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Abstract – We investigate the dynamics of polymer translocation through nanopores under
external driving by 3D Langevin Dynamics simulations, focusing on the scaling of the average
translocation time τ vs. the length of the polymer, τ ∼Nα. For slow translocation, i.e., under
low driving force and/or high friction, we find α≈ 1+ ν ≈ 1.588, where ν denotes the Flory
exponent. In contrast, α≈ 1.37 is observed for fast translocation due to the highly deformed chain
conformation on the trans side, reflecting a pronounced non-equilibrium situation. The dependence
of the translocation time on the driving force is given by τ ∼ F−1 and τ ∼ F−0.80 for slow and fast
translocation, respectively. These results clarify the controversy on the magnitude of the scaling
exponent α for driven translocation.

Copyright c© EPLA, 2009

Introduction. – The passage of a polymer through
a nanopore is essential for numerous biological processes
such as DNA and RNA translocation across nuclear pores,
protein transport through membrane channels, or virus
injection into cells [1]. (Bio)polymer translocation is also
at the heart of various potential technology applica-
tions, for instance, rapid DNA sequencing, gene therapy,
or controlled drug delivery [2]. A translocating polymer
has to overcome an entropic barrier. In biological cells,
biopolymers are driven through pores by transmembrane
potentials, chemical potential gradients due to binding
proteins, active pulling by polymerase, or entropic pres-
sure (virus ejection) [1]. From both the basic physics as
well as a technology design perspective, an important
measure is the scaling of the average translocation time
τ with the polymer length N , τ ∼Nα, and the value of
the corresponding scaling exponent α.
Most translocation experiments are carried out under

an applied electric field across the pore. We focus here on
this particular type of driven translocation. In experiments

(a)E-mail: luokaifu@gmail.com

with α-hemolysin pores of inner diameter 2 nm a linear
behavior of τ ∼N (α= 1) was observed [3,4], while an
exponent α= 1.27 was obtained for double-stranded DNA
translocation through a solid-state nanopore of inner
diameter 10 nm [5]. Recently the voltage-driven translo-
cation of individual DNA molecules through solid-state
nanopores of diameters 2.7 . . . 5 nm revealed that τ∼N1.40

for DNA molecules in the range 150–3500 base pairs [6].
Inspired by these experiments, a number of recent theo-

ries and simulations on the translocation dynamics have
been presented. Standard Kramers analysis of diffusion
across an equilibrium entropic barrier yields τ ∼N2 for
unbiased translocation and τ ∼N under external driving
(assuming friction to be N -independent) [7,8]. However,
as noted in ref. [9] the quadratic scaling behavior in the
unbiased case cannot be correct for a self-avoiding poly-
mer, as the translocation time would be shorter than the
Rouse equilibration time scaling like τR ∼N

1+2ν , involv-
ing the Flory exponent ν (ν = 0.588 in 3D, ν = 0.75 in
2D) [10]. This finding renders the concept of equilibrium
entropy and the ensuing picture of entropic barrier cross-
ing inappropriate for translocation dynamics. Numerically,
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it was shown that for large N , τ ∼N1+2ν , i.e., the translo-
cation time scales in the same way as the equilibration
time, but with a much larger prefactor [9]. This result
was recently corroborated by extensive numerical simu-
lations based on the Fluctuating Bond (FB) [11] and
Langevin Dynamics (LD) models with the bead-spring
approach [12–14]. For driven translocation, the deviation
from equilibrium is expected to be even more pronounced,
and the equilibrium entropic barrier is less relevant for
the translocation dynamics. For this case, a lower bound
τ ∼N1+ν was estimated for the translocation time [15].
Lattice Monte Carlo (MC) simulations of self-avoiding
chains in 2D revealed α≈ 1.5 [15], which is smaller than
1+ ν = 1.75, a difference attributed to finite-size effects.
However, additional simulation studies found a crossover
from τ ∼N1.46±0.01 ≈N2ν for relatively short polymers to
τ ∼N1.70±0.03 ≈N1+ν for longer chains (N > 200) using
FB [16] and LD [12,17] models in 2D. Increasing the fric-
tion, the crossover vanished and only exponent 1+ ν was
observed [12]. However, the crossover is absent in 3D for
quite long chains (N ∼ 800) and α≈ 1.40 is observed using
both LD [18] and GROMACS molecular dynamics with
LD thermostats [19] simulations. Lehtola et al. [20] find
approximately the same exponent of about 1.40 based on
LD simulations, however, their exponent increases with
increasing force, which cannot hold asymptotically. More-
over, Gauthier and Slater [21] reported τ ∼N1+ν using an
exact numerical method valid at low bias.
Recently, however, alternative scaling scenarios have

