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We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with
Hurst exponent 0�H�1. From a numerical analysis we demonstrate the exponential distribution of escape
times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and
the particle diffusivity D. We observe different behavior for the subdiffusive �antipersistent� and superdiffusive
�persistent� domains. In particular, we find that the escape becomes increasingly faster for decreasing values of
H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are
shown to support the numerically observed dependencies.

DOI: 10.1103/PhysRevE.81.041119 PACS number�s�: 05.40.Fb, 02.50.Ey

I. INTRODUCTION

Anomalous diffusion is characterized by a deviation from
the classical linear time dependence �x2�t��� t of the mean
squared displacement. Such anomalies range from ultraslow
transport �x2�� log� t as discovered in Sinai diffusion or in
iterated maps �1,2�, up to cubic diffusion �x�t��� t3 in ran-
dom walk processes with correlated jump lengths �3� or for
the relative coordinate of two particles encountered in turbu-
lent Richardson flow �4,5�. Here, we are interested in anoma-
lous diffusion of the power-law type �6,7�

�x2�t�� = 2Dt2H, �1�

where H is the Hurst exponent and D the generalized diffu-
sion coefficient of dimension �D�=cm2 /sec2H. Depending on
the magnitude of H we observe subdiffusion �0�H�1 /2�
or superdiffusion �1 /2�H�1�. The limits H=1 /2 and H
=1 correspond to ordinary Brownian diffusion or ballistic
motion, respectively. For one-particle motion ballistic trans-
port is the upper limit of spreading when the particle has a
finite maximum velocity.

Anomalous diffusion of the power law form Eq. �1� is
observed in a multitude of systems. In particular, subdiffu-
sion was found for the motion of charge carriers in amor-
phous semiconductors �8,9�, the spreading of tracer mol-
ecules in subsurface hydrology �10�, diffusion on random
site percolation clusters �11� as well as the motion of tracers
in the crowded environment of biological cells �12� or in
reconstituted biological systems �13�, among many others.
Examples for superdiffusion include active motion in bio-
logical cells �14�, tracer spreading in layered velocity fields
�15�, turbulent rotating flows �16�, or in bulk mediated sur-
face exchange �17�.

The probabilistic approach to normal diffusion was put
forward by Einstein in his seminal 1905 work �18�, and is
based on three postulates. In brief, these can be formulated as
follows: �i� The motion of a particle is characterized by a
finite correlation time �cor. �ii� Its displacements during the
subsequent time intervals exceeding �cor can be considered
as independent, equally distributed random variables. �iii�
The displacements during these times are characterized by a
finite second moment, and the root mean squared displace-
ment can be associated with the mean free path length. The
violation of each of these three postulates may lead to
anomalous diffusion. Thus, the divergence of the correlation
time is implemented in the continuous time random walk
�CTRW� model; the divergence of the mean free path leads
to Lévy flights; and the correlation between subsequent steps
can be connected either with geometric restrictions �such as
in the diffusion on fractals� or with very slowly decaying
dynamical memory of the system, as it is the case for the
models involving fractional Brownian motion �FBM�. There-
fore, the properties of anomalous diffusion differ strongly
between the three cases discussed: the diffusion is Markov-
ian in the case of Lévy flights and the one of geometrical
restrictions �the correlation between the jump-jump direction
enters only via the actual particle’s position on an inhomo-
geneous structure�. In general, CTRW processes are non-
Markovian in time, but the coupled pairs of waiting time and
jump length form a Markov chain. Due to this property
CTRW processes are often called semi-Markovian. Finally,
the process is genuinely non-Markovian for the case of
FBM.

In the CTRW model �8,19� each jump is characterized by
a variable jump length and waiting time drawn from associ-
ated probability densities. CTRW theory includes �i� subdif-
fusion when the variance of jump lengths is finite but the
waiting times have an infinite characteristic time; �ii� Lévy
flights when the mean waiting time is finite but the jump
length variance diverges; and �iii� Lévy walks in which wait-
ing times and jump lengths are coupled, producing sub-
ballistic superdiffusion with finite variance. The escape over
a potential barrier for subdiffusion and Lévy flights was stud-
ied recently �20–23�.
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The correlations introduced by restricted geometries are
pertinent to many models of diffusion on fractal structures,
known to give rise to anomalous transport �11,24�. The first
passage problems on these structures were considered to
some detail, see e.g., �25,26�.

FBM was originally introduced by Kolmogorov �27� and
reintroduced by Mandelbrot and van Ness �28�. FBM is a
self-similar Gaussian process with stationary increments
�29,30�. The FBM mean squared displacement follows Eq.
�1�, and the Hurst exponent H of the fractional Gaussian
noise varies in the full range 0�H�1. Uncorrelated, regular
Brownian motion corresponds to H=1 /2. For 0�H�1 /2
the prefactor in the noise autocorrelation is negative �see
below�, rendering the associated antipersistent process sub-
diffusive. That means that a step in one direction is likely
followed by a step in the other direction. Conversely, in the
case 1 /2�H�1 the motion is persistent, effecting sub-
ballistic superdiffusion in which successive steps tend to
point in the same direction. FBM is used to model a variety
of processes including monomer diffusion in a polymer chain
�31�, single file diffusion �32�, diffusion of biopolymers in
the crowded environment inside biological cells �33�, long
term storage capacity in reservoirs �34�, climate fluctuations
�35�, econophysics �36�, and teletraffic �37�. However, we
note that one should be cautious while applying FBM, since
the Hurst exponent H�1 /2 itself does not necessarily imply
long time correlations. For the latter, the stationarity of the
increments is of importance, see the discussion in �38�.

Despite its wide use FBM is not completely understood.
Thus the general incorporation of nontrivial boundary condi-
tions is unattained, in particular, the first passage behavior is
solved analytically solely on a semi-infinite domain �39�.
Notably the method of images does not apply to solve
boundary value problems for FBM. Similarly the associated
fractional Langevin equation driven by fractional Gaussian
noise was recently discovered to exhibit a priori unexpected
critical dynamical behavior �40�.

Here, we study the generalization for FBM of the Kram-
ers escape from a potential well across a finite barrier as
sketched in Fig. 1. This problem was initially studied by
Kramers in 1940 �41�, and assumes a key role in the theory
of stochastic processes �42,43�. Noise-driven escape from a
potential well driven by FBM is a relevant problem, for in-
stance, for single file diffusion in external potentials �44�, the
dissociation dynamics of biopolymers from a bound state in
FBM models for particle diffusion under molecular crowding
conditions �33� or bulk chemical reactions of larger particles
under superdense conditions. We note that a similar problem
was treated for correlated Gaussian noise �45� and for frac-
tional Langevin equation motion in the case when the fluc-
tuation dissipation theorem applies �46�. We here study the
important case of external fluctuations, that is, for systems
which do not obey the fluctuation dissipation theorem �47�.

In the regular Kramers theory �41,48,49� for the escape of
a Brownian particle across a potential barrier in the high
barrier limit �V�kB�, where kB� denotes thermal energy,
the probability density of the first escape from the well fol-
lows an exponential decay,

p�t� � exp	−
t

T

 . �2�

This corresponds to the relaxation mode of the lowest eigen-
value �41,48,49�. In Eq. �2� the characteristic escape time T
is proportional to the Arrhenius factor of the barrier height
�V,

T � exp	�V

kB�

 . �3�

In what follows we demonstrate from simulations and ana-
lytical considerations that the exponential decay Eq. �2� is
preserved in FBM processes due to the stationary nature of
FBM, while the activation pattern Eq. �3� becomes explicitly
dependent on the Hurst exponent. This H dependence is dif-
ferent for the antipersistent and persistent cases. Remarkably
slow diffusion leads to fast escape, that is, the lower the
value of H is chosen the faster the escape from the potential
well becomes. This observation is consistent with the first
passage behavior of FBM that is known analytically, and
analyzed numerically in Appendix B.

