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Abstract
We discuss the first passage time problem in the semi-infinite interval, for
homogeneous stochastic Markov processes with Lévy stable jump length
distributions λ(x) ∼ �α/|x|1+α (|x| � �), namely, Lévy flights (LFs). In
particular, we demonstrate that the method of images leads to a result, which
violates a theorem due to Sparre Andersen, according to which an arbitrary
continuous and symmetric jump length distribution produces a first passage
time density (FPTD) governed by the universal long-time decay ∼t−3/2.
Conversely, we show that for LFs the direct definition known from Gaussian
processes in fact defines the probability density of first arrival, which for LFs
differs from the FPTD. Our findings are corroborated by numerical results.

PACS numbers: 05.40.Fb, 02.50.Ey, 05.60.Cd, 05.10.Gg

Lévy flights (LFs) and Lévy walks (LWs) are the prime examples in the investigation of
non-standard transport processes whose stationary solutions do not converge towards the
Boltzmann form [1–4]. Being subject to the generalized central limit theorem [5, 6], LFs
correspond to a Markov process in which extremely long excursions can occur with appreciable
probability, whereas in LWs long excursions are penalized through a time cost introduced via
a spatiotemporal coupling [7]. Applications of LFs and LWs range from the famed flight of an
albatross [8], the spreading of spider-monkeys [9] or the grazing patterns of bacteria [10], over
economical data [11] to molecular collisions [12] and plasmas [13]. Despite their wide usage,
the detailed behaviour of even the simpler, uncoupled LF processes, on which we concentrate
in the following, in external potentials and under non-trivial boundary conditions is still not
fully explored. Thus, recently bifurcations have been discovered between multimodal states
of the probability density function (PDF) of LFs in steeper than harmonic external fields, in
whose presence also the variance becomes finite [14, 15], and rich band structures have been
reported for LFs in periodic potentials [16].

Of particular interest in random processes is the first passage time density (FPTD)
[17–20]. For LFs, the FPTD was determined through the method of images on a finite
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domain in [21], and with similar methods in [22]. These methods lead to results for the FPTD
in the semi-infinite domain, whose long-time behaviour explicitly depends on the Lévy index
α. In contrast, a theorem due to Sparre Andersen proves that for any discrete-time random
walk process starting at x0 �= 0 with each step chosen from a continuous, symmetric but
otherwise arbitrary distribution, the FPTD asymptotically decays as ∼n−3/2 with the number
n of steps [20, 23, 24] being fully independent of the index of the LF, i.e., universal. In the
case of a Markov process, the continuous time analogue of the Sparre Andersen result reads

p(t) ∼ t−3/2. (1)

The analogous universality was proved by Frisch and Frisch for the special case in which an
absorbing boundary is placed at the location of the starting point of the LF at t > 0 [25],
and numerically corroborated by Zumofen and Klafter [26]. In the following, we demonstrate
that the method of images is generally inconsistent with the universality of the FPTD, and
therefore cannot be applied to solve FPTD problems for LFs. We also show that for LFs the
FPTD differs from the PDF for first arrival.

Let us start by recalling that an unbiased LF can be defined through the space-fractional
diffusion equation for the PDF W(x, t) [2, 27, 28]

∂

∂t
W = D

∂α

∂|x|α W(x, t) ∴
∫ ∞

−∞
eikx ∂αW

∂|x|α dx ≡ −|k|αW(k, t) (2)

where we define the fractional derivative ∂α/∂|x|α by its Fourier transform. (Here and in the
following, we restrict ourselves to 1 < α < 2.) In position space, the fractional derivative is
defined in terms of the convolution (see [14] for the case α = 1)

∂α

∂|x|α W(x, t) ≡ D

κ

∂2

∂x2

∫ ∞

−∞

W(x ′, t)
|x − x ′|α−1

∴ κ ≡ 2�(2 − α)

∣∣∣cos
πα

2

∣∣∣ . (3)

Equivalently, LFs can be described in terms of continuous time random walks with long-tailed
jump length distributions λ(x) ∼ �α/|x|1+α [7, 29]. The associated PDF W(x, t) for natural
boundary conditions (lim|x|→∞ W(x, t) = 0) with initial condition δ(x) is the Lévy stable
law W(x, t) = ∫ ∞

