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We study a Michaelis-Menten reaction for a single two-state enzyme molecule, whose transition rates
between the two conformations are modulated by an harmonically oscillating external force. In particular,
we obtain a range of optimal driving frequencies for changing the conformation of the enzyme, thereby
controlling the enzymatic activity (i.e., product formation). This analysis demonstrates that it is, in
principle, possible to obtain information about particular rates within the kinetic scheme.
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Recent advances in single molecule spectroscopy have
made it possible to follow the catalytic activity of individ-
ual enzymes over extended periods of time [1–6].
Although the catalytic rates have been shown to be distrib-
uted in time, the general Michaelis-Menten scheme, origi-
nally proposed for an ensemble of enzymes, turned out to
hold quite well also on the level of a single enzyme [1–8].
What is still left open is the nature of the conformational
changes and its relationship to the enzymatic activity [6–
9]. Deeper insights into the conformational-activity rela-
tionship can be obtained by influencing single enzyme
conformations by an external force and following the
effects on the catalytic activity. The possibility to manipu-
late enzymatic turnovers by applying a mechanical force
has been recently demonstrated in Ref. [10]. Also, voltage-
gated ion channels can be manipulated electrically to
switch between two states [11]. Here, assuming a two-state
Michaelis-Menten scheme for a single enzyme, we inves-
tigate how one can manipulate the activity (turnovers) of an
enzyme by an external harmonic force. The oscillatory
force is shown to be able to increase the weight (occurrence
time) of a desired conformation in the scheme, controlling
the enzyme activity.

The reaction scheme that we examine is shown in Fig. 1.
We model the effect of the time-dependent external force
as a shift in the conformational energy landscape.
Assuming that the transitions between different conforma-
tions, with rates �ij and �ij, follow an Arrhenius activa-
tion, and using a harmonic force which modulates barriers
separating conformational states, we find the following
time dependence of the rates:
 

�ij � �ij�t� � ��0�ij exp������ij sin�!t��0��; (1a)

�ij � �ij�t� � ��0�ij exp������ij sin�!t��0��: (1b)

Here ! is the angular frequency of the external driving
force, �0 is the initial phase of the force, and ��0�ij , ��0�ij ,

����ij , and ����ij are phenomenological constants characteriz-
ing the enzyme and the amplitude of the driving force. In
Eqs. (1), we assume that the potential energy landscape of

the conformations responds instantly to changes in the
force. This assumption can be relaxed, for instance, by
including different phases �0 for �ij and �ij. Note, how-
ever, that a 180� phase difference, corresponding to a
change of sign for ����ij , is included in Eqs. (1). We assume
that the substrate S is in great excess, such that the rates for
the reaction with the substrate like k1i � k�0�1i �S� become
independent of time. The scheme in Fig. 1 is closely related
to schemes describing resonant activation in discrete sys-
tems [12].

Simulations.—As shown below, for certain limits of the
rates, analytical expressions can be derived. To obtain in-
sight into the general behavior of enzymatic activity in-
cluding noise, we use a stochastic simulation. To this end,
we implemented the Gillespie algorithm [13], which pro-
vides random values for the waiting time between two
reaction steps and the direction of the reaction as weighted
by the corresponding Arrhenius factor. We start the system
in one of the states Ei � S and then perform jumps to one
of the neighboring states according to the Gillespie reac-
tion probability. To which state it jumps is decided by
picking a waiting time for jumping to state ESi according
to the exponential distribution with rate parameter k1i and
one for jumping to Ej � S according to the cumulative
distribution

 F�ij��t� � 1� exp
�
�
Z t��t

t
�ij�t0�dt0

�
; (2)
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FIG. 1. Michaelis-Menten scheme for a single enzyme with
two conformations. E denotes the enzyme molecule, S the
substrate, and P the product. Rates �ij and �ij (i; j � 1; 2) stand
for transitions between conformational states 1 and 2, while rates
kxi (x � �1; 1; 2) quantify internal conversions.
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and then the jump is made to the state with the shortest
waiting time. Subsequent jumps to neighboring states are
determined similarly, and one iteration of the simulation
stops at time t � � when the system reaches one of the
product states Ei � P. The conformation i of the enzyme is
then used as the initial state for the next iteration with the
initial phase ��new�

0 � !����old�
0 determining the new

momentary force. By performing iterations over many
periods of the oscillating force, we obtain a time series
for the turnover times �, from which the average waiting
time h�i yields. Plots of h�i as a function of ! are shown in
Figs. 2 and 6. Depending on the choice of parameters,
switching between two or three kinetic regimes of the
system is revealed. Certain limiting behaviors are acces-
sible analytically, as discussed soon. For the parameters
used throughout this work, the rate of product formation in
conformation 2 is higher than in conformation 1.

