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Abstract
The formation of local denaturation zones (bubbles) in double-stranded
DNA is an important example of conformational changes of biological
macromolecules. We study the dynamics of bubble formation in terms of
a Fokker–Planck equation for the probability density to find a bubble of size
n base pairs at time t, on the basis of the free energy in the Poland–Scheraga
model. Characteristic bubble closing and opening times can be determined
from the corresponding first passage time problem, and are sensitive to the
specific parameters entering the model. A multistate unzipping model with
constant rates recently applied to DNA breathing dynamics (Altan-Bonnet
et al 2003 Phys. Rev. Lett. 90 138101) emerges as a limiting case.

PACS numbers: 87.15.−v, 82.37.−j, 87.14.Gg

1. Introduction

Under physiological conditions, the equilibrium structure of a DNA molecule is the double-
stranded Watson–Crick helix. At the same time, in essentially all physiological processes
involving DNA, for docking to the DNA, DNA binding proteins require access to the ‘inside’
of the double helix, and therefore the unzipping (denaturation) of a specific region of base
pairs [1, 2]. Examples include the replication of DNA via DNA helicase and polymerase, and
transcription to single-stranded DNA via RNA polymerase. Thus, double-stranded DNA has
to open up locally to expose the otherwise satisfied bonds between complementary bases.

There are several mechanisms how such unzipping of double-stranded DNA (dsDNA) can
be accomplished. Under physiological conditions, local unzipping occurs spontaneously due
to fluctuations, the breathing of dsDNA, which opens up bubbles of a few tens of base pairs [3].
These breathing fluctuations may be supported by accessory proteins which bind to transient
single-stranded regions, thereby lowering the DNA base pair stability [2]. Single-molecule
force spectroscopy opens the possibility of inducing denaturation regions of controllable size,
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by pulling the DNA with optical tweezers [4]. In this way, the destabilizing activity of the
ssDNA-binding T4 gene 32 protein has been probed, and a kinetic barrier for the single-strand
binders identified [5]. Denaturation bubbles can also be induced by under-winding the DNA
double helix [6]. A recent study of the dynamics of these twist-induced bubbles in a random
DNA sequence shows that small bubbles (less than several tens of base pairs) are delocalized
along the DNA, whereas larger bubbles become localized in AT-rich regions [7]. Finally, upon
heating, dsDNA exhibits denaturation bubbles of increasing size and number, and eventually
the two strands separate altogether in a process called denaturation transition or melting
[8, 9]. Depending on the specific sequence of the DNA molecule and the solvent conditions,
the temperature Tm at which one-half of the DNA has denatured typically ranges between
50 ◦C and 100 ◦C. Due to the thermal lability of typical natural proteins, thermal melting of
DNA is less suited for the study of protein–DNA interactions than force-induced melting [4].
On the other hand, the controlled melting of DNA by heating is an important step of the PCR
method for amplifying DNA samples [10], with numerous applications in biotechnology [11].

The study of the bubble dynamics in the above processes is of interest in view of a better
understanding of the interaction with single-stranded DNA binding proteins. This interaction
involves an interplay between different time scales, e.g., the relaxation time of the bubbles
and the time needed for the proteins to rearrange sterically in order to bind [12]. Dynamic
probes such as single-molecule force spectroscopy [4] and molecular beacon assays [13] may
therefore shed light on the underlying biochemistry of such processes.

In a recent experiment by Altan-Bonnet et al [14], the dynamics of a single bubble in
dsDNA was measured by fluorescence correlation spectroscopy. It was found that in the
breathing domain of the DNA construct (a row of 18 AT base pairs sealed by more stable
GC base pairs) fluctuation bubbles of size 2 to 10 base pairs are formed below the melting
temperature Tm of the AT breathing domain. The relaxation dynamics follows a multistate
relaxation kinetics involving a distribution of bubble sizes and successive opening and closing
of base pairs. The characteristic relaxation time scales were estimated from the experiment
to within the range of 20 to 100 µs. Also in [14], a simple master equation of stepwise
zipping–unzipping with constant rate coefficients was proposed to successfully describe the
data for the autocorrelation function, showing that indeed the bubble dynamics is a multistate
process. The latter was confirmed in a recent UV light absorption study of the denaturation of
DNA oligomers [15].

In this work, we establish a general framework to study the bubble dynamics of dsDNA
by means of a Fokker–Planck equation, based on the bubble free energy function. The latter
allows one to include microscopic interactions in a straightforward fashion, such that our
approach may serve as a testing ground for different models, as we show below. In particular,
it turns out that the phenomenological rate equation approach, corresponding to a diffusion
with constant drift in the space of bubble size n used by Altan-Bonnet et al [14] to fit their
experimental data corresponds to a limiting case of our Fokker–Planck equation. However,
the inclusion of additional microscopic interactions in such a rate equation approach is not
straightforward [16]. In what follows, we first establish the bubble free energy within the
Poland–Scheraga (PS) model of DNA denaturation [8, 9], and then derive the Fokker–Planck
equation to describe the bubble dynamics both below and at the melting temperature of dsDNA.

