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The basic kinematic behaviour of a threshold switch in a system with a sparse population
is investigated. We determine the basic quantities such as the number probability density
function, the survival probability, the characteristic switching time, and the response to
external triggering of the switch. The modelling approach is then extended to systems
with response retardation, which, it is argued, may improve the stability of the switch.
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1. Introduction

The human body comprises a large variety of different cell types. At the same time,

(almost) all of these cells share the same genetic material. The diversity comes

about by a control mechanism (regulation) which decides which subset of all the

available genes are actually expressed within one given cell during the processes

of transcription and translation.1 Gene regulation is, in turn, controlled by the

particular chemistry within the cell, i.e. the presence or absence of certain regulatory

proteins or other molecules; the co-operative action of all ingredients determines at

which point on the DNA (promoter site) a given protein transcription factor binds.

Subsequently, an RNA polymerase binds to the complex of transcription factors

and proceeds along the DNA, to evaluate the genetic code of the associated gene.2

Gene regulation is part and parcel of biological evolution and development. One

of the best studied examples of such a regulatory mechanism is the genetic switch

associated with the life cycle of Escherichia coli bacteria which have been infected

by bacteriophage λ, i.e. the λ-switch.3 When phage λ enters the E. coli cell, it fuses

its DNA into the (much longer) DNA of its host. The binding of either repressor

or promoter on certain operator sites determines which gene, to the left or to the

right of these operator sites, is expressed. This decision is called a genetic switch,
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and its state determines the future fate of the cell: if repressor(s) bind(s), a gene

is transcribed which causes the production of repressor molecules in the host cell’s

chemical facilities such that the system locks onto the inert (dormant) lysogenic

state; otherwise, the opposite gene stimulates the production of new λ-phages,

ultimately lethal to the host cell (lysis). The λ-switch can flip from the lysogenic to

the lysis-pathway through external stimulus (e.g. UV light cleaving the repressor

dimers, or a starving host), or through fluctuations .1–3

λ-repressor acts co-operatively: one repressor dimer already bound facilitates

the binding of a second, and flipping the switch requires the dissociation of both

dimers from the DNA. In contrast, the Lac operon, which regulates the expression

of a gene which prompts production of an enzyme which can process lactose in

the absence of glucose, is controlled by a single repressor molecule and/or a single

promoter (activator).2

Biological cells combine the interesting properties of being a fluctuation-

dominated (Brownian) system, and using comparatively small numbers of messen-

ger molecules such as above-described repressor molecules, in an apparently delicate

systems of (co-operative) checks and balances.4 Thus, biological switches differ con-

siderably from molecular switches, i.e. chemical molecules being synthesised in the

emerging field of topochemistry, a branch of organic chemistry.5 There, a single

molecule possesses mechanically linked subunits which can attain two different po-

sitions within the molecule, such as the ring unit in rotaxanes. Such molecular

switches can be externally controlled energetically and entropically,6,7 i.e. through

coupling to a macroscopic bath.

In what follows, we develop a basic picture for biological switches based on the

threshold model presented in Ref. 8. To this end, we note that in large enough

systems the dynamics of a population is usually described in the continuum limit

in terms of the rate equation9

dφ(t)

dt
= k0 + k1φ(t) , (1)

which describes the time-evolution of the “concentration” φ(t), a macroscopic

quantity. In Eq. (1), the parameters ki represent the rate constants of dimension

[ki] = sec−1, which can either be independent or proportional to the quantity φ(t).

The rate equation (1) does not provide any information about the fluctuations of

the quantity φ. Such fluctuations, usually being of the order of the square root of

the constituents of the system, can be neglected in large systems. Conversely, if

only a small population is considered, a more fundamental description is necessary.

A good basis is the (difference-differential) master equation10

∂P (n, t)

∂t
= (E−1 − 1)G(n)P (n, t) + (E − 1)R(n)P (n, t) (2)

where E
±P (n, t) ≡ P (n ± 1, t). G and R refer to the Generation and Removal of

particles the number of which is measured by n.11 The master equation (2) includes
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the details of the diffusion in n-space, and therefore offers the possibility to calculate

all moments and correlations.

