic behavior is that
the time averaged MSD (3) remains irreproducible even in
the limit of T → ∞: the amplitude of individual time aver-
aged MSD curves δ2

i (�) scatters significantly between differ-
ent trajectories, albeit with a well-defined distribution.44, 49, 50

In other words, this scatter of amplitudes corresponds to an
apparent distribution of diffusion constants.51 Active trans-
port of molecules in the cell exhibits superdiffusion with non-
reproducible results for the time averages,52 a case treated the-
oretically only recently.39, 40, 53

To pin down a given stochastic mechanism underlying
some measured trajectories, several diagnosis methods have
been developed. Thus, one may analyze the first passage
behavior,54 moment ratios and the statistics of mean maximal
excursions,55 the velocity autocorrelation,30, 37 the statistics of
the apparent diffusivities,56 or the p-variation of the data.57, 58

In the following, we analyze the sensitivity of the time aver-
aged MSD and its amplitude scatter as well as the p-variation
method to noise, that is superimposed to bare subdiffusive
CTRWs. In particular, we show that at larger amplitudes of
the additional noise, the CTRW-inherent weak non-ergodicity
may become completely masked.

B. A primer on single particle trajectory analysis

Before proceeding to define the nCTRW process, we
present a brief review of several techniques developed re-
cently for the analysis of single particle trajectories.

1. Mean-squared displacement

Already from the time averaged MSD δ2
i of individual

particle traces, important information on the nature of the pro-
cess may be extracted, provided that the measurement time T
is sufficiently long. Thus, for ergodic processes, the time and
ensemble averaged MSDs are equivalent, δ2(�) = 〈x2(�)〉. A
significant difference between both quantities points at non-
ergodic behavior. In particular, the scatter of amplitudes (dis-
tribution of diffusion constants) between individual traces
δ2
i turns out to be a quite reliable measure for the (non-)

ergodicity of a process. Thus, in terms of the dimensionless
parameter ξ = δ2/〈δ2〉, the distribution of amplitudes φ(ξ )
has a Gaussian profile centered on the ergodic value ξ = 1
for finite-time ergodic processes.59 Its width narrows with in-
creasing T, eventually approaching the sharp distribution δ(ξ
− 1) at T → ∞, i.e., each trajectory gives exactly the same
result, equivalent to the ensemble averaged MSD. For subdif-
fusive CTRW processes, φ(ξ ) is quite broad and has a finite
value at ξ = 0 for completely stalled trajectories.30, 44, 46, 49, 59

For α ≤ 1/2, the maximum of the distribution is at ξ = 0,
while for α > 1/2 the maximum is located at ξ = 1. The non-
Gaussian distribution φ(ξ ) for subdiffusive CTRWs is almost
independent of T, and its shape is already well established
even for relatively short trajectories.59

2. p-variation test

The p-variation test was recently promoted as a tool to
distinguish CTRW and FBM-type subdiffusion.57 It is defined
in terms of the sum of increments of the trajectory x(t) on the
interval [0, T] as

V (p)
n (t) =

2n−1∑
j=0

∣∣∣∣x
(

(j + 1)T

2n
∧ t

)
− x

(
jT

2n
∧ t

)∣∣∣∣
p

, (5)

where a∧b = min{a, b}. The quantity V (p) = limn→∞ V
(p)
n

has distinct properties for certain stochastic processes. Thus,
for both free and confined Brownian motion, V (2)(t) ∼ t and
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FIG. 1. Results of the p-variation test for (a) Brownian noise zB(t), (b) Ornstein-Uhlenbeck noise zOU(t), and (c) subdiffusive CTRW xα(t) with α = 0.5. The
left panels in each case are for p = 4 for both (a) and (b), and (c) p = 2/α = 4. All right panels are for p = 2. The color coding refers to the values of n indicated
in the right panel of each pair of graphs.

V (p)(t) = 0, for any p > 2. For fractional Brownian motion,
V (2)(t) = ∞, while V (2/α)(t) ∼ t . Finally, for CTRW subd-
iffusion, V (2)(t) features a step-like, monotonic increase as
function of time t, and V (2/α)(t) = 0.

Figure 1 shows the p-variation results for Brownian noise
zB(t), Ornstein-Uhlenbeck noise zOU(t), and the bare subdif-
fusive CTRW xα(t). We plot the sum (5) for various, finite
values of n. For the Brownian noise zB(t), V (4)

n monotonically
decreases with growing n, a signature of the predicted con-
vergence to V (4) → 0. The sum V (2) appears independent of
n and proportional to time t, as expected. For the Ornstein-
Uhlenbeck noise zOU(t), we observe that V (4) scales linearly
with t and the slope decreases with growing n, indicating a
convergence to zero. Also V (2) is linear in t. For smaller n,
the slope increases with n and saturates at large n. Finally,
for CTRW subdiffusion, V (2/α) appears to converge to zero
for increasing n, as predicted. By contrast, V (2) has the dis-
tinct, monotonic step-like increase expected for CTRW sub-
diffusion. A more detailed description of the p-variation for
Ornstein-Uhlenbeck noise and CTRW subdiffusion is found
in the Appendix.

III. NOISY CONTINUOUS TIME RANDOM WALK

In this section, we define the nCTRW model and describe
our simulations scheme.