We first investigate FBM driven Kramers escape by nu-
merical integration of the Langevin equation subject to frac-
tional Gaussian noise in Sec. II. In particular, we analyze the
distribution of escape times and the dependence of the mean
escape time on the Hurst exponent H and the noise strength
D. In Sec. III, we develop an approximate analytical ap-
proach to the barrier crossing for FBM, before drawing our
conclusions in Sec. IV. In Appendixes A–E, we describe the
numerical algorithms used to generate antipersistent and per-
sistent FBM, and we validate in detail that these truthfully
produce FBM. We also briefly discuss the consistency of our
results for the case of a potential well that is finite on both
sides.

II. NUMERICAL ANALYSIS

In this Section we set up the Langevin description of
FBM for external Gaussian noise and present extensive
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FIG. 1. Harmonic potential V�x�=x2 /2 with cutoff at x=�2 used
in the numerical analysis of the FBM Kramers escape. The potential
barrier height is �V=1. Dimensionless units.
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simulations results for the barrier crossing behavior.

A. Langevin equation with fractional Gaussian noise

We employ the overdamped Langevin equation for the
position variable x�t� in the presence of an external potential
V�x�,

dx�t�
dt

= −
1

m�

dV�x�
dx

+ �D	H�t� , �4�

where m is the particle mass, � the friction constant, 	H�t� is
the fractional Gaussian noise, and D is its intensity. The cho-
sen initial condition is x�0�=0. To study the activated escape
from a potential well, in what follows we use an harmonic
potential of the form

V�x� = �a

2
x2, − 
 � x � �2

− 
 , x � �2.

 �5�

with a truncation at positive x=�2, compare Fig. 1. The in-
finite potential jump renders it impossible for a particle to
return inside the potential well and thus corresponds to an
absorbing boundary condition. We note that we compared
our simulations for the potential Eq. �5� to the escape from
an harmonic potential with symmetric truncation,

V�x� =�
− 
 , − 
 � x � − �2

a

2
x2, − �2 � x � �2

− 
 , x � �2,

 �6�

finding qualitative agreement with the results reported herein
with respect to the dependence of the distribution of escape
times and the dependence of the mean escape time on Hurst
exponent and noise strength, see Appendix E.

In continuous time the fractional Gaussian noise 	H�t� is
understood as a derivative of the FBM �28,30�. This is a
stationary Gaussian process with an autocorrelation function
that in the long time limit decays as

�	H�0�	H�t�� � 2H�2H − 1�t2H−2, �7�

for 0�H�1, H�1 /2. Note that in the antipersistent case,
0�H�1 /2, the autocorrelation function of the fractional
Gaussian noise is negative at long times. At H=1 /2 we have
a delta-correlated white noise. In a discrete time approxima-
tion used in numerical simulations below the autocorrelation
function of the noise reads �30�

�	H�0�	H�n�� = ��n + 1�2H − 2n2H + �n − 1�2H� . �8�

The continuum approximation Eq. �7� is obtained from Eq.
�8� in the limit of large n and identifying n→ t. In what
follows in analytical calculations and numerical simulations
we use the probability density function �PDF� of the frac-
tional Gaussian noise


�	H� =
1

�4�
exp	−

	H
2

4

 , �9�

with variance 2.

Replacing x→ �m� /a�H+1x and t→ �m� /a�t we pass to
reduced variables:

dx�t�
dt

= − x + �D	H�t� . �10�

The time-discretized version of Eq. �10� acquires the form

xn+1 − xn = − xn�t + �D�t	H�n� , �11�

where �t is a finite time step.
We applied the methods described in �50,51� for simulat-

ing fractional Gaussian noise with H�1 /2 and H�1 /2, re-
spectively, as detailed in Appendix A. In the simulations the
Hurst index H was varied within the range �0.1, 0.85�,
whereas the noise intensity D covered values from 1/6 to 1/2.
Correspondingly, the escape time varied in a range covering
three orders of magnitude.

B. Numerical results for FBM Kramers escape

In our simulations we follow the motion of the test par-
ticle governed by the discrete Langevin Eq. �11� in the har-
monic potential with one-sided truncation, Eq. �5�. Once the
particle crosses the point x=�2 it is removed, and the next
particle started. This setup is depicted in Fig. 1.

We first focus on the PDF of the first escape time from the
potential well. In Fig. 2 we demonstrate that, in analogy to
the classical case �H=1 /2� the PDF of the first escape time
decays exponentially with time, see Eq. �2�. This exponential
decay is observed nicely in the simulations data over the
entire range of the Hurst exponent. In the double-logarithmic
plot in part �b� of Fig. 2 one can see a common envelope of
the curves for all values of H. Indeed the shoulders of the
individual exponential PDFs are located at points in time
where t=T, i.e., where the value of the PDFs is exactly
1 / �eT�. This is the straight line plotted in Fig. 2, showing
good agreement, with a slight underestimation for persistent
Hurst exponents.

In Fig. 3 we demonstrate that the mean escape time T
follows an exponential behavior as function of the inverse
noise intensity, 1 /D, in analogy to the classical Kramers
case. We observe that in both persistent and antipersistent
cases this functional dependence may be approximated by a
linear fit of the form

ln T�D;H� = a�H� +
b�H�

D
, �12�

where both fitting coefficients a and b are functions of the
Hurst exponent H. These, in turn, show different behavior for
antipersistence and persistence of the motion:

�i� In the persistent case 1 /2�H�1 both coefficients are
linear functions of the Hurst exponent. We found empirically
from best fits that

a�H � 1/2� = a1 + a2H , �13�

b�H � 1/2� = b1 + b2H , �14�

where a1=−1.680, a2=4.869, b1=1.051, and b2=−0.399.
The good quality of this linear description is seen in part �b�
of Fig. 3.
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�ii� Contrasting this behavior, in the antipersistent case the
coefficient a�H� is still well described by a linear H depen-
dence, while b�H� is well represented by a parabolic depen-
dence:

a�H � 1/2� = ã1 + ã2H , �15�

b�H � 1/2� = b̃1 + b̃2H + b̃3H2. �16�

The best fit parameters are determined as ã1=−3.019, ã2

=7.296, b̃1=0.705, b̃2=1.490 and b̃3=−2.281. Again, Fig. 3
demonstrates good agreement with this chosen
H-dependence. In Fig. 4, we show the quality of these fits

�solid curves� on a linear scale. Note the deviations from the
exponential behavior when the noise intensity becomes too
large �in our simulation for values D�1�. In that case the
high barrier limit is violated and the results obtained herein
are no more applicable, in correspondence to regular Brown-
ian barrier crossing behavior.

The general agreement with the law Eq. �12� is excellent,
keeping in mind that the error of the simulations data is of
the magnitude of the points. Remarkably the characteristic
escape time increases from low to high Hurst exponent. In
other words, the less persistent motion shows the faster es-
cape. This observation is consistent throughout our simula-
tions. In particular, this behavior is not qualitatively changed
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FIG. 2. �a� Probability density function �PDF� of the escape time nicely demonstrating the exponential decay given by Eq. �2�. The main
plot depicts the persistent case �H=0.55, 0.65, and 0.75�, while in the inset we show the antipersistent case �H=0.1, 0.2, and 0.3�. Here we
used the following simulations parameters: in the antipersistent case the time increment is �t=0.001, the number of samples Nstat=105, the
number of data points per sample Nmax varied from 213�8.2�103 to 221�2.1�106, and finally the noise strength D=0.25; in the persistent
case we used �t=0.001, Nstat=20000, Nmax=220�106, and D=0.25. �b� PDF of the escape time in a log-log representation. The decay curves
have a common envelope 1 / �et� depicted by the straight gray line, see text.