2. Bubble free energy

In the PS model, energetic bonds in the double-stranded, helical regions of the DNA compete
with the entropy gain from the far more flexible, single-stranded loops [8, 9]. The stability
of the double helix originates mainly from stacking interactions between adjacent base pairs,
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apart from the Watson–Crick hydrogen bonds between bases. In addition, the positioning of
bases for pairing out of a loop state gives rise to an entropic contribution. The Gibbs free
energy Gij = Hij − T Sij for the dissociation of two paired and stacked base pairs i and j

has been measured, and is available in terms of the enthalpic and entropic contributions Hij

and Sij [17]. In the following we consider a homopolymer for simplicity, as suitable for the
AT breathing domain in [14]. For an AT-homopolymer (i = j = AT), the Gibbs free energy
per base pair in units of kBT yields γ ≡ βGii/2 = 0.6 at 37 ◦C for standard salt conditions
(0.0745M Na+). Similarly, for a GC-homopolymer one finds the higher value of γ = 1.46
at 37 ◦C. The condition γ = 0 defines the melting temperature Tm [17, 18], thus Tm(AT) =
66.8 ◦C and Tm(GC) = 102.5 ◦C (we assume that Gij is linear in T, cf [19]). Above Tm, γ

becomes negative. For given γ = γ (T ), the statistical weight for the dissociation of n base
pairs is obtained as

W(n) = exp(−nγ ). (1)

Additional contributions arise upon formation of a loop within dsDNA. Firstly, an initial
energy barrier has to be overcome, which we denote as γ1 in units of kBT . From fitting
melting curves to long DNA, γ1 ≈ 10 was obtained, so that the statistical weight for the
initiation of a loop (cooperativity parameter), σ0 = exp(−γ1), is of order 10−5 [9, 17]. As
the energy to extend an existing loop by one base pair is smaller than kBT , DNA melts as
large cooperative domains. Below the melting temperature Tm, the bubbles become smaller,
and long range interactions beyond nearest neighbours become more important. In this case,
the probability of bubble formation is larger, and γ1 ranges between 3 and 5, thus σ0 � 0.05
[7] (cf section 5 in [9]). According to [18], the smallness of σ0 inhibits the recombination of
complementary DNA strands with mutations, making recognition more selective. Secondly,
once a loop of n base pairs has formed, there is a weight f (n) of mainly entropic origin, to be
detailed below. The additional weight of a loop of n open base pairs is thus

�(n) = σ0f (n). (2)

For large bubbles one usually assumes the form f (n) = (n + 1)−c [9, 17]. Here, the value
of the exponent c = 1.76 corresponds to a self-avoiding, flexible ring [8, 9, 20], which is
classically used in denaturation modelling within the PS approach. Recently, the PS model
has been considered in view of the order of the denaturation phase transition [21–25]. Zocchi
et al [15] find by finite size scaling analysis of measured melting curves of DNA oligomers
that the transition is of second order. In [21], the value c = 2.12 was suggested, compare the
discussion in [7, 18, 24]. For smaller bubbles (in the range of 1 to a few tens of base pairs),
the appropriate form of f (n) is more involved. In particular, f (n) will depend on the finite
persistence length of ssDNA (about eight bases), on the specific base sequence, and possibly
on interactions between dissolved but close-by base pairs (cf section 2.1.3 in [9]). Therefore,
the knowledge of f (n) provides information on these microscopic interactions.

For simplicity, we here adopt the simple form f (n) = (n+1)−c for all n > 0, and consider
the loop weight

�(n) = σ0(n + 1)−c. (3)

We show that at the melting temperature the results for the relaxation times for the bubbles
are different for the available values c = 1.76 and c = 2.12 quoted above. This shows that
the specific form of f (n) indeed modifies experimentally accessible features of the bubble
dynamics [14].

In what follows, we focus on a single bubble in dsDNA, neglecting its interaction with
other bubbles. Since due to σ0 � 1 the mean distance between bubbles (∼1/σ0 [8]) is large,
this approximation is justified as long as the bubbles are not too large [7]. It also corresponds
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Figure 1. Variable part of the bubble free energy (4), βF(n) − γ1 = nγ (T ) + c ln(n + 1), as a
function of the bubble size n for T = 37 ◦C (γ ≈ 0.6), Tm = 66 ◦C (γ = 0) and T = 100 ◦C
(γ ≈ −0.5). In the latter case, a small barrier precedes the negative drift towards bubble opening
as dominated by the γ < 0 contribution.

to the situation studied in the recent experiment by Altan-Bonnet et al [14]. According to the
above, the total free energy F(n) of a single bubble with n > 0 open base pairs follows in the
form

βF(n) = − ln [W(n)�(n)] = nγ (T ) + γ1 + c ln(n + 1) (4)

where the dependence on the temperature T enters only via γ = γ (T ). We show the free energy
(4) in figure 1 for c = 1.76 and for the parameters of an AT-homopolymer, for physiological
temperature T = 37 ◦C, at the melting temperature Tm = 66 ◦C, and at T = 100 ◦C, compare
the discussion below.