A. Two nCTRW models—Drifting versus rattling

We consider an nCTRW process x(t) in which ordinary
CTRW subdiffusion xα(t) with anomalous diffusion exponent
0 < α < 1 is superimposed with the Gaussian noise ηz(t),

x(t) = xα(t) + ηz(t). (6)

That means that the Gaussian process z(t) is additive and thus
independent of xα(t). The relative strength of the additional
Gaussian noise is controlled by the amplitude parameter
η ≥ 0. In this study, we consider the following two
Gaussian processes: (1) In the first case, z(t) is a simple Brow-
nian diffusive process zB(t) with zero mean 〈zB(t)〉 = 0 and
variance 〈z2

B(t)〉 = 2Dt . As mentioned, physically this could
represent the (slow) diffusion of a living bacteria or endothe-
lial cell on the cover slip while we want to record the motion
of a tracer inside the cell, or the random drifting of the exper-
imental stage. (2) In the second case, z(t) represents Ornstein-
Uhlenbeck noise zOU(t). This Gaussian process corresponds to
the confined Brownian motion in an harmonic potential (see
Eq. (18) for the definition of the process). We use this con-
fined additive noise to phenomenologically mimic the thermal
rattling of the matrix, in which the particle is successively
immobilized during waiting periods in the CTRW sense. In
the example of the tracer bead in the cross-linked actin mesh
discussed in the Introduction, this Ornstein-Uhlenbeck noise
corresponds to the rattling with a constant amplitude around
some average position.
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According to definition (6), nCTRW processes have the
following generic properties. Its probability density function
(PDF) P(x, t) is given by the convolution of the individual
PDFs Pα(x, t) of a CTRW subdiffusion process and PG(x, t)
of the Gaussian process,

P (x, t) =
∫ ∞

−∞
Pα(x − y, t)PG(y, t)dy. (7)

This chain rule states that a given position x of the combined
process is given by the product of the probability that the
CTRW process has reached the position x-y and the Gaus-
sian process contributes the distance y, or vice versa. Here, the
PDF Pα(x, t) satisfies the fractional Fokker-Planck equation,8

∂

∂t
Pα(x, t) = 0D1−α

t Kα

∂2

∂x2
Pα(x, t), (8)

where the Riemann-Liouville fractional derivative of Pα(x, t)
is

0D1−α
t Pα(x, t) = 1

(α)

∂

∂t

∫ t

0

Pα(x, t ′)
(t − t ′)1−α

dt ′. (9)

Physically, this fractional operator thus represents a memory
integral with a slowly decaying kernel. From definition (6), it
follows that the ensemble averaged MSD is given by

〈x2(t)〉 =
∫ ∞

−∞
x2Pα(x, t)dx +

∫ ∞

−∞
y2PG(y, t)dy

= 〈x2
α(t)〉 + η2〈z2(t)〉. (10)

The characteristic function of P(x, t) according to Eq. (7) is
given by the product

P (q, t) =
∫ ∞

−∞
eiqxP (x, t)dx = Pα(q, t)PG(q, t) (11)

of the characteristic functions of the individual processes, Pα

and PG. We here use the simplified notation that the Fourier
transform of a function is expressed by its explicit dependence
on the Fourier variable q. With the Mittag-Leffler function
Eα(x) = ∑∞

m=0 xm/(1 + αm), we find that8

Pα(q, t) = Eα(−q2Kαtα), (12)

assuming that the CTRW process starts at t = 0 with ini-
tial conditions xα(0) = 0. The characteristic function Pα(q,
t) initially decays like a stretched exponential Pα(q, t)
≈ exp (−q2Kαtα/(1 + α)), and has the asymptotic power-
law decay Pα(q, t) ∼ 1/(q2Kαtα).

The Brownian noise ηzB(t) with initial condition
zB(0) = 0 has the characteristic function

PG(q, t) = exp(−η2Dq2t). (13)

In the nCTRW process, this Brownian noise always dom-
inates the dynamics of the process at long times, since
the exponential relaxation (13) dominates the characteris-
tic function P(q, t). The Ornstein-Uhlenbeck noise ηzOU(t)

with zOU(0) = 0, defined in Eq. (18), has the characteristic
function

PG(q, t) = exp

(
−η2Dq2

2k
(1 − e−2kt )

)
. (14)

At short times, t � k−1 when confinement by the harmonic
Ornstein-Uhlenbeck potential is negligible, Eq. (14) reduces
to the result (13) for Brownian noise, and thus the charac-
teristic functions of the two nCTRW processes are identi-
cal. At longer times, the characteristic function (14) saturates
to PG(q) = exp [− η2Dq2/(2k)]. This means that the long-
time behavior of the nCTRW with superimposed Ornstein-
Uhlenbeck noise largely reflects the bare CTRW process
xα(t), if the noise level is not too high. Keeping these general
features in mind, we further study the statistical quantities of
the two nCTRW processes numerically.

B. Simulation of the nCTRW process

To simulate the nCTRW process, we independently ob-
tain time traces of the subdiffusive CTRW motion xα(t) and
the additional Gaussian noise. The motion xα(t) with 0 < α

< 1 is generated on a lattice of spacing a from the normalized
waiting time distribution

ψ(τ ) = α/τ0

(1 + τ/τ0)1+α
(15)

with the power-law asymptotic scaling ψ(τ ) ∼ ατα
0 /τ 1+α .

Here, τ 0 is a scaling constant of dimension [τ 0] = sec.
The jump lengths are determined by the δ-distribution
λ(x) = 1

2δ(|x| − a).4, 33 Within this construction, the CTRW
process is associated with the fractional Fokker-Planck equa-
tion (8) with the anomalous diffusion exponent:60

Kα = (1 − α)a2

2τα
0

. (16)

In the simulations we choose τ 0 = 1, and consequently in
the following times are given in units of τ 0, which is also
chosen equal to the time increments δt, at which the system is
updated. The lattice spacing is a = 0.1. We simulate the cases
α = 0.5 and 0.8.