-1

0

1

2

3

4

5

6

7

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

ln
T

1/D

0.85
0.75
0.65
0.55
0.50
0.40
0.30

0.20

0.10

-3

-2

-1

0

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a,
b

H

a(H)
b(H)

0.86

0.9

0.94

0.1 0.2 0.3 0.4 0.5

b(H)

(b)(a)

FIG. 3. �a� Mean escape time T as function of inverse noise intensity 1 /D in logarithmic scale. The simulations results are shown for
Hurst exponents H=0.85, 0.75, 0.65, 0.55, 0.5, 0.4, 0.3, 0.2, and 0.1 �top to bottom�. The solid lines represent a linear fit. �b� Fitting
coefficients a�H� and b�H� from Eq. �12�. The inset shows b�H� for the antipersistent case at higher resolution. The symbols represent the
values of a and b from the simulations, while the solid lines show the respective fits with Eqs. �13�–�16�. Simulations parameters: in the
antipersistent case we used the time increment �t=0.001, number of samples Nstat=105, and the data points per sample Nmax varied from
213�8.2�103 to 221�2.1�106; in the persistent case �t ranges from 0.01 to 0.001, Nstat=106, and Nmax varied from 213�8.2�103 to
218�2.6�105.

SLIUSARENKO et al. PHYSICAL REVIEW E 81, 041119 �2010�

041119-4



for a parabolic potential of the type Eq. �6� with symmetric
cutoff. An analogous effect of speedup for smaller Hurst ex-
ponent is also found for the first passage behavior of FBM on
a half-line, compare Appendix B.

In Fig. 5, the mean escape time is reanalyzed as a function
of the Hurst exponent. In accordance with the results pre-
sented in Fig. 3, there is a parabolic dependence of lnT ver-
sus H in the antipersistent case �0�H�1 /2�,

ln T = c̃1 + c̃2H + c̃3H2, �17�

where c̃1= ã1+ b̃1 /D, c̃2= ã2+ b̃2 /D, and c̃3= b̃3 /D. In the per-
sistent case 1 /2�H�1 the relation is linear, corresponding
to

ln T = c1 + c2H , �18�

where c1=a1+b1 /D and c2=a2+b2 /D. The agreement with
the fit function is favorable, and the continuation between
antipersistent and persistent cases appears relatively smooth.
The latter supports the good convergence of the simulations
algorithms used in the antipersistent and persistent regimes
�see Appendix A�. At the same time the difference between
the behaviors in the two regimes �persistent versus antiper-
sistent� is quite distinct.

Figure 6 shows an alternative way to represent the behav-
ior from Figs. 3 and 5, namely, in terms of the ratio
k�H� /k�H=1 /2� of the escape rates �that is, the inverse mean
escape times� as function of the deviation �H−1 /2� from nor-
mal diffusion at H=1 /2. The rates increase with decreasing
Hurst exponent, i.e., the less persistent the motion is the
higher becomes the corresponding rate. One can also see the
difference between the parabolic dependence in the antiper-
sistent case and the linear relation for persistent motion.

Finally, in Fig. 7, we explore the distribution of the results
for the mean escape time between different samples of only
60 trajectories. Again we see the increased escape time at
higher Hurst exponent. We also clearly observe that the
variation around the average values increases significantly
for higher Hurst exponent. In particular the noise for the
plotted case H=0.3 is consistently smaller than for the
Brownian limit H=1 /2.

III. ANALYTICAL APPROACH TO THE ESCAPE
FROM A POTENTIAL WELL DRIVEN
BY FRACTIONAL GAUSSIAN NOISE

In this section, we derive analytical results for the escape
behavior driven by fractional Gaussian noise. In particular
we concentrate on the mean escape time and the autocorre-
lation function for FBM in an harmonic potential. We com-
pare the results to the numerical findings from the preceding
section.
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A. Wilemski-Fixmann approximation

The investigation of first passage times for non-
Markovian processes has a long history in mathematical lit-
erature, for instance, see �39,52–54�, and appears in different
fields of science, including chemical physics �42�, polymer
physics �55,56�, and neuroscience �57�. However, no general
theory exists for such processes, and different approxima-
tions are used depending on whether the process is Gaussian
or not, whether its trajectories are differentiable or not, etc.
Our analytical approach to the escape problem considered
herein is based on a special case of the Wilemski-Fixmann
approximation �WFA� �55� used in polymer physics �56�. As
shown in �58� the application of the WFA to a first passage
problem corresponds to a renewal approximation �59,60� in
which, however, the correct Green’s functions of the original
non-renewal processes are used. The WFA is essentially a
first approximation in the perturbative series derived by Lik-
thman and Marques �61�, while higher approximations lead
to quite involved expressions.

Our theoretical approach starts from the relation

G�x,t�x0,0� = ��x − x0���t� + �
0

t

F�x,t�,x0,0�G�x,t�x,t��dt�,

�19�

where G�x , t �x0 ,0� is the conditional probability to find the
particle at position x at time t, provided that it started at x0 at
time t=0. Moreover, F�x , t ,x0 ,0� represents the first passage
time PDF to cross the distance �x−x0� during the time inter-
val t, and G�x , t �x , t�� is the conditional probability to be at x
at time t, provided x was visited earlier at time t�. If the

inequality x0�x holds the �-term can be omitted. For a con-
tinuous Markovian process Eq. �19� is exact. Its meaning is
that a particle, having started at x0 at time 0 and being at a
site x at time t, might have visited x at some time t� before,
departed from x, and returned �59,60�. For the non-
Markovian case Eq. �19� neglects the correlations in the mo-
tion of the particle before and after the first passage through
the point x. Such correlations lead to the dependence of the
return probability �expressed through G�x , t �x , t��� on the
prehistory �58�, and can be taken into account systematically
in higher order approximations involving multipoint distribu-
tion functions �61�. The approximation given by Eq. �19�
may become incorrect in the case of strongly correlated �per-
sistent� processes. In that case, our numerical results still
show exponential first passage time behavior corresponding
to a finite mean first passage time, while the WFA breaks
down, as will be shown below.

To proceed recall that according to Bayes’ formula,
G�x , t �x0 ,0�= P�x , t ;x0 ,0� / P�x0 ,0� and G�x , t �x , t��
= P�x , t ;x , t�� / P�x , t��. Here P�x , t ;x ,0� and P�x , t� are the
corresponding two- and one-point probability densities.
Equation �19� can therefore be rewritten in the form

P�x,t;x0,0� = P�x0,0��
0

t

F�x,t�,x0,0�
P�x,t;x,t��

P�x,t��
dt�.

�20�

Integration with respect to x0 in Eq. �20� leads to the expres-
sion

P�x,t� = �
0

t

F�x,t��
P�x,t;x,t��

P�x,t��
dt�, �21�

where

F�x,t�� = �
−





P�x0,0�F�x,t�,x0,t�dx0. �22�

Thus, the first escape PDF F is obtained as an average over
the initial distribution.