In the following, we formulate a simple immigration-death (ID) model from

which we derive certain measures for biological switches, based on the threshold

model. From the survival probability for simple and co-operative switches, we obtain

estimates for the characteristic switching times. By making use of a generalized

Laplace transform, we can infer generalizations of these measures to systems which

exhibit a time lag in their response, or even a long-tailed memory.

2. Formulation of the Model

A sufficient model for a simple biological switch is the (discrete) ID-process, in

which the population of messenger molecules n is changed by degradation with

rate kd and by immigration with rate ki.
4,8 In the following, we assume ki, kd ≥ 0.

The associated master equation

∂P (n, t)

∂t
= kiP (n − 1, t) + kd(n + 1)P (n + 1, t) − (ki + kdn)P (n, t) (3)

ensures that P (n, t) = 0 for all n < 0 by the n-proportionality of the death term.10,11

If time is measured in inverse units of kd and we define ϕ ≡ ki/kd, we can rescale

Eq. (3) to obtain

∂P (n, t)

∂t
= ϕP (n − 1, t) + (n + 1)P (n + 1, t) − (ϕ + n)P (n, t) . (4)

The mean number 〈n(t)〉, predicted by Eq. (3), is

〈n(t)〉 = me−t + ϕ(1 − e−t) , (5)

which combines an exponential decay of the initial distribution with m molecules

and an immigration term. Note that the equation for 〈n(t)〉 corresponds to the rate

equation for φ. The variance var(t) ≡ 〈(n(t) − 〈n(t)〉)2〉 of the process is given by

var(t) = m(1 − e−t)e−t +
ϕ

2
(1 − e−2t) + (e−2t − 2e−t + 1) . (6)

In the stationary state (limt→∞), the mean number and variance converge to

〈n∞〉 = ϕ , (7)

var∞ = ϕ , (8)

i.e. the standard deviation equals
√

n∞.

The general solution of the master equation (3) for the probability density func-

tion P with initial condition P0(n) = δn,m reads12

P (n, t|m, 0) = e−ϕ(1−e−t)

min{m,n}
∑

k=0

(

m

k

)

e−kt(1 − e−t)m+n−2k ϕn−k

(n − k)!
. (9)

With the property
(

m
k

)

= 0, ∀k > m and (n−k)! → ∞, ∀k ≥ n, this expression can

actually be rewritten in terms of a confluent hypergeometric function.8 The time
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Fig. 1. Probability density function P (n, t|2, 0) for successive times: t = 0.05, 0.5, 1, 5. The lines
connect the points of P , and are only meant to guide the eye. Note the rather broad distribution
for longer times.

evolution of the probability density function is shown in Fig. 1. The stationary

behaviour of the ID-process

Pst(n) = e−ϕ ϕn

n!
(10)

corresponds to a Poisson distribution.

3. Threshold Definition and Survival Probability

Disregarding the exact subtleties of a biological switch, we can abstract it by saying

that the system remains in a “good” state if at least a critical number ncrit of

molecules is present. This can be the number of molecules within the entire host

cell as in the more traditional model for switches which include the well-stirredness

assumption,3,13,14 or within the reaction volume in the space-dependent switch

model proposed in Ref. 4. If less than ncrit molecules are present, the system is

assumed to turnover to a different “fatal” state, i.e. the switch has flipped. This

simplest version of a switch does not involve co-operativity.

Above phenomenological behaviour can be modelled by an absorbing boundary

at n̄ ≡ ncrit − 1, so that all states of the system which are above-critical (good)

are counted in the survival function. The solution of the master equation (3) which

corresponds to this boundary value problem can be constructed with the method

of images, to produce

Q(n, t|m, 0|n) = P (n, t|m, 0) − P (2n − n, t) . (11)

Thus, the amount of probability which has leaked out (has touched the absorbing

boundary) is subtracted from the original density function. This method is illus-

trated in Fig. 2.
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Fig. 2. Illustration of the method of images for the stationary probability density function Pst(n).
Dashed lines: Original, unbounded probability density Pst(n), and its mirror, reflected in the ordi-
nate. Point-dashed: Mirrored function, shifted by 2n. The point-dashed and the original functions
overlap. The part which has hit the absorbing boundary (n = 2) corresponds to the overlap with
the point-dashed line, and is subtracted from the original function, to produce the full line, the
image solution Q.