The added Gaussian noise is produced as follows. Brow-
nian noise z(t) = zB(t) is obtained at discrete times tn = nδt
(with δt = 1), in terms of the Brownian walk

zB(tn) =
n∑

k=1

δt
√

2DξB(tk), (17)

where ξB(t) represents white Gaussian noise of zero mean and
unit variance 1/δt with our choice δt = 1. In the simulations
we take D = 0.05, such that 〈z2

B(1)〉 = 0.1. The Ornstein-
Uhlenbeck noise z(t) = zOU(t) is formally obtained by inte-
gration of the overdamped Langevin equation for a particle
moving in an harmonic potential of stiffness k,

d

dt
zOU (t) = −kzOU (t) +

√
2DξB(t), (18)

with the initial condition zOU(0) = 0. Here, the coefficient of
the restoring force is chosen as k = 0.01. For both Brownian
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FIG. 2. Sample trajectories of the nCTRW process xα(t) with superimposed Brownian noise ηzB(t) of strength η, for several values of η, and for anomalous
diffusion exponents (a) α = 0.5 and (b) α = 0.8. With increasing noise strength, the otherwise pronounced sojourn states become increasingly blurred by the
Brownian motion. For each α, the CTRW part of the trajectory is identical.

and Ornstein-Uhlenbeck noise, the following values for the
noise strength are used: η = 0.001, 0.005, 0.01, and 0.1.

IV. nCTRW WITH BROWNIAN NOISE

In Fig. 2, we show typical examples of simulated trajec-
tories of the nCTRW process x(t) with added Brownian noise.
The trajectories x(t) for different noise strengths η are con-
structed for the same CTRW process xα(t), i.e., only the noise
strength varies in between the panels. This way it is easier
to appreciate the influence of the added noise. We generally
observe that the trajectories preserve the profile of the un-
derlying CTRW process xα(t) at small η, and they become
quite distorted from the original CTRW trajectory xα(t) for
larger values of η. In particular, for the largest noise strength
the character of the pure CTRW with its pronounced stalling
events is completely lost, and visually one might judge these
traces to be pure Brownian motion, at least when the length
T of the time series is not too large. Moreover, the effect
of the noise is stronger for smaller α. This is because long
stalling events occur more frequently as α decreases, and thus
the actual displacement of the process is also smaller and the
influence of the Brownian motion becomes relatively more
pronounced.

A. Ensemble-averaged mean squared displacements

From the simulated trajectories we evaluate the
ensemble-averaged MSD for the nCTRW and study how its
scaling behavior is affected by the Brownian noise zB(t).
Figure 3 summarizes the results for the nCTRW process with
α = 0.5 and α = 0.8. In both cases, a common feature is
that the ensemble averaged MSD exhibits a continuous tran-
sition from subdiffusion with anomalous diffusion exponent
α to normal diffusion. This occurs either as the noise strength
η is increased at fixed time t, or as time t is increased at a fixed
η. Due to the additivity of the two contributions, we obtain

〈x2(t)〉 = 2Kα

(1 + α)
tα + 2η2Dt, (19)

which is valid as long as t is considerably larger than the time
increment δt. Equation (19) demonstrates that for the subd-
iffusive CTRW processes, xα(t) with 0 < α < 1, the ensem-
ble averaged MSD of the nCTRW x(t) has a crossover in its
scaling from �tα at short times to �t at long times, with the
crossover time scale tc ∼ (Kα/[(1 + α)η2D])1/(1 − α). That
is, the effect of the Brownian noise zB(t) emerges only at
long times t > tc. Conversely, below tc the process appears
to behave as the bare CTRW process. Note that the crossover
time tc rapidly decreases with increasing η as tc ∼ η−2/(1 − α).
This explains why we only observe normal diffusion behavior
without crossover for the largest noise strength η = 0.1. The
crossover time tc also rapidly increases as the exponent α ap-
proaches to one [as Kα ∼ (1 − α) in our choice of τ 0 = 1,
see Eq. (16)]. Accordingly, in Fig. 3, the ensemble averaged
MSDs for α = 0.8 do not fully reach the linear regime within

FIG. 3. (Top) Ensemble averaged MSD of the nCTRW process x(t) with
noise strengths η = 0.001, 0.01, and 0.1 for anomalous diffusion exponents α

= 0.5 (left) and α = 0.8 (right). A crossover from subdiffusive to Brownian
(linear) scaling is observed. N = 104 trajectories were used for the averag-
ing. (Bottom) Trajectory-averaged time averaged MSD 〈δ2(�)〉 for x(t) for
the same values of η and α. The overall measurement time is T = 105 in units
of δt and the number of trajectories N = 103.
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FIG. 4. Ten individual time averaged MSD curves for nCTRW with (a) α = 0.5 and (b) α = 0.8 with added Brownian noise, for the same parameters as in
Fig. 3. The relative amplitude scatter dramatically reduces at high noise strength, compare Fig. 5.

the time window of our simulation, in contrast to the case for
α = 0.5 with η = 0.1.

B. Time-averaged mean squared displacement

We now consider the individual time averaged MSDs
δ2(�) of the nCTRW process from single trajectories x(t) ac-
cording to our definition in Eq. (3). Figure 3 presents the
trajectory-to-trajectory average (4). In all cases we find that
the time averaged MSDs grow linearly with lag time � in the
entire range of �, showing a clear disparity from the scal-
ing behavior of the ensemble averaged MSDs above. In the
time averaged MSD, the Brownian noise zB(t) simply affects
the apparent diffusion constant, that is, the effective amplitude
of the linear curves. To understand this phenomenon quantita-
tively, we obtain the analytical form of the trajectory-averaged
time averaged MSD,

〈
δ2(�)

〉
∼ 2Kα�

(1 + α)T 1−α
+ 2η2D�, (20)

valid for � � T. Equation (20) shows that both contributions,
the bare CTRW xα(t) and the Brownian process ηzB(t), are lin-
early proportional to the lag time �. Note that the exponent α

and the noise strength η only enter into the apparent diffusion
constant

Dapp ≡ KαT α−1

(1 + α)
+ η2D, (21)

where 〈δ2(�)〉 = 2Dapp�. This result indicates that the effect
of the Brownian noise cannot be noticed when we exclusively
consider the scaling behavior of the time averaged MSD. Also
in terms of the apparent diffusion constant, one hardly notices
the presence of the Brownian noise component as long as η is

small. This agrees with our observations for the time averaged
MSD curves in Fig. 3 for noise strengths η = 0.001 and 0.01.