In what follows, we make use of the fact that in our nu-
merical simulations the typical relaxation times for a particle
in an harmonic potential well are much shorter than the typi-
cal mean escape times. Therefore the random process x�t�
can be considered as stationary, that is, P�x , t�= Pst�x� and
P�x , t ;x , t��= P�x ,x , t− t��. Transferring P from the left hand
side to the right of Eq. �21� we find

1 = �
0

t

F�x,t��
P�x,x,t − t��

Pst
2 �x�

dt�. �23�

This relation converts to an algebraic equation after Laplace
transformation,

1

s
= F̃�x,s�

P̃�x,x,s�
Pst

2 �x�
. �24�

Here we express the Laplace transform of a function f�t� as

f̃�s�=�0

f�t�exp�−st�dt. Since P�x ,x , t→
�→Pst

2 �x�, we see
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FIG. 7. �Color online� Results for the mean escape time. Main
graph: for three different values of the Hurst exponents �H=0.3,
0.5, and 0.7� we show the average value and the standard deviation
around that value for different inverse noise intensities 1 /D. Note
that T is evaluated at 1 /D=2,2.5,3. . .. at each H value. In the figure
the results for different H at each given value of 1 /D are slightly
shifted with respect to each other for illustrative purposes. Inset:
values of the escape times for each individual out of 60 trajectories
for H=0.7. The gray line connects the averages. In the simulations
we used the time increment �t=0.001 and the number of points per
trajectory Nmax varied from 211�2�103 to 220�106.
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that P̃�x ,x ,s→0�→Pst
2 �x� /s, and for small s we may expand

P̃�x ,x ,s� in the form

P̃�x,x,s� �
Pst

2 �x�
s

+ A�x� + O�s� , �25�

where we use the abbreviation

A�x� = lim
s→0

�P̃�x,x,s� −
Pst

2 �x�
s

� = �
0




�P�x,x,t� − Pst
2 �x��dt .

�26�

After inserting Eq. �25� into Eq. �24� we get

F̃�x,s� =
Pst

2 �x�

sP̃�x,x,s�
�

Pst
2 �x�

Pst
2 �x� + A�x�s

� 1 −
A�x�
Pst

2 �x�
s + ¯ .

�27�

Thus, with the use of Eq. �26�, we find

T�x� = −
d

ds
F̃�x,s��s=0 =

A�x�
Pst

2 �x�
= �

0


 �P�x,x,t�
Pst

2 �x�
− 1�dt .

�28�

We will use this result below.
Before proceeding two remarks are in order: First, we

note that in the theory developed here we use the ensemble
average over initial values x0, while in the simulations we
use x0=0 for all trajectories. Nevertheless, we can employ
Eq. �27� since typically the relaxation time is much shorter
than the mean escape time and, therefore, the system quickly
converges to the stationary state, which is independent of the
initial condition. And second, when writing Eq. �25� we im-
plicitly assume that the mean escape time exists. This is in
accordance with the numerical observation that the escape
time PDF has the simple exponential form Eq. �2�.

B. Mean escape time for Gaussian processes

To proceed we exploit the Gaussian property of FBM pro-
cesses. We recall the expressions for one- and two-point
Gaussian PDFs, namely,

Pst�x� =
1

�2��2
exp	−

x2

2�2
 , �29�

where �2= �x2�st is the variance in the stationary state of a
particle in an harmonic potential well. Moreover,

P�x,y,t� =
1

2��x�y
�1 − g2�t�

�exp�−
1

2�1 − g2�	 x2

�x
2 +

y2

�y
2 −

2gxy

�x�y

� ,

�30�

where g�t� is the normalized autocorrelation function in the
stationary state,

g�x,y,�� =
�x�t�y�t + ���st

�x�y
. �31�

Thus, within our approximation

P�x,x,t� =
1

2��2�1 − g2
exp�−

x2

�2�1 + g�� , �32�

and we obtain the mean time

T�x� = �
0


 � 1
�1 − g2���

exp� x2

�x2�st

g���
1 + g���� − 1�d� .

�33�

Here, we identified

g��� =
�x�t�x�t + ���st

�x2�st
. �34�

Expressions �x�t�x�t+���st and �x2�st are calculated in Appen-
dix C.

C. Persistent and antipersistent cases

Consider now the asymptotic behavior of the integrand in
expression �33� at �→
, x=�2,

� ¯ � �
�→


�1 +
g2���

2
��1 +

2

�x2�st

g���
1 + g���� − 1 �

2

�x2�st
g��� .

�35�

Since g�����2H−2, the integrand decays slowly; the integral
in Eq. �33� itself converges for H�1 /2 and diverges for H
�1 /2.

Focusing at first on the antipersistent case we notice that
according to Eq. �33� the main contribution comes from the
integrand estimated at g����1, which immediately leads to
�compare Appendix D�

T � exp	 1

�x2�st

 , �36�

representing a generalization of the standard transition-state
arguments to the FBM case. Recalling that for our harmonic
potential, �x2�st=D��2H+1�, we obtain an estimate for the
coefficient b�H� in the empirical formula for the escape time,
Eq. �12�. Namely, we find

b�H� =
1

��2H + 1�
. �37�

Equation �37� provides a surprisingly good approximation to
the behavior of b�H� obtained from the simulations, as
shown in Fig. 8. In particular, approximation Eq. �37� shows
the nontrivial maximum for intermediate H values. Figure 9
shows the values for the mean escape time obtained from our
simulations of the antipersistent process with 0�H�1 /2,
along with the behavior predicted by Eqs. �33� and �34�.

In the persistent case the integral in expression �33� di-
verges. We show that a suitable truncation at some upper
bound �cut leads to a quite good agreement with the behavior
recovered from simulations. Physically such a truncation al-
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ways exists due to the finiteness of the slow power-law decay
of the autocorrelation function of fractional Gaussian noise.
Thus, we would always expect finite mean escape times also
in the persistent range. Because of the slow divergence of the
integral for T, we may expect a weak dependence of the
integral on the cutoff parameter �cut if only it is chosen large
enough. Indeed, we found in our numerical simulations that
the value �cut=18 already gives good agreement with the
numerical simulation, see Fig. 9.

IV. SUMMARY

In this work, we present an extensive analysis of the gen-
eralized Kramers escape from a potential well for a particle
subject to fractional Brownian motion. Specifically we con-

sidered a particle whose motion is governed by the Langevin
equation driven by external fractional Gaussian noise. The
motion we consider is thus not subject to the fluctuation
dissipation theorem. Potential applications for such behavior
may, for instance, include geo- and astrophysical fluctua-
tions, stock market pricing, or teletraffic.

Based on simulations and analytical derivations we
showed that, despite the driving fractional Gaussian noise,
the escape dynamics preserved the classical exponential
shape of the distribution of escape times. Deviations from
the behavior for regular Gaussian white noise are found in
the activation dependence of the mean escape time on the
noise intensity at different values of the Hurst exponent H.

The escape turns out to slow down for increasing value of
the Hurst exponent. Thus in the persistent case 1 /2�H�1
the escape is slower than in the antipersistent case 0�H
�1 /2, and the latter is faster than for ordinary Brownian
motion. This somewhat surprising result is in accordance
with previous results for the first passage time �39�, where
the scaling exponent of the first passage time distribution
decreases for increasing H. We note that this observation is
not restricted to the asymmetrically truncated harmonic po-
tential used in this work, but also occurs for a symmetric
truncation of the harmonic potential at x= ��2, compare the
discussion in Appendix E.

Analyzing the detailed behavior of the mean escape time
we find that the logarithm, log T in the entire simulations
range H=0.1, . . . ,0.85 depends linearly on the inverse noise
intensity, 1 /D. This activation dependence is, thus, preserved
for both antipersistent and persistent cases. Conversely, the
behavior of log T on the Hurst exponent shows a linear de-
pendence in the persistent case, while in the antipersistent
case we find a nonlinear dependence.