From the boundary value solution Q, one obtains the survival function

S(t) ≡
∞
∑

ncrit

Q(n, t|m, 0|n̄) (12)

which measures the probability that the system is in the good state. The comple-

mentary quantity 1−S(t) is consequently the probability that the system has gone

fatal up to time t, i.e. the switch has flipped. If no immigration was present, the

survival function S would eventually decay to nil. In the presence of immigration,

in contrast, it will eventually attain a constant value. The turnover from the initial

to the final state can thereby exhibit a distinct dip, depending on the rate of im-

migration, i.e. on ϕ, and the initial number m of particles. This effect is illustrated

in Fig. 3. Consequently, in the presence of such a dip the flux

(t) = − d

dt
S(t) (13)

will be negative on a certain interval. This causes the associated time constant
∫ ∞

0

t(t)dt ≷ 0 ,

i.e. it is not a good measure for the underlying process.

A (rather crude) estimate of the characteristic switching time of this process

can be obtained from the current . Thus, a lower bound corresponds to the char-

acteristic time of the portion of  before crossing the abscissa: T ≡
∫ τ0

0
t(t)dt,

where (τ0) = 0.15 The upper bound can be obtained from the absolute value of
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Fig. 3. Survival probability S(t) for the parameters m = 2, ncrit = 2, and ϕ = 5. Inset: monotonic
decay for ϕ = 2.

the current: T̄ ≡
∫ ∞

0 t|(t)|dt. The most probable switching time corresponds to the

minimum in :

Topt ∴
d

dt
(Topt) = 0 (14)

and may, for certain ranges of ϕ be a better estimate for the characteristic switching

time of the systems.

3.1. Co-operativity effects

Consider now a simple model for a co-operative switch. In such a case, the presence

of one representative of the species which has a considerably slower survival (un-

binding) rate kI � kd prevents the switch from flipping, even though the population

might temporarily fall below the critical threshold ncrit. This additional ingredient

at a given time being present with probability 1 − P (∅), where P (∅) = kI/kd, as

we measure time in units of kd, the co-operative survival probability yields in the

form

Sco-op(t) ≡ 1 − P (∅)(1 − S(t)) . (15)

By this, we imply that if there are n ≥ ncrit members present, they will replace the

once dissociated I-member in a shorter time scale than the switch can run fatal.

Modifications of this law according to the underlying mechanism are, of course,

possible.

The characteristic time of this co-operative process is much longer than for

the associated process without co-operativity. This is obvious from the prefactor

P (∅) in the second term of Sco-op(t), which will translate into the corresponding

expression for co-op(t). Similar co-operative effects suppress “accidental” switching

in real genetic switches due to fluctuations very efficiently such that the error rate

of such switches ranges between 10−5 · · · 10−9.1–4,13,14
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3.2. External triggering of the switch

So far we have considered the effect of fluctuations on switches. In a real system,

changes in the external conditions can induce a flipping of the switch. For instance,

in the bacteriophage λ-E. coli system, exposition to UV light leads to a fast cleavage

of the repressor dimers such that they can no longer attach to the DNA operator

sites. The system invariably goes fatal. How fast does the system react? Assuming

that the cleavage will be almost instantaneous for free dimers, the rate-limiting step

is expected to be the dissociation rate of the I-member, and thus the characteristic

flipping rate on external triggering is of the order of kd/kI . In particular, this

quantity is faster than the fluctuation induction through the survival Sco-op.

