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Abstract

We discuss the van�t Hoff enthalpy relation, that is conventionally used to determine the two-stateness of a system, in the presence

of a small entropy difference between the states. Specifically, for a two-state system we show in this case that the calorimetric enth-

alpy does not equal the van�t Hoff enthalpy. We also study the van�t Hoff enthalpy for an N-state system and find that the van�t Hoff

enthalpy and the calorimetric enthalpy of the N-state system can in fact become equal, provided that the entropy differences between

the states are finite.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

In order to reveal the two-stateness of a calorimetric
transition, comparison between the calorimetric enth-

alpy (DHcal) and the van�t Hoff enthalpy (DHvH) is widely

applied, e.g., in gel–liquid transitions [1], vapor sorption

[2], micellar aggregation [3], coil-collapse transition of

polymers [4], and protein folding [5]. The general view

is that if DHvH = DHcal, i.e., the classical calorimetric cri-

terion of a two-state transition, then the transition is re-

garded as two-state [6,7]. However, the van�t Hoff
analysis of, e.g., proteins has shown that the interpreta-

tion of the results may become ambiguous. The latter

may be connected to the determination of the �baselines�
of the heat capacities corresponding to temperatures be-

low and above the heat capacity peak [8]. Moreover, it is

demonstrated that the heat capacity corresponding to,
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e.g., a three-state system can be indistinguishable from

a two-state system over a broad temperature interval

for a particular choice of the free energy of the interme-
diate state [9,10].

In this work, we consider a two-state model for which

we will properly explain the concept of the van�t Hoff

enthalpy. We will only consider the case for vanishing

heat capacities at zero and infinite temperatures in order

to avoid the above-mentioned problems regarding the

heat capacity �baselines�. We show that DHvH 6¼ DHcal

when the entropy difference between the two states is
small. For an N-state system we are able to calculate

the corresponding entropy difference such that the van�t
Hoff relation is fulfilled. Our considerations may be rel-

evant to small systems investigated, e.g., by means of

single molecule techniques.
2. van�t Hoff enthalpy

The van�t Hoff enthalpy is an effective measure that

equals the calorimetric enthalpy for a thermodynamic

two-state transition. When discussing the transition,
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the two states are termed the bound state and the un-

bound state, referring to the enthalpically favorable

state (low temperature state) and the entropy-dominated

state (high temperature state), respectively. Let

#ðT Þ ¼ HðT Þ � Hð0Þ
DH cal

; ð1Þ

be a measure of the progress of the temperature-induced

transition, where H(T) is the enthalpy at temperature T,

H(0) is the enthalpy at zero temperature, and DHcal is

the enthalpy difference between the unbound and bound
states. In this work, we will only consider models for

which the heat capacity vanishes at zero and infinite

temperature, thus, DHcal = H(1) � H(0) is an unambig-

uous quantity. # spans from 0 to 1, and consequently a

natural choice of an effective equilibrium constant is [7]

Keff ¼
#

1� #
: ð2Þ

The van�t Hoff equation for this transition yields [11]

DH vH ¼ kBT 2 d lnKeff

dT
¼ kBT 2

#ð1� #Þ
d#

dT
; ð3Þ

where d#/dT � dH(T)/dT = C(T), i.e., the heat capacity

(see Eq. (1)). We now define Td as the temperature at

which half of the heat is absorbed, i.e., #(Td) = 1/2 (see
Eq. (1)), thus, the van�t Hoff enthalpy for a single tem-

perature-induced transition and vanishing heat capaci-

ties in the zero and infinite temperature limit becomes

DH vH ¼ 4kBT 2
d

CðT dÞ
DH cal

: ð4Þ

One usually considers the ratio

j � DH cal

DH vH

; ð5Þ

to quantify the deviation from DHvH, and therefore

from a thermodynamic two-stateness, for a given transi-

tion. Notably, several small globular proteins reveal

j � 1 [6,12,13].
3. Results and discussion

3.1. System of two states

The result DHvH = DHcal, i.e., j = 1 (see Eq. (5)), is

only valid for a system of two states when the entropy

difference between the states are infinite. To see this
we define a two-state partition function

Z ¼ e�e=T þ X; ð6Þ
where e < 0 is the energy of the bound state and X meas-

ures the degrees of freedom of the unbound state (i.e.,

giving rise to an entropy-difference DS = T lnX between

the two states). In Eq. (6) the Boltzmann constant is set
to unity such that T is in units of e. To calculate j in Eq.

(5) we need to find Td that is the temperature for which

half of the enthalpy of the transition is released. The

enthalpy is given by

HðT Þ ¼ T 2 d ln Z
dT

¼ ee�e=T

e�e=T þ X
ð7Þ

and thus, H(Td) = 1/2 [H(0) + H(1)] yields

HðT dÞ ¼ e
2þ X

2ð1þ XÞ ; ð8Þ

as H(0) = e and H(1) = e(1 + X)�1. In the limit X � 1

we obtain the simple result Td = �e/lnX [14]. To evalu-

ate j in Eq. (5) we also need to calculate the heat capac-

ity, resulting in

CðT Þ ¼ dHðT Þ
dT

¼ e2

T 2

Xe�e=T

ðe�e=T þ XÞ2
: ð9Þ

Using DHcal = H(1) � H(0) = �eX(1 + X)�1 and insert-

ingH(Td) fromEq. (8) into Eq. (9) we obtain fromEq. (5)

j ¼ X
2þ X

; ð10Þ

valid for the partition function in Eq. (6). Notably, this

result is independent of the binding energy e. The ratio j
becomes 1 for X ! 1 and j < 1 for a finite X. Thus, a
system that consists of two states does not necessarily

satisfy the traditionally defined calorimetric criterion

of a two-state transition. This effect is illustrated in

Fig. 1, where we plot the heat capacities for the partition

function in Eq. (6) for X = 10 and 100. Both heat capac-

ity curves are approaching zero when T ! 1, however,

the fraction in the bound state approaches the value
(1 + X)�1 for T ! 1, and is therefore appreciably differ-

ent from zero for smaller X. Thus, the high-temperature

state for a finite X is a mixture of bound and unbound

states. The consequence is that two states in general

do not correspond to a two-state transition in the van�t
Hoff sense.