−∞ exp(−ikx −D|k|αt) dk/(2π) [5, 6]. In Fourier–Laplace space4, this PDF
corresponds to W(k, s) = (s + D|k|α)−1. A characteristic of LFs is the divergence of the
variance of both W(x, t) and λ(x). Equipping equation (2) with a δ-sink of strength pfa(t),
we obtain the diffusion–reaction equation for the non-normalized density function f (x, t),

∂

∂t
f (x, t) = D

∂α

∂|x|α f (x, t) − pfa(t)δ(x) (4)

from which by integration over the unrestricted space, we find the quantity

pfa(t) = − d

dt

∫ ∞

−∞
f (x, t) dx (5)

i.e., pfa(t) is the negative time derivative of the survival probability. By definition of the
sink term, pfa(t) is the PDF of first arrival: once a random walker arrives at the sink, it is
annihilated. By solving equation (4) through standard methods (determining the homogeneous
and inhomogeneous solutions), it is straightforward to calculate the solution f in terms
of the propagator W of equation (2) with initial condition f (x, 0) = δ(x − x0) yielding
f (k, u) = [eikx0 + pfa(u)]/(s + D|k|α), from which, in turn, we find that pfa(t) satisfies the
chain rule (pfa implicitly depends on x0)

W(−x0, t) =
∫ t

0
pfa(τ )W(0, t − τ) dτ (6)

4 We denote the Laplace and Fourier transforms through the explicit use of the image variables: p(s) ≡∫ ∞
0 p(t) e−st dt and f (k, t) ≡ ∫ ∞

−∞ f (x, t) eikx dx.
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which corresponds to the Laplace space relation pfa(s) = W(−x0, s)/W(0, s). Equation (6) is
well known and for any sufficiently well-behaved continuum, a diffusion process is commonly
employed to define the FPTD [18, 20].

For Gaussian processes with propagator W(x, t) = 1/
√

4πDt exp(−x2/[4Dt]), one
obtains, by direct integration of the diffusion equation with appropriate boundary condition,
the FPTD [20]

p(t) = x0(4πDt3)−1/2 exp
(−x2

0

/
(4Dt)

)
(7)

including the asymptotic behaviour p(t) ∼ t−3/2 for t � x2
0

/
(4D). In this Gaussian case, the

quantity pfa(t) is equivalent to the FPTD. From a random walk perspective, this is due to the
fact that individual steps are of the same increment, and the jump length statistics therefore
ensures that the walker cannot hop across the sink in a long jump without actually hitting
the sink and being absorbed. This behaviour becomes drastically different for Lévy jump
length statistics: there, the particle can easily cross the sink in a long jump. Thus, before
eventually being absorbed, it can pass by the sink location numerous times, and therefore
the statistics of the first arrival will be different from that of the first passage. In fact, with
W(x, s) = (2π)−1

∫ ∞
−∞ eikx(s + D|k|α)−1 dk, we find

pfa(s) = 1 −
∫ ∞

0 (1 − cos kx0)/(s + Dkα) dk∫ ∞
0 1/(s + Dkα) dk

(8)

by use of the de Moivre identity exp(iz) = cos z + i sin z. With
∫ ∞

0 (s + Dkα)−1 dk =
πs1/α−1/(αD1/α sin(π/α)) and∫ ∞

0

1 − cos kx0

s + Dkα
∼ �(2 − α) sin(π(2 − α)/2)xα−1

0

(α − 1)D
s → 0 α > 1

we obtain the limiting form

pfa(s) ∼ 1 − xα−1
0 s1−1/αD−1+1/α
̃(α) (9)

where 
̃(α) = α�(2 − α) sin(π(2 − α)/2) sin(π/α)/(α − 1). We note that the same result is
obtained by the exact expressions for W(x0, s) and W(0, s) in terms of Fox H-functions and
systematic expansion [30]. The inverse Laplace transform of the small s-behaviour (9) can
be obtained by completing (9) to an exponential, and then computing the Laplace inversion
by the identification ez = H