We also check the fluctuations between individual time
averaged MSD curves δ2(�). Each panel in Fig. 4 plots ten in-
dividual time averaged MSDs for the nCTRW process. In all
cases, the individual time averaged MSDs display linear scal-
ing with lag time �, namely, the scaling behavior of 〈δ2(�)〉.
The individual amplitudes scatter, that is, the apparent diffu-
sion constant Dapp fluctuates. With increasing strength of the
Brownian component, the relative scatter between individual
trajectories dramatically diminishes, leading to an apparently
ergodic behavior. Thus, for the largest noise strength η = 0.1,
the ten trajectories almost fully collapse onto a single curve
for � � T.

C. Scatter distribution

We quantify the amplitude scatter of the individual time
averaged MSDs in terms of the normalized scatter distribu-
tions φ(ξ ), where the dimensionless variable ξ stands for the
ratio ξ = δ2/〈δ2〉 of individual traces δ2 versus the trajectory
average 〈δ2〉 (compare the derivations in Refs. 5, 30, and 44).
Figure 5 shows φ(ξ ) for several values of the lag time �.
When the noise is negligible (η = 0.001), the observed broad
distribution is nearly that of the pure CTRW process. For α

= 1/2, the distribution has the expected Gaussian profile cen-
tered at ξ = 0,44 indicating that long stalling events of the or-
der of the entire measurement time T occur with appreciable
probability. In the opposite case η = 0.1, the Brownian noise
results in a relatively sharply peaked, bell-shaped distribution
typical for ergodic processes, at all lag times. An interesting
effect of the Brownian noise is that at intermediate strengths
it only tends to suppress the contribution at around zero,
while it does not significantly change the overall profile of the
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FIG. 5. Variation of normalized scatter distributions φ(ξ ) as a function of
dimensionless variable ξ = δ2/〈δ2〉 for the cases of η = 0.001 (black square),
0.005 (red circle), 0.01 (green upper-triangle), and 0.1 (blue down-triangle).
(Upper panels) α = 0.5. (Lower panels) α = 0.8. In each figure the results
were obtained from 104 runs.

distribution compared to the noise-free case. This implicates
that the trajectories share non-ergodic and ergodic elements.
For instance, the trajectory of the nCTRW process x(t) itself
for η = 0.01 in Fig. 2 shows a substantially blurred profile
of the underlying CTRW process xα(t) due to the relatively
strong Brownian noise; however, the time averaged MSD and
its distribution do exhibit non-ergodic behavior, as shown in
Fig. 5. The case α = 0.8 shown in Fig. 5 features similar al-
beit less pronounced effects. In particular, φ(ξ ) for the bare
CTRW has its maximum at the ergodic value ξ = 1. Again,
the effect of the Brownian noise is to suppress the contribution
at ξ = 0.

D. p-variation test

We now turn to the p-variation test and investigate its
sensitivity to the additional noise in the nCTRW process,
in comparison to the established results for the bare CTRW
xα(t). From the trajectory x(t), the partial sum V

(p)
n (t) is calcu-

lated for finite n according to definition (5), where we choose
p = 2/α and p = 2, compare Sec. II B. In Fig. 6, we plot
the results of the p-variation at increasing n for the nCTRW
process. We observe that for both cases α = 0.5 and 0.8, the
p-sums behave analogously to the predictions for the bare
CTRW process, as long as the noise strength remains suffi-
ciently small, according to Fig. 6 this holds for η = 0.001
and 0.005 (not shown). In this case, V

(2/α)
n (t) monotonically

decreases with increasing n, indicating the limiting behavior
V

(2/α)
n (t) → 0 for large n. Meanwhile, V (2)

n (t) approaches the
monotonic step-like behavior typical for the CTRW process
xα(t), as n increases. Note that the p-sums have plateaus in
their increments in analogy to the noise-free case due to the
long stalling events in the trajectory.

As the magnitude of the Brownian noise grows larger (η
= 0.01 and 0.1), however, the behavior of the p-sums changes
significantly. While V

(2/α)
n (t) decreases with increasing n as

for the weaker noise case, it increases linearly with t nearly
without any sign of plateaus for both nCTRW processes of
α = 0.5 and 0.8 when the noise strength is increased to η

= 0.1. This new feature is the expected behavior of V
(p)
n (t)

with p > 2 for a Brownian diffusive process (see Sec. II B
and Fig. 1). Indeed, it can be shown that for p = 4 the p-sum
of the Brownian noise zB(t) behaves as V (4)

n (t) ∼ ( T
2n )t . We

note that for the Brownian noise zB(t) the p-sum V
(p)
n (t) with

p > 2 always decays out to zero as n → ∞. Therefore, the
nCTRW process will always have the same p variation result
of V

(2/α)
n = 0 (in the limit of n → ∞) as the pure CTRW xα(t),

even in case that its profile is dominated by large noise.
By contrast, the p-sum V (2)

n (t) exhibits a more distin-
guished effect of the Brownian noise due to the fact that the
Brownian noise ηzB(t) has V (2)

n (t) � η22Dt . Especially, we
find that the noise effect is pronounced for the nCTRW with
α = 0.5, when the underlying CTRW process xα(t) features
only few jumps. In this case, the Brownian noise of moder-
ate strength (η = 0.01) causes an incline with almost identical
slope to the step-like profiles of V (2)

n (t). At the strongest noise
η = 0.1, the step-like behavior typical for the bare CTRW
process xα(t) is nearly masked and the overall tendency fol-
lows that of Brownian motion shown in Fig. 1. Accordingly,
the p-variation test does not properly pin down the underlying
CTRW process xα(t) and thus potentially produces inconsis-
tent conclusion for the nCTRW process. A qualitatively iden-
tical behavior is obtained for the nCTRW process when the
underlying CTRW process xα(t) performs relatively frequent
jumps (corresponding to the case of α = 0.8). However, here
the effect of the Brownian noise appears weak, because the
contribution of zB(t) relative to the magnitude of xα(t) be-
comes smaller at larger α values, see the trajectories x(t) in
Fig. 2.