been presented in refs. [22,23] that contradict above
results. These two views disagree with each other [24].
To resolve the apparent discrepancy on the value of α
for driven translocation, we here report results on the
behavior of τ as a function of N from high-accuracy LD
simulations in 3D. As in the above-mentioned studies, we
also neglect hydrodynamics effects as well as polymer-pore
interactions [25]. We find that there exists two limiting
regimes, corresponding to slow and fast translocation,
respectively. The slow translocation case is realized for
low driving forces and/or high friction, and in this regime
α≈ 1+ ν. In the opposite limit of fast translocation for
high driving forces and/or low friction, the corresponding
scaling exponent is given by α≈ 1.37. As we will argue
below, the difference between the scaling exponents for
these two regimes can be ascribed to the highly deformed
chain conformation during fast translocation, reflecting a
pronounced non-equilibrium situation. Our results clarify
the controversy on the value of α for driven translocation.

Model and method. – In our simulations, the poly-
mer chains are modeled as bead-spring chains of Lennard-
Jones (LJ) particles with the Finite Extension Nonlinear
Elastic (FENE) potential. Excluded-volume interaction
between monomers is modeled by a short range repulsive
LJ potential: ULJ(r) = 4ε[(

σ
r )
12
− (σr )

6
] + ε for r� 21/6σ,

and 0 for r > 21/6σ. Here, σ is the monomer diameter
and ε is the potential depth. The connectivity between

Fig. 1: (Colour on-line) Schematic representation of our simu-
lation system. The wall consists in a single layer of beads while
the pore itself is formed by eight particles with their centers
equally distributed on a circle of diameter 3σ. Therefore, the
actual pore diameter is 2σ.

neighboring monomers is modeled as a FENE spring with
UFENE(r) =−

1
2kR

2
0 ln(1− r

2/R20), where r is the distance
between consecutive monomers, k the spring constant, and
R0 the maximum allowed separation between connected
monomers. The wall (“membrane”) carrying the pore is
composed of particles of diameter σ. The wall thickness
is σ. The nanopore consists of eight particles with their
centers equally distributed on a circle of diameter 3σ, see
fig. 1. Therefore, the actual pore diameter is 2σ. Between
all monomer-wall particle pairs, there exists the same short
range repulsive LJ interaction as described above.
In LD simulations each monomer is subjected to conser-

vative, frictional, and random forces: mr̈i =−∇(ULJ +
UFENE)− ξṙi+Fext+F

R
i [26], where m is the monomer

mass, ξ the friction coefficient, and FRi the random force,
that satisfies the fluctuation-dissipation theorem. The ex-
ternal force is expressed as Fext = F x̂, where F is the
external force strength exerted on the monomers in the
pore, and x̂ is a unit vector in the direction along the pore
axis. In the present work, we use the LJ parameters ε
and σ, and the monomer mass m to fix the energy, length
and mass scales. This sets the time scale tLJ = (mσ

2/ε)1/2.
The dimensionless parameters in our simulations are R0 =
2, k= 7, kBT = 1.2 and ξ = 0.7, unless otherwise stated.
The Langevin equation is integrated in 3D by a method
described in ref. [27]. Initially, the first monomer of the
chain is placed in the entrance of the pore, while the
remaining monomers evolve in the Langevin thermostat
to obtain an equilibrium configuration. The translocation
time is defined as the time interval between the entrance
of the first segment into the pore and the exit of the last
segment. Typically, we average our data over 1000 inde-
pendent runs.
We note that in our model hydrodynamic interactions

and the polymer-pore interactions are neglected. Regard-
ing the issue of hydrodynamics, recent Molecular Dynam-
ics [28] and Lattice Boltzmann [29,30] results show that
hydrodynamics is screened out in a narrow pore, which
is the case studied here as well as in the experiments.
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Fig. 2: (Colour on-line) Translocation time τ vs. chain length
N for different driving forces F and friction coefficients ξ. For
fast translocation (low driving force or high friction) α≈ 1.37;
for slow translocation α≈ 1+ ν.