We note that fractional Brownian motion is an ergodic
process in the sense that time and ensemble averages coin-
cide, albeit the convergence to ergodicity is algebraically
slow with the measurement time �62�. For sufficiently long
averaging times the dynamic behavior of time and ensemble
averages of individual trajectories should therefore be iden-
tical. This contrasts the behavior for continuous time random
walk processes with diverging characteristic waiting times
�63� or with correlations in waiting times or jump lengths
�3�.

The understanding of fractional Brownian motion in sev-
eral aspects remains formidable. We expect that this work
contributes toward the demystification of this seemingly
simple stochastic process.
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APPENDIX A: DESCRIPTION OF FBM GENERATORS

Here we briefly describe the generators with which we
simulated FBM. It should be noted that the generators pro-
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FIG. 8. Coefficient b�H� occurring in the empirical formula �12�
for the mean escape time. Symbols: Values obtained from best fit.
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FIG. 9. �Color online� Mean escape time T as function of in-
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antipersistent case 0�H�1 /2. For persistent motion 1 /2�H�1
the solid lines represent a fit by Eqs. �33� and �34� based on nu-
merical truncation of the integral in Eq. �33� with cutoff time �cut

=18.
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vide best results for either the antipersistent case 0�H
�1 /2 or for the persistent case 1 /2�H�1.

A fast and precise �see the tests in Appendix B� generator
for fractional Gaussian noise in the antipersistent case is de-
scribed in �50�. In brief, the idea is as follows:

First, we define a function

Rx�n� =
1

2
�1 − �n/Nmax�2H� , �A1�

for 0�n�Nmax, and take Rx�2Nmax−n� for Nmax�n
�2Nmax, where H is the Hurst parameter �0�H�1 /2�, n is
the number of steps corresponding to time in the continuous
time limit, and Nmax is the length of the random sample.
Second, we perform a discrete Fourier transformation of Eq.
�A1�, with Sx�k�=F�Rx�n��.

We then define

X�k� =�
0, k = 0

exp�i�k�	�k��Sx�k� , 0 � k � Nmax

	�k��Sx�k� , k = Nmax

X��2Nmax − k� , Nmax � k � 2Nmax,



�A2�

where the symbol � stands for complex conjugation, �k are
uniform random numbers from �0,2��, and 	�k� are Gauss-
ian random variables with zero mean and variance equal to 2.
All random variables are independent of each other.

Finally, we set y�n�=x�n�−x�0�, where x�n�=F−1�X�k�� is
the inverse Fourier transformation of Eq. �A2�. The quantity
y�n� represents a free �i.e., in absence of an external force�
fractional Brownian trajectory, which is to be differentiated
with respect to time, to obtain fractional Gaussian random
numbers. Since the variance �	2� depends on the number of
steps Nmax, it is normalized such that �	2�=2.

Despite the availability of several exact simulation meth-
ods, for the persistent case we chose an approximate but
efficient simulation method. This generator exploits the spec-
tral properties of fractional Gaussian noise �51�. The method
uses the following steps:

�i� Take white Gaussian noise 	�t�, where t is an integer.
�ii� Calculate the spectral density of this Gaussian noise

and perform a Fourier transformation, S�k�=F�	�t��.
�iii� Introduce correlations multiplying it by 1 /kH−1/2,

where 1 /2�H�1.
�iv� Inverse Fourier transform 	H�t�=F−1�S�k�k1/2−H�, to

obtain approximate fractional Gaussian noise with the index
H.

�v� Normalize the noise.
In Appendix B, we demonstrate that this method reliably

produces FBM.
We note that since we approximate the integral represen-

tation, this creates two types of errors, a “low-frequency”
one due to the truncation of the limit of integration and a
“high-frequency” one caused by replacing the integral by a
sum. By using various tests, we estimated the best discreti-
zation parameters. We used the maximum sample length of
224�1.7�107 steps, the time increment varying within the
interval �0.001, 0.01�.

APPENDIX B: TESTING THE NUMERICAL ALGORITHM

To check our simulations algorithm based on numerical
integration of the Langevin Eq. �11� we performed a number
of tests to validate the FBM we create with the generators
sketched in Appendix A.

First, we calculated the autocorrelation function of the
fractional Gaussian noise. As shown in Fig. 10, the simulated
data show excellent agreement with the analytical result
�solid lines� given by Eq. �8� for discrete time steps.

Second, we calculated the position mean squared dis-
placement

�xH�t�2� = 2Dt2H. �B1�

and two-point correlation function

�xH�t1�xH�t2�� = D�t1
2H + t2

2H − �t1 − t2�2H� . �B2�

of free FBM, and compare with the analytical expressions for
FBM in discrete time n with time increments �t=1,

�xH�n�2� = 2Dn2H, �B3�

�xH�n�xH�1�� = D�1 + n2H − �n − 1�2H� . �B4�

As demonstrated in Figs. 11 and 12, respectively, the agree-
ment is excellent.

Third, solving Eq. �11� we calculated the mean squared
displacement for a particle in an infinite harmonic potential
well, as shown in Fig. 13. The initial condition was x=0, at
the bottom of the potential well. The asymptotic analytical
behaviors are represented by the initial free behavior
�x2�t��� t2H and the terminal saturation value �x2�t��st
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FIG. 10. Absolute value of the autocorrelation function of frac-
tional Gaussian noise for the entire range of the Hurst exponent H
in a log-log scale as function of the number of time steps n. Inset:
autocorrelation functions with the same Hurst indices for small
numbers of steps n on a linear scale. The numerical results are
shown for H=0.10, 0.45, 0.60, and 0.80. The solid lines in the main
graph correspond to the analytical solution �8�. Simulations param-
eters: number of simulated samples Nstat=20 000, each of length
Nmax=213�8.2�103 for the antipersistent case, and 215�3.3
�104 for the persistent case, respectively.
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=D��1+2H� at t→
 �for details, see Appendix C�. This
demonstrates that our generators also produce reliable behav-
ior in an external potential.

Finally, we performed a simulation of a free particle es-
caping from a semi-infinite axis with absorbing boundary
under the influence of fractional Gaussian noise, see Fig. 14.
The observed scaling of the first passage time PDF p�t� com-
pares very favorably with the analytical result from �39�:

p�t� � t−2+H. �B5�

Note that this relation cannot be obtained by the method of
images, despite the fact that FBM is a Gaussian process.
Also note that the slope of this power-law becomes flatter for

increasing Hurst coefficient: the escape is slower for a more
persistent FBM, i.e., a motion whose mean squared displace-
ment grows faster. This a priori surprising behavior is also
seen for the escape from the potential well studied herein.

APPENDIX C: VARIANCE AND AUTOCORRELATION
FUNCTION FOR FBM IN A HARMONIC POTENTIAL

WELL

We now consider FBM in a harmonic potential, as de-
scribed by the Langevin equation �compare with Eq. �10��

dx�t�
dt

= − ax + D1/2	H�t� , �C1�

where we introduce the prefactor a, which allows us to con-
sider the harmonic potential �a=1� and a free FBM �a=0� as
well. The solution of Eq. �C1� with the initial condition x�t
=0�=0 is

x�t� = D1/2�
0

t

e−a�t−t��	H�t��dt�. �C2�

Then, the ACF function

�x�t1�x�t2�� = De−2at�
0

t1

dt��
0

t2

dt�ea�t�+t���	�t��	�t���

= − De−2at�
0

t1

dt��
0

t2

dt�ea�t�+t�� �2

�t� � t�
�t� − t��2H.