3.2. System of N states

To further investigate the consequence for the van�t
Hoff enthalpy of a finite entropy difference between

the states, we generalize the partition function in Eq.

(6) to N states. Assuming that all of the states are equi-

distant with respect to the free energy we obtain the par-

tition function [15]

ZN ¼ eð�N�1Þe=T þ Xeð�N�2Þe=T þ � � � þ XN�1

¼ e�Ne=T � XN

e�e=T � X
; ð11Þ

where ZN is a geometrical sum valid for any integer
N P 2. Note that e and X correspond to the enthalpical

and entropical differences between neighboring states in



Table 1

Corresponding values of N and X that yield j = 1 (see Eq. (5))

N X

2 1
3 2.85

4 1.70

5 1.36

6 1.21

7 1.13

8 1.08

9 1.05

10 1.03

The calculations are based upon the N-state model in Eq. (11).

Fig. 1. (a) Heat capacity vs. temperature (see Eq. (9)). (b) Fraction in

the bound state calculated from Eq. (6). Temperature in units of e (that
is set to unity).
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the N-state model, respectively. The corresponding enth-

alpy becomes

HN ðT Þ ¼
d ln ZN

dð1=T Þ

¼ e
ðN � 1Þe�ðNþ1Þe=T � NXe�Ne=T þ XNe�e=T

ðe�Ne=T � XN Þðe�e=T � XÞ
;

ð12Þ
The heat capacity is calculated as CN(T) = dHN(T)/dT

and is not shown here due to its rather complex
structure.

Traditionally, the calorimetric criterion DHvH = DHcal

has been the hallmark of a two -state transition [13]. To be

more specific, by theDHcal for theN-state model wemean

the enthalpy difference between the high temperature and

the low-temperature states, i.e., DHcal(N-state) =

HN(1) � HN(0), as the heat capacities below and above

the (single) transition vanish. It is well known that
DHvH 6¼ DHcal for the N-state model provided that

X � 1 and N > 2 (see Eq. (13) below). However, one

can now ask on the basis of the N-state model whether

the calorimetric criterion that was derived for a two-state

transition, may be fulfilled for finite X of a system withN

states.One should note here that the calorimetric criterion

(for two-states) requires that below the transition-temper-
ature only the bound state exists and that above the tran-

sition-temperature only the unbound state exists. Thus,

the entropydifference between the bound state and theun-

bound state is infinite, i.e., the two states are thermody-

namically well separated, in order to fulfill the

calorimetric criterion. As we show in Table 1 for N > 2

in the N-state model defined in Eq. (11), the correspond-

ing X that fulfills DHvH = DHcal actually exists and is fi-
nite. However, in contrast to the pure two-state case,

this requires a finite entropy difference between the differ-

ent states (corresponding to a finite X). We also note that

the values for X listed in Table 1 are comparable to real

systems such as in small denaturation-bubbles in double

stranded DNA [17].

In the limit X � 1 for the N-state model we obtain

Td = 1, DHcal = (N � 1)e, and CN(Td) = T�2e2(N2 � 1)/
12, thus, we obtain the simple expression for the ratio

in Eq. (5)

jðX � 1Þ ¼ 3ðN � 1Þ
N þ 1

; ð13Þ

such that j 6 3 for N P 2. In particular, N = 2 yields

j = 1, i.e., the calorimetric criterion for a two-state tran-
sition is fulfilled, as discussed above. Furthermore,

j ! 3 when N! 1 [14,16].
4. Summary and conclusion

We study thermally induced transitions when the en-

tropy difference between the different states is small. The
motivation for doing this is that traditionally van�t Hoff

enthalpy measurements have been performed for sys-

tems where the bound and unbound states are well sep-

arated. This means that well below the transition

temperature a single state exists (bound state) and well

above the transition temperature another state exists

(unbound state), i.e., there is no mixture of states at

low and high temperatures, respectively.
Conversely, there exist systems, where the high-tem-

perature state may be a mixture of two or more states.

Examples of such systems may be small atomic or
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molecular systems, or small units in larger molecules,

such as in small denaturation-bubbles in double-

stranded DNA under external constraints like in optical

tweezers setups [17]. Motivated by this fact we calculate

for a system, where the high-temperature state of a two-

state system is a mixture of the two states, the deviation
of the calorimetric enthalpy (DHcal) from the van�t Hoff

enthalpy (DHvH). We show that DHvH > DHcal when the

entropy difference between the two states is finite. In

contrast, the traditional hallmark property that

DHvH = DHcal of a pure two-state system is only valid

when the states are entropically well separated. The con-

sequence of this is that two states not necessarily imply a

two-state transition in the traditional sense. If we ex-
pand the system to N states we show that the calorimet-

ric criterion can be fulfilled, i.e., DHvH = DHcal, for small

entropy differences between the states. The latter chal-

lenges the traditional assumption according to which a

transition that involves an intermediate state implies

DHvH 6¼ DHcal. We believe that these considerations

are useful in the study of thermodynamical transitions

in small physical systems.
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