We note that in our analysis the parameters [except for
case (ii) in Fig. 2] are chosen such that detailed balance is
fulfilled, as required for certain single enzymes that are
coupled to the surrounding heat bath [14]. The explicit
condition arising when detailed balance is applied around
the loop in the reversible reaction pathway in Fig. 1 is
k�11�21�t�k12�12�t� � k11�12�t�k�12�21�t�. The condition
is applied for any momentary value of the external force,
and therefore any time t, since the system could equally
well be held constantly at these forces. Detailed balance
could be violated, for instance, by enzymes converting
ATP energy during their cycle.

Fast switching limit.—Consider the case when the
switching between enzyme conformations is much faster
than the reactions with the substrate, as displayed in Fig. 2.
Note that case (ii) in Fig. 2 has different k1i’s [15]. It also

includes a 180� shift in the phases of variation of rates �ij
and �ij under the external force distinguishing between
substrate-bound and substrate-free enzyme states.
Parameters were chosen to reflect situations with enhanced
enzyme efficiency at intermediate frequencies. Different
scenarios, for instance, with decreased efficiency, are also
possible. In both cases in Fig. 2, the rates satisfy kxi 	
�ij; �ij. This means that we can define effective rates kx as
averages over the various conformations. The weights in
these averages are given by the probabilities for the en-
zyme to be in the different conformations. If ! is much
faster or slower than the relaxation time between the two
enzyme conformations, these probabilities can be easily
obtained. For instance, the probability for the enzyme to be
in conformation E1, given that no substrate is bound, is

 p�1jE; �� �
�
�21���=��12��� � �21����; !	 �ij;
��21=� ��12 � ��21�; !
 �ij;

(3)

where � 2 �0; 2�� is the phase of the force, i.e., !t�
�0 � �� 2�n for some integer n, and a bar over a
quantity means that this quantity is averaged over all
phases:

 �� ij �
Z 2�

0

d�
2�

�ij��� � ��0�ij I0��
���
ij �; (4)

where I0 is the modified Bessel function of order 0. The
effective rates kx can now be obtained in the two limits:

 kx��� �

(P
i kxip�ijx;��; !	 kxi;P
i kxi �p�ijx�; !
 kxi;

(5)

where x in p�ijx;�� refers to the unbound state E� S for
x � 1 and to the bound state ES for x � �1 and x � 2.
The rate of the overall reaction is then given by the
standard Michaelis-Menten expression [3,4,14]

 ���� �
k2���k1���

k1��� � k�1��� � k2���
(6)

as a function of the phase �. The average waiting time h�i
for one turnover can now be found by averaging over all
phases and calculating h�i � 1= ��. The values of h�i calcu-
lated according to Eqs. (5) and (6) are shown in Fig. 2 by
the horizontal lines. We note that the limits where !	
�ij; �ij can also be obtained as limit cases of the system
studied in Ref. [16].

Another experimentally relevant quantity is the temporal
probability density for the formation of products at a given
value of the force as determined by the phase �. A plot of
this intensity of product formation events, which we label
by hI���i, is shown in Fig. 3. An approximate bimodal
behavior is found for certain choices of the parameters. To
obtain the analytic limits, we note that if the external force
is slowly varying, i.e., !	 kxi; �ij; �ij, then the intensity
will simply be equal to the rate hI���i � ����. This ex-
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FIG. 2 (color online). Mean turnover time h�i as a function of
driving frequency ! for the case kxi 	 �ij; �ij. Horizontal lines
represent the limit cases derived in the text. (i) k1i � k�1i � 1,
k21 � 0:3, k22 � 3, ��0�12 � 80, ��0�21 � 800, ��0�12 � 160, ��0�21 �

1600, ����12 � 2 � �����21 , ����12 � 3 � �����21 . (ii) The following
parameters were changed: k11 � k�11 � k�12 � 0:01, k12 �

3 � �����12 , ����21 � 2 (units on the right axis). Simulations were
run for 5� 104 turnovers per frequency.
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pression also holds for !
 �ij; �ij, where it is indepen-
dent of �. For the intermediate ! where kxi	!	
�ij;�ij, it will be the distribution of conformations in the
final step of the reaction and the corresponding rate con-
stants that determine when the product formation happens,
such that hI���i � ��

P
i k2ip�ijES; ��= �k2. We point out

here that at slow frequencies it is the overall efficiency of
the enzyme that is probed at different magnitudes of the
external force, while at the intermediate frequencies it is
only the relative efficiency of the final step in the reaction
which is probed at different external driving. Thus, tuning
the frequency allows one to selectively study the final
reaction step.