V. nCTRW WITH ORNSTEIN-UHLENBECK NOISE

We now turn to nCTRW processes x(t), in which the su-
perimposed noise is of Ornstein-Uhlenbeck form (18). In this
case the influence of the added noise is expected to dimin-
ish as the process develops, according to our discussion in
Sec. III.

Figure 7 shows simulated trajectories for the nCTRW
process xα(t) with two different anomalous diffusion expo-
nents, (a) α = 0.5 and (b) α = 0.8, for different noise
strengths η. Indeed, we observe that compared to case of
Brownian noise depicted in Fig. 2, the profiles of the jumps
and rests of the bare CTRW motion xα(t) are relatively well
preserved despite the mixing with the Ornstein-Uhlenbeck
noise zOU(t). Note that the simulated trajectories with mod-
erate noise strength appear quite similar to the experimental
traces of the microbeads in the reconstituted actin network
reported by Wong et al.1 The noise interference appears con-
siderably lesser for the case α = 0.8, when the magnitude
of the net displacements is large relative to the noise contri-
bution due to frequent jumps in the trajectory xα(t) when α

is closer to unity. Only for the highest noise strength the pure
CTRW behavior with its distinct sojourns becomes blurred by
the Ornstein-Uhlenbeck noise.
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FIG. 6. Results of the p-variation test for the nCTRW process with Brownian noise ηzB(t) for noise strengths η = 0.001, η = 0.01, and η = 0.1. The upper
(lower) two rows are for α = 0.5 and 0.8. In all figures, the p sums are plotted with the same color code: n = 8 (black), 9 (red), 10 (green), 11 (blue), 12 (cyan),
13 (violet), and 14 (yellow).

A. Ensemble-averaged mean squared displacement

In Fig. 8, we plot the ensemble averaged MSD 〈x2(t)〉 of
the nCTRW process with Ornstein-Uhlenbeck noise for dif-
ferent noise strengths η. We note that, regardless of the in-
tensity η, the ensemble averaged MSDs follow the scaling
law ∼tα of the noise-free CTRW process xα(t), in particu-

lar, at long times. Moreover, all MSD curves at different η

almost collapse onto each other, although small differences
are discernible at short times. These results suggest that, in
contrast to the Brownian noise case discussed in Sec. IV,
the Ornstein-Uhlenbeck noise does not critically interfere
with the diffusive behavior of the noise-free CTRW motion,
as expected. To obtain a quantitative understanding of these

FIG. 7. Sample trajectories of the nCTRW process x(t) with Ornstein-Uhlenbeck noise for several values of the noise strength η and anomalous diffusion
exponents (a) α = 0.5 and (b) α = 0.8. In contrast to the Brownian noise case of Fig. 2, however, the approximately constant amplitude of the superimposed
noise is characteristic for the Ornstein-Uhlenbeck process.
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FIG. 8. (Top) Ensemble-averaged MSD 〈x2(t)〉 of the nCTRW process with
Ornstein-Uhlenbeck noise for anomalous diffusion exponents α = 0.5 and
0.8, from 104 trajectories. (Bottom) Trajectory-average of the time averaged
MSD 〈δ2(�)〉 for the same α. We use T = 105 and the number of trajectories
N = 103.

results, we derive the analytic form of the ensemble averaged
MSD,

〈x2(t)〉 = 2Kα

(1 + α)
tα + η2D

k
(1 − e−2kt ). (22)

Here, the last term stems from the contribution of the
Ornstein-Uhlenbeck noise. For t > k−1, it saturates to the con-
stant η2D/k, which is typically small relative to 2Kαtα/(1
+ α). Hence, at long times t > k−1, the noise term is neg-
ligible, and the ensemble averaged MSD grows as 2Kαtα/(1
+ α), consistent with the observations in Fig. 8. In the oppo-
site case for t < k−1, the contribution of the noise is expanded
to obtain 〈z2

OU (t)〉 ≈ 2η2Dt . As discussed for the characteris-
tic function (14), on these time scales the Ornstein-Uhlenbeck
noise zOU(t) has the same form as the Brownian noise zB(t),
leading to the same scaling form (19) for the ensemble av-
eraged MSD. However, as studied in the previous case, the
effect of the linear scaling is irrelevant at short times.

B. Time-averaged mean squared displacement

We now turn to the time averaged MSD curves δ2(�)
from individual trajectories x(t) of the nCTRW process.
Figure 8 shows the trajectory-averaged time averaged MSD
〈δ2(�)〉 for different noise strengths. For both anomalous dif-
fusion exponents α = 0.5 and 0.8, we observe qualitatively
the same behavior. On the one hand, the CTRW motion su-
perimposed with moderate noise (η = 0.001 and 0.01) leads
to a linear scaling of the time averaged MSD with lag time
�, with almost identical amplitude. On the other hand, when
the noise amplitude becomes large, the scaling of the time
averaged MSD is significantly affected. We find that these re-
sults are consistent with the analytical form of the trajectory-
averaged time averaged MSD,

〈
δ2(�)