In ref. [31], however, minor increases of scaling exponents
with increasing driving force are obtained in the presence
of hydrodynamic interactions. Recently, we have used LD
simulations to investigate the influence of an attractive
component of polymer-pore interactions on the transloca-
tion dynamics [25]. We found that with increasing strength
of the attractive interaction, the histogram for the translo-
cation time τ shows a transition from a Gaussian distribu-
tion to a long-tailed distribution corresponding to thermal
activation over a free-energy barrier. In addition, a strong
attractive polymer-pore interaction can directly affect the
effective scaling exponents of τ both with N and with
the applied voltage, which provides a possible explanation
for the different experimental findings on these physical
quantities. However, our main focus here is to arrive at a
detailed understanding of the translocation dynamics for
a purely repulsive pore, and to compare with the results in
refs. [22,23] to settle the controversies regarding the scal-
ing behavior of translocation time versus the length of the
polymer. Hence, the attractive part of the polymer-pore
interaction is left out in this study.

Results and discussion. – As defined above, our
pore length is σ and the pore diameter is 2σ. Previous
studies [16] showed that for longer pores there is no
obvious power-law scaling for relatively short chains. This
may be the reason for a linear dependence reported in
ref. [32] where the pore length is 5σ with chain length
N < 80 and in ref. [33] where the pore length is 12σ with
chain length N < 100. Various heuristic scaling arguments
for τ have been presented for short pores, e.g., in refs.
[15,16,22,23,34] and will be compared to our numerical
results below.
The translocation time as a function of the polymer

length is plotted in fig. 2. One of the main features is
that α depends significantly on both driving force and
friction. For stronger driving forces (F = 10.0 and 5.0)

and lower friction (ξ = 0.7), we find α= 1.37± 0.02 and
α= 1.37± 0.05, which are in agreement with previous
results [18,19,35] and the recent experimental findings for
individual short DNA molecules in the range 150–3500 bps
through solid-state nanopores [6]. However, decreasing F
or increasing ξ, we observe α= 1.58± 0.03, 1.51± 0.01 and

1.52± 0.01 for F = 0.5 and ξ = 0.7, F = 2.5 and ξ = 3.0,
and F = 5.0 and ξ = 3.0, respectively. These exponents
are in good agreement, not only with the prediction
1+ ν from refs. [15,34], but also with the results from
the exact numerical method reported in ref. [21] for low
fields, as well as with our previous 2D simulations for
relatively long polymers [12,16,17]. These observations
demonstrate that there exist two limiting dynamic regimes
as demonstrated in fig. 2: slow and fast translocation.
For slow translocation, α≈ 1+ ν, while α≈ 1.37 for fast
translocation.
In the scaling arguments presented in ref. [15], an

essential assumption is that the chain is not severely
deformed during translocation, and in particular the
chain configuration of the already translocated part of
the chain is close to equilibrium. For slow translocation,
these assumptions are satisfied. Thus, it is not surprising
that the predicted exponent 1+ ν is observed in this
regime, in contrast to the fast dynamics regime claimed
in ref. [20]. Conversely, for fast translocation the chain
is highly deformed and the translocation dynamics is
different. In our previous 2D simulations based on FB [16]
and LD [12,17], a crossover from τ ∼N2ν for relatively

short polymers (N < 200) to τ ∼N1+ν for longer chains

was found under a stronger driving force F = 5 and friction
ξ = 0.7. Increasing N also slows down the translocation
dynamics and thus the system changes from the fast to
the slow translocation regime. However, for the same F
and ξ values we failed to observe a similar crossover for
N = 40∼ 800 in 3D [19], possibly due to the fact that the
value of N for the crossover is at a much higher value
as compared to the 2D situation. To actually observe the
crossover, an alternative choice is to lower the driving force
or increase the friction.
Based on the fractional Fokker-Planck equation involv-

ing long-range memory effects (compare ref. [36]), the scal-
ing α= 2ν+1− γ1 was obtained, such that α= 1.55 in 2D
and 1.5 in 3D; here γ1 (≈0.945 2D and ≈0.68 in 3D) is
the critical surface exponent [23]. The MC simulations in
ref. [23] were carried out for weak driving forces, producing
τ ∼N1.5/F in 3D, in excellent agreement with the value