3. Bubble dynamics

In the generally accepted multistate unzipping model, the double strand opens by successively
breaking Watson–Crick bonds, like opening a zipper [26, 27]. As γ becomes small on
increasing the temperature, thermal fluctuations become relevant and cause a random walk-
like propagation of the zipper locations at both ends of the bubble–helix joints. The fluctuations
of the bubble size can therefore be described in the continuum limit through a Fokker–Planck
equation for the probability density function (PDF) P(n, t) to find at time t a bubble consisting
of n denatured base pairs, following a similar reasoning as pursued in the modelling of the
dynamics of biopolymer translocation through a narrow membrane pore [28]. To establish
this Fokker–Planck equation, we combine the continuity equation (compare [28])

∂P (n, t)

∂t
+

∂j (n, t)

∂n
= 0 (5)

with the expression for the corresponding flux,

j (n, t) = −D

(
∂P (n, t)

∂n
+

P(n, t)

kBT

∂F
∂n

)
(6)

where it is assumed that the potential exerting the drift is given by the bubble free energy (4).
In equation (6), we incorporated an Einstein relation of the form D = kBT µ, where the
mobility µ has dimensions [µ] = s g−1 cm−2, and therefore [D] = s−1 represents an inverse
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time scale. By combination of equations (4), (5) and (6), we retrieve the Fokker–Planck
equation for P(n, t):3

∂P (n, t)

∂t
= D

(
∂

∂n

{
γ +

c

n + 1

}
+

∂2

∂n2

)
P(n, t). (7)

Thus, we arrived at a reduced 1D description of the bubble dynamics in a homopolymer, with
the bubble size n as the effective ‘reaction’ coordinate. For a heteropolymer, the position of
the bubble within the double helix, i.e., the index m of the first open base pair, also becomes
relevant. In this case, the bubble free energy F and thus the PDF depend on both m and
n, and on the specific base sequence; the corresponding generalization of equation (7) is
straightforward. In a random sequence, additional phenomena may occur, such as localization
of larger bubbles [7]. Finally, to establish the Fokker–Planck equation (7), we assume that
changes of the bubble size n occur slower than other degrees of freedom of the PS free energy
within the bubble region (e.g., Rouse–Zimm modes). This assumption seems reasonable
due to the long bubble dynamics’ relaxation time scales of 20 to 100 µs [14], and the good
approximation of bubble independence [7].

By rescaling time according to t → Dt , the Fokker–Planck equation (7) can be made
dimensionless, a representation we are going to use in the numerical evaluation below. The
formulation in terms of a Fokker–Planck equation makes it possible to derive the characteristic
times for bubble closing and opening in terms of a first passage time problem. That is, for
bubble closing, the associated mean closing time follows as the mean first passage time to
reach bubble size n = 0 after starting from the initial bubble size n0. We now determine these
characteristic times for the three regimes defined by γ with respect to temperature T.

(i) T < Tm. In this regime, the drift consists of two contributions, the constant drift Dγ and
the loop closure component Dc/(n + 1), which decreases with n. For large n, we can
therefore approximate the drift by the constant term Dγ , and in this limit the Fokker–
Planck equation (7) is equivalent to the continuum limit of the master equation used in
[14] to describe the experimental bubble data. In particular, we can identify our two
independent parameters D and γ with the rate constants k+ and k− to open and close
a base pair introduced in [14], respectively: D ≡ (k+ + k−)/2 and γ ≡ 2(k− − k+)/

(k+ + k−). In this approximation, the correlation functions used successfully to fit
the experimental results in [14] can be derived from the Fokker–Planck equation (7).
Moreover, we can deduce the mean first passage time PDF for a bubble of initial size n0

to close in the exact analytical form (compare [29])

f (0, t) = n0√
4πDt3

exp

{
− (n0 − Dγ t)2

4Dt

}
(8)

which decays exponentially for large n. In particular, from (8) the characteristic (mean)
first passage time for bubble closing,

τ = n0/(Dγ ) (9)

follows, which is linear in the initial bubble size n0. In figure 2, we compare this analytical
result for the value γ (37 ◦C) with the characteristic closing times using the full drift term
from equation (7), obtained from numerical integration. It can be seen that the qualitative
behaviour for both cases with and without the Dc/(n + 1) term is very similar, but that in
the presence of the loop closure component the characteristic times are reduced.