1,0
0,1 [z|(0, 1)] with the Fox H-function [30], for which the exact

Laplace inversion can be performed [31]. Finally, a series expansion of this result leads to the
long-t form

pfa(t) ∼ C(α)
xα−1

0

D1−1/αt2−1/α
(10)

with C(α) = α�(2 − α)�(2 − 1/α) sin(π [2 − α]/2) sin2(π/α)/(π2(α − 1)). Clearly, in the
Gaussian limit, the required asymptotic form p(t) ∼ x0/

√
4πDt3 for the FPTD is consistently

recovered, whereas in the general case the result (10) is slower than in the universal FPTD
behaviour in equation (1), as it should as the δ-trap used in equation (4) to define the first
arrival for LFs is weaker than the absorbing wall used to properly define the FPTD. For LFs,
the PDF for first arrival thus scales like (10) (i.e., it explicitly depends on the index α of the
underlying Lévy process), and, as shown below, it differs from the corresponding FPTD.

Before calculating this FPTD, we first demonstrate the validity of equation (10) by means
of a simulation the results of which are shown in figure 1. Random jumps with LF jump length
statistics are performed, and a particle is removed when it hits a certain interval of width w

around the sink; for our simulations we found an optimum value w ≈ 0.3. As seen in figure 1
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Figure 1. First arrival PDF for α = 1.2 demonstrating the t−2+1/α scaling, for optimal trap width
w = 0.3. For comparison, we show the same scaling for α = 1.8, and the power-law t−3/2

corresponding to the FPTD. The behaviour for too large w = 1.0 shows a shift of the decay
towards the −3/2 slope. Note that on the abscissa we plot lg tp(t). Note also that for the initial
condition x0 = 0.0, the trap becomes activated after the first step, consistent with [26].

(note that we plot lg tp(t)!) and for analogous results not shown here, relation (10) is nicely
fulfilled for all 1 < α < 2, whereas for larger w, the slope increases.

The proper dynamical formulation of an LF on the semi-infinite interval with an absorbing
boundary condition at x = 0, and thereby the determination of the FPTD, has to make sure that
in terms of the above random walk picture, jumps across the sink are forbidden. This can be
consistently achieved by setting f (x, t) ≡ 0 on the left semi-axis, i.e., actually removing the
particle when it crosses the point x = 0. This formally corresponds to the modified dynamical
equation

∂f (x, t)

∂t
= D

κ

∂2

∂x2

∫ ∞

0

f (x ′, t)
|x − x ′|α−1

dx ′ ≡ ∂2

∂x2
F(x, t) (11)

in which the fractional integral is truncated to the semi-infinite interval. After Laplace
transformation and integrating over x twice, one obtains∫ ∞

0
K(x − x ′, s)f (x ′, s) dx ′ = (x − x0)�(x − x0) − xp(s) − F(0, s) (12)

where p(t) is the FPTD and the kernel K(x, s) = sx�(x) − (κ|x|α−1). This equation is
formally of the Wiener–Hopf type of the first kind [32]. After some manipulations similar
to those applied in [26], we arrive at the asymptotic expression p(s) 
 1 − Cs1/2, where
C = const, in accordance with the universal behaviour (1) and with the findings in [26].
Thus, the dynamic equation (11) consistently phrases the FPTD problem for LFs. We note
that due to the truncation of the fractional integral it was not possible to modify the well-
established Grünwald–Letnikov scheme [33] to numerically solve equation (11) with enough
computational efficiency to numerically obtain the direct solution for f (x, t). However, to
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Figure 2. Numerical results for the FPTD process on the semi-infinite domain, for an LF with
Lévy index α = 1.2. Note that on the abscissa, we plot tp(t). For all initial conditions x0 = 0.10,

1.00, 10.0 and 100.0 the universal slope −3/2 in the log10–log10 plot is nicely reproduced, and it
is significantly apart from the two slopes predicted by the images method and the direct definition
of the FPTD.

corroborate the validity of the Sparre Anderson universality, we perform a simulation of an
LF in the presence of an absorbing wall, i.e., random jumps with LF jump length statistics are
performed along the right semi-axis, and a particle is removed when it jumps across the origin
to the left semi-axis. Results of such a detailed random walk study are displayed in figures 2
and 3. The expected universal t−3/2 scaling is nicely obtained for various initial conditions
and α. Clearly, the scaling for the first arrival and the image method-FPTD derived below are
significantly different.