τ ∼N1+ν/F for slow translocation processes. Moreover,

using linear response theory with memory effects [24],
Vocks et al. [22] came up with an alternative estimate

τ ∼N
1+2ν

1+ν for 3D, which means α= 1.37 in 3D. Their α
in 3D is consistent with our numerical data for fast translo-
cation. However, their estimate fails to capture the scaling
exponent for slow translocation.
For the driven translocation experiments with a voltage

applied across the pore, the force F acts only on the
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Table 1: Summary of numerical results. Here, F is the driving force, ξ the friction coefficient, α the scaling exponent of
translocation time τ as a function of the chain length N , δ the scaling exponent of translocation velocity as a function of N , and
β the scaling exponent of the translocation coordinate s as a function of time. These results clearly demonstrate two regimes.

F ξ F/ξ α (τ ∼Nα) δ (v∼Nδ) β (〈s(t)〉 ∼ tβ) αβ

Fast translocation 10.0 0.7 14.28 1.37± 0.02 −0.79± 0.01 0.84± 0.01 1.15
5.0 0.7 7.14 1.37± 0.05 −0.79± 0.02 0.85± 0.01 1.16

Slow translocation 5.0 3.0 1.67 1.52± 0.01 −0.94± 0.01 0.71± 0.01 1.08
2.5 3.0 0.83 1.51± 0.02 −0.95± 0.02 0.69± 0.01 1.04
0.5 0.7 0.71 1.58± 0.03 −1.01± 0.02 0.64± 0.01 1.01
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10
–1

10
0

Fig. 3: (Colour on-line) Scaling of translocation velocity with
chain length.

few monomers inside the pore. As a consequence, it was
argued [15] that the center of mass of polymer should
move with a velocity v∼ F/N . Thus the lower bound for
the translocation time of an unhindered polymer is the
time to move through a distance Rg (radius of gyration
of the polymer), giving rise to the scaling τ ∼Rg/v∼
N1+ν/F . Figure 3 shows the translocation velocity v as
function of the polymer length for different driving forces
and friction coefficients, v∼Nδ. Here v is the average
velocity with respect to the last monomer (for details
see ref. [16]), and we checked that the corresponding
v of the center of mass scales in the same way. For
slow translocation, we find δ=−1.01± 0.02 for F = 0.5
and ξ = 0.7, δ=−0.95± 0.02 for F = 2.5 and ξ = 3.0, and
δ=−0.94± 0.01 for F = 5.0 and ξ = 3.0, which are in
good agreement with v∼N−1. For fast translocation the
velocity decreases less rapidly with N : δ=−0.79± 0.01 for
F = 10.0 and ξ = 0.7 and δ=−0.79± 0.02 for F = 5.0 and
ξ = 0.7, as observed in ref. [18]. Based on the values of
F/ξ we roughly distinguish the slow and fast regimes, see
table 1. For fast translocation with ξ = 0.7, F/ξ = 14.28
for F = 10.0 and F/ξ = 7.14 for F = 5.0, which are much
higher than those for the slow translocation where F/ξ =
0.71 for F = 0.5 and ξ = 0.7, F/ξ = 0.83 for F = 2.5 and
ξ = 3.0, and F/ξ = 1.67 for F = 5.0 and ξ = 3.0.

1 10

10
2

10
3

Fig. 4: Translocation time τ vs. driving force at ξ = 0.7. The
solid line shows the empirical fitting function for the data, as
discussed in the text.