3 Note that the operator ∂
∂n

acts also on P(n, t).
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Figure 2. Characteristic bubble closing times τ as a function of initial bubble size n0 for an AT-
homopolymer, obtained from the Fokker–Planck equation (7) by numerical integration. At T =
37 ◦C, the result for c = 1.76 is compared to the approximation c = 0 which leads to somewhat
larger closing times. The analytical solution for c = 0 compares well with the numerical result,
the slight discrepancy being due to the reflecting boundary condition applied in the numerics, in
comparison to the natural boundary condition at n → ∞ used to derive equation (8). At the
melting temperature Tm = 66 ◦C, the closing times for the values c = 1.76 and c = 2.12 can be
distinguished.

(ii) T = Tm. At the melting temperature, the drift in equation (7) is solely given by the
loop closure term Dc/(n + 1). In figure 2, we plot the characteristic bubble closing time
obtained numerically. In comparison to the above case T < Tm, the faster than linear
increase as a function of initial bubble size n0 is distinct. Keeping in mind that Dc/(n+1)

becomes very small for increasing n, this behaviour can be qualitatively understood from
the approximation in terms of a drift-free diffusion in a box of size n0, in which the
initial condition P(n, 0) = δ(n − n0) is located at a reflecting boundary, and at n = 0 an
absorbing boundary is placed. This problem can be solved analytically, with the result
τ = n2

0

/
(2D) for the characteristic escape time4 in which the quadratic dependence on

n0 contrasts the linear behaviour in the result (9). Thus, at the melting temperature Tm,
the tendency for a bubble to close becomes increasingly weaker for larger bubble sizes,
and therefore much larger bubbles can be formed, in contrast to the case T < Tm. A
further comparison to the value c = 2.12 mentioned above demonstrates that a clear
quantitative difference in the associated closing times exists, see figure 2. However, the
qualitative behaviour remains unchanged. In principle, the study of the bubble dynamics
can therefore be used to discern different models for the loop closure factor.

(iii) T > Tm. Above the melting temperature, the drift is governed by the interplay between
the loop closure component Dc/(n + 1) tending to close the bubble, and the bubble free
energy Dγ (T > Tm) < 0, which causes a bias towards bubble opening. In figure 1, we
show for the AT-homopolymer case how the overall drift potential after a small initial
activation barrier becomes negative, and the dynamics is essentially governed by the
γ -contribution. As a consequence, from the result (8), we find that the associated mean
first passage time diverges, i.e., the bubble on average increases in size until the entire
DNA is denatured, as expected from the PS model.

By symmetry, similar results hold for the bubble opening process. However, the existence
of the bubble initiation energy γ1 involves an additional Arrhenius factor, which is not included
4 This result can, for instance, be obtained through the method of images, compare [30].
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in the Fokker–Planck equation (7), and which reduces the opening probability, causing an
increase of the associated opening time, cf [14].

4. Conclusions

From the bubble free energy of a single, independent bubble in the Poland–Scheraga theory
of DNA melting, we derived a Fokker–Planck equation for the PDF to find a bubble created
by denaturation of n base pairs at time t. This formulation allows for the calculation of
the characteristic times scales for bubble closing and opening in terms of first passage time
problems. Three different regimes were distinguished: (i) below the melting temperature,
the characteristic bubble closing time increases linearly in bubble size, and the drift can be
approximated by the constant value Dγ . In this approximation, the Fokker–Planck equation
matches the continuum version of the master equation employed previously in an experimental
study of DNA breathing [14]. (ii) At the melting temperature, an approximately quadratic
growth of the bubble closing time as a function of bubble size is observed, which can be
explained by noting that the 1/(n + 1)-dependence of the loop closure drift component can be
neglected for larger n, leading to pure diffusion. In this approximation, the exact analytical
results indeed lead to the quadratic dependence observed in the numerical results. (iii) Above
the melting temperature, the characteristic closing time in our model diverges, consistent with
the fact that on average the DNA follows the trend towards the thermodynamically favourable
state of complete denaturation.

The expression for the Gibbs free energy used in our approach involves a purely entropic
contribution for a single-stranded bubble. It was suggested in [14] that also in denaturation
bubbles a residual stacking energy εs is present. In this case, the value of γ would have to be
corrected by this εs .

From the Fokker–Planck equation (7), in which the microscopic interactions enter via the
free energy (4), one can derive measurable quantities such as moments and dynamic correlation
functions [16]. In principle, the Fokker–Planck equation involves one free parameter, the time
scale 1/D, while the values for the other parameters are known. However, by fitting sufficiently
accurate experimental data for DNA bubble dynamics at different temperatures, the values for
additional parameters may be extracted with the help of our general Fokker–Planck framework
probing suitable free energy functions.
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