The behavior of hI���i in Fig. 3 can be compared with
the probability of being in, say, conformation 2 (the fast
one) as a function of �, as shown in Fig. 4. Note the large
change in amplitude for the chosen parameters. To obtain
the analytic limits, we write the probability as p�ij���
p�ijE;��p�Ej���p�ijES;���1�p�Ej���, where p�ijE; ��
is given by Eq. (3). To find p�Ej��, note that at a given
phase � the effective rate for the system to leave the state
without a bound substrate is k1���, and the rate for leaving
the state with bound substrate is k�1��� � k2���. In fact,
the quasi-steady-state probability for being in the state
without a bound substrate is

 p�Ej�� �
k�1��� � k2���

k1��� � k�1��� � k2���
(7)

in the two cases given by Eq. (5) where either !	 kxi or
!
 kxi. The resemblance of Figs. 3 and 4 reflects the
dominating role of conformation 2, due to its larger cata-
lytic rate, in the enzymatic activity.

To illustrate further the mechanisms behind the transi-
tions of h�iwith changing driving frequency, we plotted the
fraction of time the enzyme spends in conformation 2,
labeled p�2�, during a simulation run in Fig. 5. The analytic
limits of p�2� can be obtained straightforwardly by aver-
aging the probability of being in conformation 2 over all

phases p�i� �
R

2�
0 �d�=�2���p�ij��. This behavior can be

compared with the fraction of product formation events
that occurs while the enzyme is in conformation 2, labeled
by p�2jE� P� in Fig. 5. The analytical limits of p�2jE�
P� can be obtained by averaging over all phases � the
effective rate constant for forming a product in conforma-
tion i, k2ip�ijES; ��, divided by the overall effective k2���,
taking into account the varying rate of product formation
by a factor ����= ��. The explicit formula is

 p�ijE� P� �
Z 2�

0

d�
2�

k2ip�ijES; ��
k2���

����
��
: (8)

As Fig. 5 illustrates, the slowing down of the reaction with
increasing frequency at the second transition in Fig. 2
occurs because the high frequency of the force shifts the
enzyme towards spending more time in the low efficiency
conformation. The increased efficiency of the enzyme at
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intermediate frequencies sets in when the external force
drives the enzyme back and forth between its two confor-
mations fast enough to avoid the bottleneck of the enzyme
spending long uninterrupted periods being forced towards
the slowly reacting conformation.

Slow switching limit.—When the switching between
enzyme states is slow in comparison to substrate reactions,
�ij; �ij 	 kxi, the enzyme will mostly stay in the same
state during a reaction cycle, and we can therefore take the
instantaneous reaction rate to be

 ���� � p�1j���1 � p�2j���2; (9)

where �i � k2ik1i=�k1i � k�1i � k2i� are the fixed confor-
mation rates, and p�ij�� is the probability for the enzyme
to be in conformation i at a given phase of the oscillating
force. To find this probability, we first argue in the same
way as Eq. (7) was obtained to see that the (steady-state)
probability of being in the state without a bound substrate,
given that the conformation is i, is

 p�Eji� �
k�1i � k2i

k1i � k�1i � k2i
: (10)

Then we note that the effective rate constant for changing
conformation from i to j can be found as

 �ij � p�Eji��ij � �1� p�Eji���ij: (11)

This effective rate now allows the probability of being in
conformation i to be calculated similarly to Eq. (3) as

 p�ij�� �
�
�ji���=��ij��� � �ji����; !	 �ij;
��ji=� ��ij � ��ji�; !
 �ij;

(12)

where j � 3� i. The averaged waiting time for one turn-
over can again be found as h�i � 1= ��.

Discussion.—Detailed knowledge of the dynamics of
single enzymes as well as their response to external stimu-
lus is important for the understanding of biochemical
processes occurring in living cells. We studied the response
of a single two-state enzyme to a harmonic external driving
force in the presence of thermal noise. By combination of
analytic and simulations results, we demonstrated the rich
response behavior of the turnover dynamics of the enzyme
to an external force. We showed that in some cases there
exist optimum driving frequencies that minimize the turn-
over time of the enzyme. In these cases, one can selectively
obtain information on the reaction rates in the final step of
the Michaelis-Menten reaction by choosing an oscillation
in a suitable frequency range. Moreover, we found that the
response of the enzyme activity can be very sensitive
within a small range of phase �, a signature of many
biological switches. We note that it should be possible to
access the full spectrum of relevant driving frequencies by
combining different experimental methods, such as atomic
force microscopy and optical switching methods.
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FIG. 6 (color online). Plot of h�i as function of driving fre-
quency ! for �ij; �ij 	 kxi. The horizontal lines represent the
limits derived in the text. The parameters are k1i � k�1i � 1,
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�3. The simulation comprises 2� 106 turnovers per frequency.
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