Following the change of the scaling exponent α, the scal-
ing of the average velocity changes from v∼N−0.79 for fast
translocation, to v∼N−1 in the case of slow transloca-
tion. Furthermore, we have also studied how the translo-
cation time varies as a function of the driving force for
ξ = 0.7 and N = 128 (fig. 4). As long as F � 2 we observe
τ ∼ 1/F , before crossing over to τ ∼ F−0.80 for strong
driving. The data can be fitted with an empirical func-
tion τ = 1550F−1[1+ (F/2.5)8]1/40, yielding the details of
the crossover from the slow translocation (weak force) to
the fast translocation (strong force) regime for this case.
The seemingly high exponent 8 in the empirical function
is necessary to account for the relatively fast turnover
between the scaling τ ∼ F−1 at low force and the behavior
τ ∼ F−0.8 at high force. The difference of the translocation
dynamics in the two regimes can be understood by inspect-
ing the polymer configurations during the translocation
process. For faster translocation, only part of the chain on
the cis side can respond immediately, while the remaining
part near the chain end does not feel the force yet. As
a result, a part of the chain on the cis side is deformed
to a trumpet and even stem-and-flower shaped [35], while
the translocated portion on the trans side has a compact
spherical shape, as it does not have time to diffuse away
from the pore exit, see fig. 5. With increasing time, the
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Fig. 5: (Colour on-line) Typical chain conformation during fast
translocation for N = 128, ξ = 0.7, and F = 5.0. 3D conforma-
tions are projected onto the XY plane. Black: early stage. Red:
later stage.

10 100

1

10

Fig. 6: (Colour on-line) The radius of gyration (Rg) before
translocation and at the moment just after the fast transloca-
tion (ξ = 0.7 and F = 5.0), and the slow translocation (ξ = 0.7
and F = 0.5).

tension propagates along the chain, which changes the
chain conformation progressively. Thus, the chain cannot
achieve a steady state with average velocity v∼N−1 even
in the late stage of the translocation process. Figure 6
shows the radius of gyration (Rg) at the moment just after
translocation. For fast translocation, this obeys the scaling
behavior Rg ∼N

0.51, significantly different from the equi-
librium scaling of Rg ∼N

0.6, indicating a non-equilibrium
compactification of the chain immediately after transloca-
tion. On the other hand, the corresponding scaling behav-
ior for the chain after slow translocation is approximately
the same as the chain in equilibrium.
We note that in a recent theoretical study the effect

of a trumpet shape of the chain on the cis side, on the
translocation dynamics was found to cause a breakdown

1 10 100 1000

10
0

10
1

10
2

Fig. 7: (Colour on-line) The translocation coordinate
(s-coordinate) as a function of time for different driving forces
and friction coefficients, for N = 64.

of the τ ∼ 1/F scaling [35]. However, this theory neglects
effects due to the compacted chain structure on the
trans side.
We also checked the translocation coordinate 〈s(t)〉 ∼ tβ

for N = 64 for different F and ξ, see fig. 7 and table 1.
For fast translocation with ξ = 0.7, we find β = 0.84 and
0.85 for F = 10.0 and 5.0, respectively. However, for slow
translocation β = 0.71 for F = 5.0 and ξ = 3.0, β = 0.69 for
F = 2.5 and ξ = 3.0, and β = 0.64 for F = 0.5 and ξ = 0.7.
Different β values for fast and slow translocation processes
demonstrate the existence of different dynamic regimes.
The definition 〈s(t)〉 ∼ tβ implies that N ∼ τβ . Compared
with τ ∼Nα, one obtains αβ = 1. For F = 0.5 and ξ = 0.7,
αβ = 1.01≈ 1, which indicates that non-equilibrium effect
does not seem to be severe. However, αβ = 1.16 for F = 5.0
and ξ = 0.7 indicating a breakdown of “simple” scaling due
to highly non-equilibrium effect.

Conclusions. – We have investigated the dynamics of
driven polymer translocation through nanopores by 3D
Langevin dynamics simulations, focusing on the scaling
of the average translocation time τ as a function of the
polymer length N . For slow translocation, i.e., under low
driving forces and/or high friction, we find τ ∼Nα with
α≈ 1+ ν. In the opposite case, we obtain α≈ 1.37. As a
function of the driving force F , the dependence τ ∼ 1/F
and τ ∼ F−0.80 are obtained, respectively, for slow and fast
translocation. The different behavior in the two regimes
can be understood from analysis of the chain conforma-
tions during the translocation process. In the slow translo-
cation case, the configurations at all times are close to the
equilibrium case while for the fast translocation regime,
there exist highly deformed, unrelaxed chain conforma-
tions throughout the translocation process. These results
clarify the controversy on the value of α for driven translo-
cation in the existing literature.
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