�C3�

Now, if t2− t1=�, ��0, after some lengthy calculations we
get Eq. �C4�:

�x�t�x�t + ��� = D�e−a�t+��t2H + e−at�t + ��2H − �2H

−
2a2 − 1

2a�2H + 1�
�t2H+1e−a�2t+��M�2H + 1;2H

+ 2;at� + �t + ��2H+1e−a�2t+��M„2H + 1;2H

+ 2;a�t + ��… − �2H+1e−a�M�2H + 1;2H

+ 2;a��� −
1

2
a−2�H+1��2a2 − 1��ea���„2H

+ 1;a�t + ��… − ��2H + 1;a��� + e−a�
„��2H

+ 1;at� − ��2H + 1�…�� . �C4�

Assuming a=1,

�x�t�x�t + ��� = D�e−�t+��t2H − �2H + e−t�t + ��2H

+
1

2
e−����2H + 1� − ��2H + 1;t�

+
�2H+1

2H + 1
M�2H + 1;2H + 2;���
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FIG. 11. Mean squared displacement for free FBM in log-log
representation. The solid lines show the analytical expression �B3�
while the symbols depict the simulations for different Hurst param-
eters ranging from H=0.1 �lowest curve� to H=0.8 �uppermost
curve�. Here, D was taken to be equal to 1, the time step �t=1,
Nstat=20,000, and Nmax=210�103.
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−
1

2
e−2t−�� t2H+1

2H + 1
M�2H + 1;2H + 2;t�

+
�t + ��2H+1

2H + 1
M�2H + 1;2H + 2;t + ���

+
1

2
e����2H + 1;�� − ��2H + 1;t + ���� .

�C5�

Here, ��a ,b� is the incomplete �-function, and M denotes
the Kummer function �64�. In the stationary state �t→
� the
autocorrelation function Eq. �C5� yields

�x�t�x�t + ���st =
D

2
��e−���2H + 1� + e���2H + 1,���

+
�2H+1e−�

2H + 1
M�2H + 1;2H + 2,�� − �2H� .

�C6�

In order to obtain the variance we take �=0 in Eq. �C5�:

�x2�t�� = D�2t2He−t + ���1 + 2H� − ��1 + 2H,t��

−
t2H+1

2H + 1
e−2tM�2H + 1;2H + 2;t�� .

Now, the stationary variance is

�x2�st = D��2H + 1� . �C7�

Note that at �=0 Eq. �C6� reduces to Eq. �C7�, whereas for
H=1 /2 it gives �x�t�x�t+���st=De−�, the autocorrelation
function of the Ornstein-Uhlenbeck process. Taking the as-
ymptotics of the incomplete �-function and the Kummer
function, one may easily see that �x�t�x�t+���st�2DH�2H
−1��2H−2 at �→
. The autocorrelation function of free FBM
can be naturally obtained by placing a=0 in Eq. �C4�:

�x�t�x�t + ��� = D�t2h + �t + ��2h − �2h� , �C8�

that matches the well-known relation �30�.

APPENDIX D: DERIVATION OF THE ESTIMATE (36)

Inspecting Eq. �33� for the antipersistent case, we first
notice that the main contribution to the integral comes from
the integrand estimated at g����1, corresponding to small
values of �. Estimating the integral Eq. �33� we therefore
neglect the second term in the curly brackets in comparison
to the first term. Moreover, we consider the regime D�1
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Insets: stationary values of the mean squared displacements as functions of H for fixed D=1.0. The points in all graphs represent the
simulations results for the following parameters: time increment �t=0.01, number of samples Nstat=106, and number of steps per sample
Nmax=210�103 for both persistent and antipersistent cases.
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FIG. 14. First passage time PDF of FBM on a semi-infinite axis
with absorbing boundary condition. The solid lines demonstrate the
respective analytical slopes. Parameters in the antipersistent case:
H=0.25, time increment �t=0.001, number of samples Nstat

=100 000 and number of steps per sample Nmax=217�1.3�105. In
the persistent case we used H=0.75, �t=0.001, Nstat=20 000, and
Nmax=213�8.2�103.
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�see Figs. 3 and 4�, which is equivalent to the fact that the
typical relaxation times for a particle in a harmonic potential
well are much smaller than the typical mean escape times.
Since �x2�st=D��2H+1� �see Appendix C�, for the mean es-
cape time Eq. �33� we are dealing with an integral of the
Laplace type �65�,

T � �
0




����exp��S����d� , �D1�

where �=2 / �x2�st�1, ����= �1−g2����−1/2, and S���
=g��� / �1+g����. Here, the function S��� has a maximum at
the lower integration limit �=0 at which g�0�=1. Thus, we
can replace the integral from 0 to 
 by an integral over the
small segment �0;��, and use a small � approximation for the
normalized stationary autocorrelation function �34�, yielding

g��� � 1 −
�2H

��2H + 1�
, �D2�

which stems from the small � expansion of the stationary
autocorrelation function �C6�. This, in turn, produces

S��� � S�0� −
�2H

4��2H + 1�
,

���� � ���2H + 1�
2

�1/2

�−H, �D3�

where S�0�=1 /2. Plugging Eq. �D3� into Eq. �D1� results in
the expression

T � I���exp��S�0�� = I���exp	 1

�x2�st

 , �D4�

where we defined

I��� = ���2H + 1�
2

�1/2�
0

�

�−Hexp�− �
�2H

4��2H + 1��d� .

�D5�

The estimate �36� then follows from Eqs. �D4� and �D5�. The
obtained expression �D4� thereby becomes increasingly ac-
curate for growing � �that is, the smaller D�. Of course, the
integral �D5� is easily evaluated in the limit �→
, where we
can turn the upper limit of integration to infinity. Instead, we
directly evaluate the integral �33� numerically, producing the
behavior shown in Fig. 9, for details see Sec. III C.

APPENDIX E: MEAN ESCAPE TIME AND FIRST ESCAPE
TIME PDF FOR HARMONIC POTENTIAL

TRUNCATED AT BOTH SIDES

In this Appendix we consider the escape problem for an
harmonic potential, but this time we introduce a cutoff on
both sides at x= ��2 �see Eq. �6��. We then investigate the
same dependencies as for the one-sided case. The results are
shown in Figs. 15 and 16.

One can observe that qualitatively there is no difference in
behavior with the case of the one-side truncated potential.
Indeed, the escape is faster when lowering the Hurst param-
eter; the escape time PDF remains exponential and so does
the mean escape time. Again, the mean escape time may be
fitted with the following function:

T�H � 0.5� = exp�ax2 + bx + c� ,

T�H � 0.5� = exp�b�x + c�� , �E1�

where a ,b ,c ,b� ,c� are some constants depending on D.
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FIG. 15. First escape time PDF for harmonic potential truncated
from both sides. Points are the simulation data, solid lines stand for
linear fitting. Simulation details are the following: for the antiper-
sistent case D=0.25, �t=0.001, Nmax=131072, and Nstat=105; for
the persistent case D=0.25, �t=0.002, Nmax=131072, Nstat=105.
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FIG. 16. Mean escape time as function of the Hurst parameter
for harmonic potential truncated from both sides. Points are the
simulation data, solid lines stand for fitting with Eq. �E1�. Simula-
tion details are the following: for both antipersistent and persistent
cases �t varied from 0.001 to 0.005, Nstat=105, Nmax=213–221�8
�103–2�106.