〉
∼ 2Kα�

(1 + α)T 1−α
+ 2η2D

k
(1 − e−k�), (23)

valid at lag times � � T. In this expression, it is worth-
while to point out that the contribution of the bare CTRW
process xα(t) is decreased as the length of the trajectory be-
comes longer, due to the aging effect of the decreasing effec-
tive diffusion constant �Tα − 1, while the noise is indepen-
dent of T. Due to this effect, the time averaged MSD (23)
has three distinct scaling regimes: (i) At lag times � � k−1,
the time averaged MSD is linearly proportional to the lag
time with apparent diffusion constant Dapp ≈ KαTα − 1/(1
+ α). (ii) At lag times � � k−1, the time averaged MSD
is again proportional to �. On this timescale, however, the
noise part cannot be ignored, and the apparent diffusion con-
stant is given by Dapp ≈ KαTα − 1/(1 + α) + η2D. Note that
the diffusion constant at short lag times is larger than the one
at long times. (iii) For lag times � ≈ k−1, the time averaged
MSD is that of confined Brownian diffusion, where 〈δ2(�)〉
≈ 2KαT α−1�/(1 + α) + 2η2D. These three regimes are
expected to occur only in the presence of large noise strengths
when η2D > KαTα − 1/(1 + α) (see the case η = 0.1 in
Fig. 8). In the opposite case, when 2η2D is negligi-
ble compared to KαTα − 1/(1 + α), the three regimes
are indistinguishable, and only one scaling law 〈δ2(�)〉
≈ 2KαT α−1�/(1 + α) is observed at all lag times. This be-
havior is seen for the two cases of η = 0.001 and 0.01 in
Fig. 8.

Interestingly, the time averaged MSD for the nCTRW
with anomalous diffusion exponent α = 0.5 and noise strength
η = 0.1 is reminiscent of the MSD curves observed for
micron-sized tracer particles immersed in wormlike micel-
lar solutions, which are known to behave as a viscoelas-
tic polymer network when the micelles concentration is
above a critical value.61 Experiments using diffusing wave
spectroscopy62, 63 and single-particle tracking25 revealed that
the immersed particles exhibit three distinct diffusive behav-
iors in different time windows. It was shown that particles
surrounded by the micellar network undergo a Brownian dif-
fusion at short (sub-milliseconds) times until they engage with
the caging effects of the micellar network, while at later times
(milliseconds to sub-seconds) one observes a seemingly con-
fined Brownian motion. It turns out that this confined diffu-
sion is in fact a pronounced subdiffusive motion characterized
by anti-persistent spatial correlation induced by the polymer

FIG. 9. Profiles of the time averaged MSD 〈δ2(�, T )〉 as a function of mea-
surement time T at a fixed lag time � = 100. We show the nCTRW of α

= 0.5 with ηzOU(t) at η = 0.001, 0.01, and 0.1 (from bottom to top). Solid
and dotted lines represent the analytical form (23) and the scaling ∼Tα − 1,
respectively. N = 103 trajectories are used for the trajectory-average.
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FIG. 10. Ten individual time averaged MSD curves of the nCTRW process with Ornstein-Uhlenbeck noise of strengths η = 0.001, 0.01, and 0.1 for anomalous
diffusion exponents (a) α = 0.5 and (b) α = 0.8. T = 105 is used as in Fig. 8.

network, governed by the fractional Langevin equation.25 At
macroscopic times, when the wormlike micelle solution be-
haves as a viscous fluid, the particle again shows a Brow-
nian diffusion, albeit with a significantly reduced diffusion
constant. The results obtained here suggest that due to the
presence of the Ornstein-Uhlenbeck noise, the CTRW pro-
cess could be mistakenly interpreted to conform to a physi-
cally different system, i.e., Brownian motion, and, thus, one
needs to be careful in analyzing the data with several possible
models, and to use several complementary diagnosis tools.

The expression (23) for the time averaged MSD sug-
gests that δ2(�,T ) stops aging and reflects almost entirely
the character of the Ornstein-Uhlenbeck noise process if
T � Tcr ∼ (kKα�/[(1 + α)η2D])1/(1 − α). This is indeed
shown in Fig. 9 where the time averaged MSD 〈δ2(�,T )〉
is plotted as a function of the overall measurement time T at
a fixed lag time � = 100 for nCTRW with α = 0.5, together
with the theoretical prediction, Eq. (23). For the weakest noise
η = 0.001 whose crossover time Tcr ∼ 109 is beyond Tmax

= 107, the time averaged MSD only displays aging of the bare
CTRW process with scaling ∼Tα − 1. When the noise strength
is increased to η = 0.01, the time averaged MSD starts to
show ergodic behavior as the measurement time T gets larger
than the crossover time Tcr ∼ 105. In the extreme case when
the nCTRW process is dominated by the noise (here η = 0.1),
effectively no aging is observed in δ2(�,T ) and the process
appears ergodic.

In Fig. 10, we plot ten individual time averaged MSD
curves δ2(�). For the case of more pronounced subdiffusion
(α = 0.5), the trajectory-to-trajectory variations are signifi-
cant, due to the combined effect of long-time stalling events
and the Ornstein-Uhlenbeck noise. Thus, for the smallest
noise strength η = 0.001, some time averaged MSDs exhibit a
large deviation from the linear scaling ∼� expected from the

trajectory-averaged time averaged MSD. In this case, the long
stalling events, that are of the order of the measurement time
T, lead to the plateaus in δ2(�). Intriguingly, such plateaus
also appear in the presence of the largest noise strength,
η = 0.1. Here, however, they represent the confined diffusion
of the Ornstein-Uhlenbeck noise in which one or few long-
stalling events occur in the CTRW process. For the CTRW
process with more frequent jumps (α = 0.8), the individual
time averaged MSDs follow the expected scaling behavior
with smaller amplitude fluctuations in δ2(�), as now the noise
is relatively stronger.