We now demonstrate that the method of images produces a result, which is consistent
neither with the universal behaviour of the FPTD (1) nor with the behaviour of the PDF of
first arrival (10). Given the initial condition δ(x − x0), the solution fim(x, t) for the absorbing
boundary value problem with the analogous Dirichlet condition fim(0, t) = 0 according to the
method of images is given via the difference [19, 20]

fim(x, t) = W(x − x0, t) − W(x + x0, t) (13)

in terms of the free propagator W , i.e., a negative image solution originating at −x0 balances
the probability flux across the absorbing boundary. The corresponding pseudo-FPTD is then
calculated in the same way as in equation (5). For the image solution in Fourier–Laplace
space, we obtain

fim(k, s) = [2i sin(kx0)]/(s + D|k|α) (14)

for a process which starts at x0 > 0 and takes place in the right half space. In Laplace space,
the image method-FPTD becomes

pim(s) = 1 − s

∫ ∞

0
dx

∫ ∞

−∞

dk

2π
e−ikx 2i sin kx0

s + D|k|α . (15)
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Figure 3. Same as in figure 2, for α = 2.0, 1.5, 1.0 and 0.6, and for the initial condition x0 = 10.0.
Again, the universal ∼ t−3/2 behaviour is obtained.

After some transformations, we arrive at

pim(s) = 1 − 2/π

∫ ∞

0
dξ sin(ξs1/αx0/D

1/α)/[ξ(1 + ξα)]. (16)

In the limit of small s, this expression reduces to pim(s) ∼ 1 − 
(α)x0D
−1/αs1/α , with


(α) = (2/π)
∫ ∞

0 (1 + ξα)−1 dξ = 2/(α sin(π/α)). Following the same procedure as
outlined above, we find the long-t form

pim(t) ∼ 2�(1/α)x0/(παD1/αt1+1/α) (17)

for the image method-FPTD. In the Gaussian limit α = 2, expression (17) produces pim(t) ∼
x0/

√
4πDt3, in accordance with equation (7). Conversely, for general 1 < α < 2, pim(t)

according to equation (17) would decay faster than ∼t−3/2. The method of images breaks
down for LFs due to their special non-local nature, displayed by the integrals in equations (2)
and (3), and (11), namely having a long-tailed jump length distribution. This leads to leapovers
beyond the absorbing boundary. The method of images is expected to work when the boundary
is also a turning point of the trajectory, as actually happens for nearest neighbour random walks,
or the Wiener process.

Qualitatively, the following argument may be brought forth in favour of the observed
universality of the LF-FPTD: the long-time decay is expected to be governed by short-distance
jump events, corresponding to the central region of very small jump lengths for the Lévy stable
jump length distribution. But this region is, apart from a prefactor, indistinguishable from the
Gaussian distribution, and therefore the long-time behaviour should in fact be the same for any
continuous jump length distribution λ(x). In fact, the universal law (1) can only be modified in
the presence of non-Markov effects such as broad waiting time processes or spatiotemporally
coupled walks [2, 7, 20, 34, 35]. In terms of the special case covered by the theorem of Frisch
and Frisch [25], in which the absorbing boundary coincides with the initial condition, we
can understand the general situation for finite x0 > 0, as in the long-time limit, the distance
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x0 becomes negligible in comparison to the diffusion length 〈|x(t)|〉 ∼ t1/α: therefore the
asymptotic behaviour is necessarily governed by the same universality.

Concluding, we demonstrated that the method of images, which has been developed as
a powerful tool in Gaussian diffusion also beyond the homogeneous case [19, 20] and in the
presence of long-tailed waiting times [2, 34, 35], fails for LF processes, leading to a false result
for the FPTD. Moreover, we showed that for such broad jump length statistics, the PDF of first
arrival at a point differs from the FPTD. We also provided a framework in terms of a truncated
fractional diffusion equation to solve the FPTD problem for an LF. This study is expected
to significantly contribute to the understanding of the, at instances, non-trivial behaviour
of LFs.
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