4. Time Delay and Long-Tailed Memory

The master equation (3) governing the dynamics of the switch is Markovian, hence

local in time. We now explore switches which exhibit a time delay or even a long-

tailed memory with diverging time scale. In these cases, the master equation (3) is

replaced by the generalized (difference-integrodifferential) master equation16,17

∂

∂t
P (n, t) =

∫ t

0

LϕP (n, t′)Π(t − t′)dt′ ,

LϕP (n, t′) ≡ ϕP (n − 1, t′) + (n + 1)P (n + 1, t′) − (ϕ + n)P (n, t′) , (16)

where, in general, the kernel Π(t) connects the now-state P (n, t) with its history

in the interval [0, t) since system preparation at t = 0. If Π falls off fast enough on

some time scale τ , the system will behave like the standard time-local system (3)

for times t � τ . Conversely, if it decays slowly, the prehistory of the process is no

longer separated from the now-state through a characteristic time scale, and the

memory effects become relevant. In such cases, not only the time evolution of the

system is affected, but also the probability density function P (n, t) at some given

time changes its shape.18

Equation (16) can be rewritten in the alternative form17

∂

∂t
P (n, t) =

∂

∂t

∫ t

0

LϕP (n, t′)Π̃(t − t′) , (17)

where, in Laplace space

Π̃(u) ≡
∫ ∞

0

e−utΠ̃(t)dt , Π̃(u) = Π(u)/u .

If the kernel Π̃ is of the inverse power-law form

Π̃(t) =
(t/τ)γ−1

Γ(γ)
, 0 < γ < 1 , (18)

the generalized master equation (16) can be rewritten as the fractional equation

∂

∂t
P (n, t) = 0D

1−γ
t LϕP (n, t) . (19)



January 14, 2004 12:15 WSPC/140-IJMPB 02345

5900 R. Metzler

If we denote by Pγ(n, t) the probability density function for 0 < γ < 1 and by

P1(n, t) its Markovian counterpart (i.e. for γ = 1), then both are related through

the generalized Laplace transformation18

Pγ(n, t) =

∫ ∞

0

Eγ(s, t)P1(n, s)ds , (20)

where the kernel Eγ can be expressed through the modified one-sided Lévy stable

law:

Eγ(s, t) =
t

αs
L+

γ

(

t

s1/α

)

=
1

s

∞
∑

k=0

(−1)k(s/tγ)1+k

Γ(1 − γ − γk)k!
. (21)

From the series expansion, analytic representations for special γ can be obtained;

e.g. for γ = 1/2, one recovers

E1/2(s, t) = (πt)−1/2e−s2/(4t) . (22)

The probability density function P is plotted for two different times in Fig. 4.

Initially, the memory-affected density function P1/2 is broader and less peaked than

its Markovian counterpart. For longer time, the tails are already approaching each
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Fig. 4. Probability density functions P1/2(n, t) and P1(n, t) at times 0.2 (top, P1 corresponds
to the curve with the distinct peak) and 2 (bottom, P1 has the higher maximum). The plot
parameters are m = 2, and ϕ = 10.
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Fig. 5. Survival probability S(t) for the cases γ = 1/2 (full lines) and 1 (dashed). Top: linear
axes, bottom: logarithmic abscissa. The parameters correspond to the ones in Fig. 4, i.e. m = 2
and ϕ = 10.

other, whereas for small n the persistence of the initial condition causes the distinct

bend. Bends and cusps are typical for long-tailed memory effects.18 In the plotted

example, the broadening of the system due to memory effects lowers the risk to be

in a low n situation. As the calculation of the survival function S is based on the

method of images, which does not involve an operation in t, the same transformation

can be employed to study the change in behaviour of S. This is depicted in Fig. 5.

Again, the broadening of the dip for shorter times and the slow approach to the

stationary state in comparison to the Markovian case γ = 1 is apparent. Here, the

shift in the associated probability density function P1/2 towards higher n observed

in Fig. 4 feeds into the less pronounced drop of S in the dip region. In exchange,

the approach to the stationary behaviour is slower.

Long-tailed memory effects may be more or less pronounced, depending on the

actual system parameters. They may help to stabilize the system, especially, for the

case without co-operativity when the flipping time may be closer to the dip in the

survival probability. Then, the increase in the survival probability will be helpful.