FIG. 11. Normalized scatter distribution φ(ξ ) as a function of the dimension-
less variable ξ = δ2/〈δ2〉 for the cases of η = 0.001 (black square), 0.005
(red circle), 0.01 (green upper-triangle), and 0.1 (blue down-triangle). (Top)
α = 0.5. (Bottom) α = 0.8. In each panel the results were obtained from
104 runs.
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FIG. 12. Dependence on the overall measurement time T of the normalized
scatter distribution φ(ξ ) for nCTRW process of anomalous exponent α = 0.5
mixed with ηzOU(t) at η = 0.001 and 0.01. The distributions obtained from
the nCTRW process with T = 107 are compared to the distributions from the
one with T = 105.

C. Scatter distribution

Figure 11 illustrates the normalized scatter distribu-
tion φ(ξ ) of the individual time averaged MSDs obtained
from 104 trajectories, as a function of the dimensionless
variable ξ = δ2/〈δ2〉. The overall behavior is qualitatively
consistent with those of the scatter distributions for added
Brownian noise, as shown in Fig. 5. The distribution becomes

increasingly ergodic as the Gaussian noise increases, espe-
cially for the case of the more pronounced subdiffusive pro-
cess (α = 0.5). Here, the finite contribution at ξ = 0 in φ(ξ )
is gradually suppressed and the peak of the distributions is
approaching ξ = 1, as the strength of the noise is increased.

From the time averaged MSD (23) and its aging property
in Fig. 9, it is also expected that the distribution attains ap-
parent ergodic features as the observation time T is increased.
We show this in Fig. 12 where the scatter distributions for the
same nCTRW process simulated up to T = 107 are compared
to the previous ones with T = 105. The general trend is that
φ(ξ ) becomes sharper as T increases. Importantly, this ergodic
effect becomes relevant provided that T is increased to at least
be comparable with the crossover time Tcr ∼ (kKα�/[(1
+ α)η2D])1/(1 − α) defined above. As seen for the case for η

= 0.001, the distribution φ(ξ ) is almost unaffected, except at
ξ ≈ 0 where T � Tcr( ∼ 109). In contrast to this, the distribu-
tion at η = 0.01 is noticeably narrower around ξ = 1 when T
is increased (Tcr ∼ 105).

D. p-variation test

In Fig. 13, we show the variation of the p-sums V
(2/α)
n (t)

and V (2)
n (t) at increasing n for the simulated trajectories x(t)

of Fig. 7. For the smallest noise strength η = 0.001 shown in
Fig. 13, the p-variation test produces the result expected for

FIG. 13. Results of the p-variation test for nCTRW with superimposed Ornstein-Uhlenbeck noise ηzOU(t) for noise strengths η = 0.001, 0.01, and 0.1. The
upper and lower two rows are for α = 0.5 and 0.8. Same color codes as those of Fig. 6.
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the bare CTRW process. In the case of nCTRW with α = 0.8,
this behavior persists in the presence of large noise strengths
up to η = 0.01. This is due to the fact that the bare CTRW pro-
cess xα(t) features large displacements relative to those of the
Ornstein-Uhlenbeck process. By contrast, for α = 0.5 the pro-
files of V (2)

n (t) are mildly affected by the Ornstein-Uhlenbeck
noise. Namely, the plateaus are tilted, with a somewhat larger
slope at higher η, while their overall profiles preserve features
of the monotonic, step-like behavior of the CTRW process
xα(t).

Concurrently, we note that at larger values of η neither
V (2)

n (t) nor V
(2/α)
n (t) shows any indication of CTRW for both

α = 0.5 and 0.8. At these noise strengths, the Ornstein-
Uhlenbeck noise dominates the p-variation results. As ex-
plained in Sec. II B and shown in Fig. 1, in the limit n
→ ∞ the p-sums for the Ornstein-Uhlenbeck noise con-
verge to the results for Brownian noise. Thus, as V

(2/α)
n (t)

rapidly decreases with increasing n in the case of Brown-
ian noise, such a tendency is also present for the Ornstein-
Uhlenbeck noise. Moreover, the spike-like profiles in V (4)

n (t)
at n = 8 for η = 0.1 reflect the property of the Ornstein-
Uhlenbeck noise (see Fig. 1). For p = 2, we find that the
p-sum of the Ornstein-Uhlenbeck noise zOU(t) behaves as
V (2)

n (t) ∼ 2D
k

[1 − exp(− k
2

T
2n )]( 2n

T
)t (see the Appendix). This

result explains why V (2)
n (t) monotonically increases with n

up to n ∼ log (kT)/log 2 ≈ 10, and for larger n it grows as
V (2)

n (t) ∼ 2Dt , as shown in Fig. 13. As in the case of the
above nCTRW in the presence of Brownian noise zB(t), we
find that the p-variation result may be substantially affected
by the added Ornstein-Uhlenbeck noise, and the identification
of the underlying CTRW process becomes impossible.

VI. CONCLUSIONS

We introduced the noisy CTRW process, in which an
ordinary CTRW process is superimposed with Gaussian
noise, representing physically relevant cases when the pure
CTRW motion becomes distorted by a noisy environment.
We investigated how the additional ergodic noise interferes
with the non-ergodic behaviors of the underlying subdiffu-
sive CTRW motion. Considering the two types of Gaussian
noises, Brownian noise and Ornstein-Uhlenbeck noise, we
simulated the resulting nCTRW motion and studied physi-
cal quantities such as the ensemble and time averaged MSDs,
the amplitude scatter distribution, and the behavior of the
p-variation.