SLIUSARENKO et al. PHYSICAL REVIEW E 81, 041119 �2010�

041119-12



�1� Y. G. Sinai, Theory Probab. Appl. 27, 256 �1982�.
�2� J. Dräger and J. Klafter, Phys. Rev. Lett. 84, 5998 �2000�.
�3� V. Tejedor and R. Metzler, J. Phys. A 43, 082002 �2010�.
�4� L. F. Richardson, Proc. R. Soc. London, Ser. A 110, 709

�1926�.
�5� G. Boffetta and I. M. Sokolov, Phys. Rev. Lett. 88, 094501

�2002�.
�6� J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 �1990�.
�7� R. Metzler and J. Klafter, Phys. Rep. 339, 1 �2000�; J. Phys. A

37, R161 �2004�.
�8� H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 �1975�.
�9� G. Pfister and H. Scher, Adv. Phys. 27, 747 �1978�; Q. Gu, E.

A. Schiff, S. Grebner, F. Wang, and R. Schwarz, Phys. Rev.
Lett. 76, 3196 �1996�.

�10� H. Scher, G. Margolin, R. Metzler, J. Klafter, and B. Berkow-
itz, Geophys. Res. Lett. 29, 1061 �2002�; B. Berkowitz, A.
Cortis, M. Dentz, and H. Scher, Rev. Geophys. 44, RG2003
�2006�.

�11� A. Klemm, R. Metzler, and R. Kimmich, Phys. Rev. E 65,
021112 �2002�; S. Havlin and D. ben-Avraham, Adv. Phys. 36,
695 �1987�.

�12� A. Caspi, R. Granek, and M. Elbaum, Phys. Rev. Lett. 85,
5655 �2000�; I. M. Tolić-Nørrelykke, E. L. Munteanu, G.
Thon, L. Oddershede, and K. Berg-Sørensen, ibid. 93, 078102
�2004�; I. Golding and E. C. Cox, ibid. 96, 098102 �2006�; H.
Yang et al., Science 302, 262 �2003�; M. Weiss, M. Elsner, F.
Kartberg, and T. Nilsson, Biophys. J. 87, 3518 �2004�; G.
Seisenberger et al., Science 294, 1929 �2001�.

�13� I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T.
Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92,
178101 �2004�; W. Pan, L. Filobelo, N. D. Q. Pham, O.
Galkin, V. V. Uzunova, and P. G. Vekilov, ibid. 102, 058101
�2009�; D. Banks and C. Fradin, Biophys. J. 89, 2960 �2005�.

�14� A. Caspi, R. Granek, and M. Elbaum, Phys. Rev. E 66, 011916
�2002�.

�15� G. Matheron and G. de Marsily, Water Resour. Res. 16, 901
�1980�.

�16� T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev.
Lett. 71, 3975 �1993�.

�17� S. Stapf, R. Kimmich, and R.-O. Seitter, Phys. Rev. Lett. 75,
2855 �1995�; O. V. Bychuk and B. O’Shaugnessy, J. Chem.
Phys. 101, 772 �1994�; A. V. Chechkin, I. M. Zaid, M. A.
Lomholt, I. M. Sokolov, and R. Metzler, Phys. Rev. E 79,
040105�R� �2009�.

�18� A. Einstein, Investigations on the Theory of Brownian Move-
ment �Dover, New York, 1956�.

�19� J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A 35,
3081 �1987�.

�20� R. Metzler and J. Klafter, Chem. Phys. Lett. 321, 238 �2000�.
�21� P. D. Ditlevsen, Phys. Rev. E 60, 172 �1999�.
�22� A. V. Chechkin, V. Yu. Gonchar, J. Klafter, and R. Metzler,

Europhys. Lett. 72, 348 �2005�; A. V. Chechkin, O. Yu.
Sliusarenko, R. Metzler, and J. Klafter, Phys. Rev. E 75,
041101 �2007�.

�23� P. Imkeller and I. Pavlyukevich, J. Phys. A 39, L237 �2006�.
�24� S. Havlin and D. ben-Avraham, Adv. Phys. 51 187 �2002�.
�25� L. Acedo and S. B. Yuste, Phys. Rev. E 66, 011110 �2002�.
�26� S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and J.

Klafter, Nature �London� 450, 77 �2007�.
�27� A. N. Kolmogorov, Dokl. Acad. Sci. USSR 26, 115 �1940�.

�28� B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422
�1968�; compare also B. B. Mandelbrot, Phys. Scr. 32, 257
�1985�.

�29� A. Yaglom, Correlation Theory of Stationary and Related Ran-
dom Functions �Springer, Berlin, 1987�.

�30� H. Qian, in Processes with Long-Range Correlations, edited by
G. Rangarajan and M. Z. Ding, Lecture Notes in Physics Vol.
621 �Springer, New York, 2003�, pp. 22–33.

�31� D. Panja, J. Stat Mech.: Theory Exp. �2010�, L02001.
�32� L. Lizana and T. Ambjörnsson, Phys. Rev. Lett. 100, 200601

�2008�; Phys. Rev. E 80, 051103 �2009�.
�33� G. Guigas and M. Weiss, Biophys. J. 94, 90 �2008�; J. Szy-

manski and M. Weiss, Phys. Rev. Lett. 103, 038102 �2009�; V.
Tejedor, O. Bénichou, R. Voituriez, R. Jungmann, F. Simmel,
C. Selhuber, L. Oddershede, and R. Metzler, Biophys J. 98,
1364 �2010�.

�34� H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 400 �1951�.
�35� T. N. Palmer, G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T.

Jung, and M. Leutbecher, Annu. Rev. Earth Planet Sci. 33,
163 �2005�.

�36� I. Simonsen, Physica A 322, 597 �2003�; N. E. Frangos, S. D.
Vrontos, and A. N. Yannacopoulos Appl. Stoch., Models Bus.
Ind. 23, 403 �2007�.

�37� T. Mikosch, S. Rednick, H. Rootzén, and A. Stegemann, Ann.
Appl. Probab. 12, 23 �2002�.

�38� K. E. Bassler, G. H. Gunaratne, and J. L. McCauley, Physica A
369, 343 �2006�; J. L. McCauley, G. H. Gunaratne, and K. E.
Bassler, ibid. 379, 1 �2007�.

�39� M. Ding and W. Yang, Phys. Rev. E 52, 207 �1995�; J. Krug,
H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray, and C.
Sire, ibid. 56, 2702 �1997�; G. M. Molchan, Commun. Math.
Phys. 205, 97 �1999�.

�40� S. Burov and E. Barkai, Phys. Rev. Lett. 100, 070601 �2008�.
�41� H. A. Kramers, Physica A 7, 284 �1940�.
�42� P. Hänggi and P. Jung, Adv. Chem. Phys. 89, 239 �1995�.
�43� P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,

251 �1990�.
�44� E. Barkai and R. Silbey, Phys. Rev. Lett. 102, 050602 �2009�.
�45� A. Romero, J. M. Sancho, and K. Lindenberg, Fluct. Noise

Lett. 2, L79 �2002�.
�46� I. Goychuk and P. Hänggi, Phys. Rev. Lett. 99, 200601 �2007�;

compare also I. Goychuk, Phys. Rev. E 80, 046125 �2009�.
�47� Yu. L. Klimontovich, Turbulent Motion and the Structure of

Chaos: A New Approach to the Statistical Theory of Open
Systems �Kluwer, Dordrecht, The Netherlands, 1992�.

�48� S. Chandrasekhar, Rev. Mod. Phys. 15, 1 �1943�.
�49� H. Risken, The Fokker-Planck Equation �Springer-Verlag, Ber-

lin, 1989�.
�50� B. S. Lowen, Methodol. Comput. Appl. Probab. 1, 445 �1999�.
�51� A. V. Chechkin and V. Yu. Gonchar, Chaos, Solitons Fractals

12, 391 �2001�.
�52� D. Slepian, Bell Syst. Tech. J. 41, 463 �1962�.
�53� S. O. Rice, Bell Syst. Tech. J. 23, 282 �1944�; 24, 46 �1945�;

in Noise and Stochastic Processes, edited by N. Wax �Dover,
New York, 1954�.