Conversely, in the co-operative case the broadening of the survival probability, i.e.

the lowering of S for longer times is of disadvantage. In general, by testing different

conditions, it can be observed that the introduction of memory effects may easily

reduce the risk of running fatal by a factor of two or more, in the dip range.
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Fig. 6. Survival probability S(t) for the cases γ = 1/2 (full lines) and 1 (dashed), for m = 5 and
ϕ = 2: for a monotonic P1, the trans-Markovian P1/2 is almost always lagging behind, improving
the survival probability considerably.

If the system has a simple time delay τ , which can, for instance, be modelled by

a kernel Π(t, t′) = e−(t−t′)/τ , no simple mapping from the Markovian problem as

in the above case of long-tailed memory kernels is possible. One way is to retreat

to numerical evaluation of the related generalized master equation. Qualitatively,

a memory with existing characteristic time scale can combine the reduction of the

dip depth with a fast approach to the stationary state, a situation of choice.

Thus, memory effects tend to smooth out the sharp dips which exist if a com-

parably small initial number m of members of the population is combined with a

large production rate ϕ. In the case of monotonic decay in the Markovian limit, the

introduction of memory will slow down the approach to the stationary state, and

thus improve the survival probability for almost all t, as demonstrated in Fig. 6.

In general, these observations suggest that some form of a trans-Markovian

behaviour may be profitable for a critical switch system; i.e. it enhances the stability

of the switch which prefers to stay in the “good” state, and the switch does not

flip. This is in qualitative agreement with the finding in Ref. 19 in which a time

delay in the cellular signalling chain makes the system more accurate. It should

be noted that for a system which is injected in an already existing environment

(such as the DNA of bacteriophage λ), a small number m of initial members of

the population, and a fairly small enhancement factor ϕ are appropriate choices

for the modelling. Even if ϕ is relatively large for a given system, a small value of

the initial number m of particles still requires the (generalized) discrete-differential

(discrete-integrodifferential) master equation approach to describe the fluctuation

behaviour on a shorter time scale until continuum behaviour is reached.

5. Conclusions

Real-life biological switches are much more complicated than the idealised

switches considered herein. Thus, even the λ-switch combines several degrees of
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co-operativity:

(i) Repressor occurs in dimers, and each dimer binds co-operatively to the DNA.

(ii) One repressor dimer facilitates the binding of the second repressor.

(iii) The entire chemistry of transcription, and the positive/negative feedback to

the E. coli-bacteriophage cycle is highly co-operative.3

The entire biochemical cascading of processes underlying the λ switch, still one of

the simplest regulatory systems known, is actually extremely involved.20 Neverthe-

less, already the ideal switch grasps some of the essential systems characteristics of

biological switches. It has the outstanding advantage that it can be treated analyti-

cally. In particular, the stability analysis to parameter variations can be investigated

in a low-dimensional parameter hyperspace.

The ideal switch considered above was based on the ID-process. In the Marko-

vian case, we gave explicit results for the probability density function, the variance

as a measure of fluctuations, as well as calculated the survival probability in the

critical threshold model. A particular result is the distinction between systems with

a pronounced dip during their transient behaviour and those which decay monoton-

ically, depending on the combination of initial number m and the effective growth

rate ϕ. For the case of a non-vanishing immigration rate ki, the characteristic

switching rate cannot in general be obtained by determining the first moment of

the probability current , as it can become negative, or a negative portion of the

-function can distort the meaning of the result. A possible way is to consider the

most probable switching time Topt if a dip is present, or to interpolate between

lower and upper bounds, T and T̄.

If trans-Markovian elements are introduced through the generalized master

equation with both kinds of memory, with and without characteristic inherent time

scale, dips smooth out and for long-tailed memory kernels the approach to the sta-

tionary state is slowed down. Whereas the former observation is always good for the

system (in the sense that it enhances the probability to stay in the “good” state),

the second is disadvantageous if a dip is present (as then it approaches the station-

ary value from below) and advantageous if no dip occurs. In the case of external

induction, memory effects naturally lead to a retarded response. For these reasons,

a memory with some intermediate, non-diverging characteristic time scale may be

ideal for stabilising the switch. The advantage of response-delay is consistent with

the findings reported in Ref. 19. We hope that the present study will instigate some

more detailed investigation of this problem.
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