The analysis demonstrates that the influence of the Gaus-
sian noise on these statistical quantities is highly specific to
the quantity of concern. Moreover, it depends not only on the
type of the noise and its strength but also on the length of
the trajectory and the time scale. Depending on those spe-
cific conditions, a quantitative analysis of the nCTRW pro-
cess may reveal or mask the underlying non-ergodicity of the
bare CTRW process. Thus, care is needed when we want to
diagnose the stochastic nature of a physical process based on
experimental data. One way to avoid wrong conclusions is to
apply complementary analysis techniques, such as the quan-
tities used herein, or moment ratios, mean maximal excursion

methods, first passage dynamics, or others. The other neces-
sary ingredient is a good physical intuition for the observed
process. It would be also interesting to find analytical expres-
sions for the p-variations, of mixed processes, as those we
have considered here. Our simulations results show that on fi-
nite measurement time the noise is crucial, and could easily
prohibit our basic understanding of the underlying process.

From the present study, an experimentally relevant in-
verse problem can be posed. Can one filter out the Gaus-
sian noise from the experimentally obtained nCTRW pro-
cess? Although obtaining the noise-cleansed profile from a
given nCTRW trajectory may appear infeasible, one could in
principle obtain noise-free contributions in some ensemble-
or time-averaged physical quantities of the nCTRW process,
provided one is able to attain a sufficiently long trajectory. In
the ensemble averaged MSD, the noise survives if the noise
is Brownian motion, while the CTRW process wins if the
noise is of Ornstein-Uhlenbeck type [see Eq. (22)]. This is
of course what we expect, since the MSD of the Brownian
motion increases linearly with time, for CTRW like tα , and
is a constant for Ornstein-Uhlenbeck—hence it is not sur-
prising to see this behavior. In contrast, for the time aver-
aged MSD, the dominant contribution comes always from the
noise [Eqs. (20) and (23)] in the sense that when the mea-
surement time T is very large even the bounded Ornstein-
Uhlenbeck noise wins over. This is due to an aging effect,
the time averaged MSD of the CTRW process decreases with
measurement time T. We thus see that the influence of the
noise on time averages is fundamentally different from that
on ensemble averages. As an example, one can extract almost
solely the noise contribution in the time-averaged MSD (and
not the bare CTRW itself) from a very long nCTRW trajec-
tory. For an ergodic process this corresponds to the almost
identical noise contribution in the ensemble-averaged MSD,
namely, η2〈z2(�)〉 � 〈δ2(�,T → ∞)〉. How to subtract this
noise from real data is left for future work.

The nCTRW process developed herein is a physical ex-
tension of pure CTRW dynamics. We believe that it represents
an important advance in the truthful description of anomalous
diffusion data in thermal microscopic systems, where the en-
vironment is noisy by definition and, for instance, will also
influence molecular processes in biological cells.64 Mathe-
matically, the nCTRW process is quite intuitive, due to the
additivity of the Gaussian noise.

Our present study can naturally be extended to more com-
plicated noise sources, such as FBM, in order to obtain insight
into intracellular anomalous diffusion that shows both CTRW
and FBM behaviors. It is expected that although FBM-like
noise should lead to similar effects on the statistical behavior
of the nCTRW process, the quantitative results will be pro-
foundly different due to the scaling law of the FBM-like noise
〈z2

FBM(t)〉 ∼ tα
′
with exponent 0 < α′ < 2.
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APPENDIX: p-VARIATION OF CTRW SUBDIFFUSION
AND ORNSTEIN-UHLENBECK NOISE

We here discuss the p-variation properties of CTRW sub-
diffusion and the Ornstein-Uhlenbeck noise in some more
detail.

1. CTRW subdiffusion

The subdiffusive CTRW process xα(t) with its PDF gov-
erned by the fractional Fokker-Planck equation (8) can be
described through the subordinated Brownian motion xα(t)
= B(Sα(t)), where B(τ ) defined with the internal time τ is an
ordinary Brownian motion satisfying 〈B(τ )〉 = 0 and 〈B2(τ )〉
= 2Dτ . Here, Sα(t) is the so called inverse subordinator
matching the laboratory time t to the internal time τ . For the
CTRW process xα(t), the p-sum V (2)

n (t) as n grows to infinity
satisfies57

V (2)(t) = 2DSα(t). (A1)

As shown in Fig. 1, Sα(t) has a step-like incremental pro-
file and its jump times represent those for a given realiza-
tion of CTRW process xα(t). On the other hand, the p-sum
V

(2/α)
n (t) (with 0 < α < 1) decreases with increasing n, fi-

nally V (2/α)(t) = 0 at n → ∞.57 This is also shown in the
simulations in Fig. 1.

2. Ornstein-Uhlenbeck noise

The ensemble average of the p-variation sum at finite n
becomes

〈
V (2)

n (t)
〉 ≈ 2D

k

[
1 − exp

(
−k

2

T

2n

)] (
2n

T

)
t, (A2)

neglecting an additional term which becomes negligible for
large T. For small n � log (kT)/log 2, the above p sum simpli-
fies to

〈
V (2)

n (t)
〉 ≈ 2D

k

2n

T
t. (A3)

In this case the linear slope of 〈V (2)(t)〉 increases with n up
to values log (kT)/log 2 ∼ 10 (for the given parameter val-
ues used in our simulation). This is shown in Fig. 1. In the
other case, when n → ∞, the p sum converges to the re-
sult of the Brownian noise 〈V (2)(t)〉 ≈ 2Dt . Hence, for large
n � log (kT)/log 2, 〈V (2)(t)〉 is proportional to t with an n-
independent slope. From the fact that on short-time scales (as
n → ∞) the Ornstein-Uhlenbeck process behaves like a free
Brownian process, it can be inferred that its p-variation results
are identical with those for simple Brownian motion. There-
fore, V (4)(t) is expected to converge to zero as n increases.
This is indeed observed in the simulations result in Fig. 1. We
find that when n is small, the increment of V (4)(t) exhibits
a spike-like profile. This behavior presumably occurs due
to the fact that the quartic moment of the displacement x((j
+ 1)T/[2n]) − x(jT/[2n]) becomes very small when the lag
time T/2n is larger than the relaxation time 1/k of the process
for small n.
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