�54� R. L. Stratonovich, Topics in the Theory of Random Noise
�Gordon and Breach, New York, 1967�, Vol. II.

�55� G. Wilemski and M. Fixman, J. Chem. Phys. 60, 866 �1974�;
60, 878 �1974�.

�56� A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72,

KRAMERS-LIKE ESCAPE DRIVEN BY FRACTIONAL … PHYSICAL REVIEW E 81, 041119 �2010�

041119-13

http://dx.doi.org/10.1137/1127028
http://dx.doi.org/10.1103/PhysRevLett.84.5998
http://dx.doi.org/10.1088/1751-8113/43/8/082002
http://dx.doi.org/10.1098/rspa.1926.0043
http://dx.doi.org/10.1098/rspa.1926.0043
http://dx.doi.org/10.1103/PhysRevLett.88.094501
http://dx.doi.org/10.1103/PhysRevLett.88.094501
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1080/00018737800101474
http://dx.doi.org/10.1103/PhysRevLett.76.3196
http://dx.doi.org/10.1103/PhysRevLett.76.3196
http://dx.doi.org/10.1029/2001GL014123
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1103/PhysRevE.65.021112
http://dx.doi.org/10.1103/PhysRevE.65.021112
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1103/PhysRevLett.85.5655
http://dx.doi.org/10.1103/PhysRevLett.85.5655
http://dx.doi.org/10.1103/PhysRevLett.93.078102
http://dx.doi.org/10.1103/PhysRevLett.93.078102
http://dx.doi.org/10.1103/PhysRevLett.96.098102
http://dx.doi.org/10.1126/science.1086911
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1126/science.1064103
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.102.058101
http://dx.doi.org/10.1103/PhysRevLett.102.058101
http://dx.doi.org/10.1529/biophysj.104.051078
http://dx.doi.org/10.1103/PhysRevE.66.011916
http://dx.doi.org/10.1103/PhysRevE.66.011916
http://dx.doi.org/10.1029/WR016i005p00901
http://dx.doi.org/10.1029/WR016i005p00901
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.75.2855
http://dx.doi.org/10.1103/PhysRevLett.75.2855
http://dx.doi.org/10.1063/1.468132
http://dx.doi.org/10.1063/1.468132
http://dx.doi.org/10.1103/PhysRevE.79.040105
http://dx.doi.org/10.1103/PhysRevE.79.040105
http://dx.doi.org/10.1103/PhysRevA.35.3081
http://dx.doi.org/10.1103/PhysRevA.35.3081
http://dx.doi.org/10.1016/S0009-2614(00)00374-2
http://dx.doi.org/10.1103/PhysRevE.60.172
http://dx.doi.org/10.1209/epl/i2005-10265-1
http://dx.doi.org/10.1103/PhysRevE.75.041101
http://dx.doi.org/10.1103/PhysRevE.75.041101
http://dx.doi.org/10.1088/0305-4470/39/15/L01
http://dx.doi.org/10.1080/00018730110116353
http://dx.doi.org/10.1103/PhysRevE.66.011110
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1088/0031-8949/32/4/001
http://dx.doi.org/10.1088/0031-8949/32/4/001
http://dx.doi.org/10.1088/1742-5468/2010/02/L02001
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1103/PhysRevE.80.051103
http://dx.doi.org/10.1529/biophysj.107.117044
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1146/annurev.earth.33.092203.122552
http://dx.doi.org/10.1146/annurev.earth.33.092203.122552
http://dx.doi.org/10.1016/S0378-4371(02)01938-6
http://dx.doi.org/10.1002/asmb.680
http://dx.doi.org/10.1002/asmb.680
http://dx.doi.org/10.1214/aoap/1015961155
http://dx.doi.org/10.1214/aoap/1015961155
http://dx.doi.org/10.1016/j.physa.2006.01.081
http://dx.doi.org/10.1016/j.physa.2006.01.081
http://dx.doi.org/10.1016/j.physa.2006.12.028
http://dx.doi.org/10.1103/PhysRevE.52.207
http://dx.doi.org/10.1103/PhysRevE.56.2702
http://dx.doi.org/10.1007/s002200050669
http://dx.doi.org/10.1007/s002200050669
http://dx.doi.org/10.1103/PhysRevLett.100.070601
http://dx.doi.org/10.1002/9780470141489.ch4
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/PhysRevLett.102.050602
http://dx.doi.org/10.1142/S0219477502000658
http://dx.doi.org/10.1142/S0219477502000658
http://dx.doi.org/10.1103/PhysRevLett.99.200601
http://dx.doi.org/10.1103/PhysRevE.80.046125
http://dx.doi.org/10.1103/RevModPhys.15.1
http://dx.doi.org/10.1023/A:1010027211901
http://dx.doi.org/10.1016/S0960-0779(99)00183-6
http://dx.doi.org/10.1016/S0960-0779(99)00183-6
http://dx.doi.org/10.1063/1.1681162
http://dx.doi.org/10.1063/1.439715


4350 �1980�.
�57� T. Verechtchaguina, I. M. Sokolov, and L. Schimansky-Geier,

Phys. Rev. E 73, 031108 �2006�.
�58� I. M. Sokolov, Phys. Rev. Lett. 90, 080601 �2003�.
�59� S. Redner, A Guide to First Passage Processes �Cambridge

University Press, Cambridge, UK, 2001�.
�60� B. D. Hughes, Random Walks and Random Environments. Vol.

1: Random Walks �Clarendon, Oxford, UK, 1995� Chap. 3.2.
�61� A. E. Likthman and C. M. Marques, Europhys. Lett. 75, 971

�2006�.
�62� W. H. Deng and E. Barkai, Phys. Rev. E 79, 011112 �2009�;

J.-H. Jeon and R. Metzler, ibid. 81, 021103 �2010�.

�63� A. Lubelski, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett.
100, 250602 �2008�; Y. He, S. Burov, R. Metzler, and E. Bar-
kai, ibid. 101, 058101 �2008�; R. Metzler, V. Tejedor, J.-H.
Jeon, Y. He, W. Deng, S. Burov, and E. Barkai, Acta Phys. Pol.
B 40, 1315 �2009�; T. Neusius, I. M. Sokolov, and J. C. Smith,
Phys. Rev. E 80, 011109 �2009�; S. Burov, R. Metzler, and E.
Barkai, e-print arXiv:1003.3182.

�64� M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions �National Bureau of Standards, Washington, D.C.,
1972�.

�65� F. W. J. Olver, Asymptotics and Special Functions �Academic,
New York, 1974�.

SLIUSARENKO et al. PHYSICAL REVIEW E 81, 041119 �2010�

041119-14

http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1103/PhysRevE.73.031108
http://dx.doi.org/10.1103/PhysRevLett.90.080601
http://dx.doi.org/10.1209/epl/i2006-10206-6
http://dx.doi.org/10.1209/epl/i2006-10206-6
http://dx.doi.org/10.1103/PhysRevE.79.011112
http://dx.doi.org/10.1103/PhysRevE.81.021103
http://dx.doi.org/10.1103/PhysRevLett.100.250602
http://dx.doi.org/10.1103/PhysRevLett.100.250602
http://dx.doi.org/10.1103/PhysRevLett.101.058101
http://dx.doi.org/10.1103/PhysRevE.80.011109
http://arXiv.org/abs/arXiv:1003.3182

