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Abstract

We investigate the physical background and implications of a space- and time-fractional diffusion equation which

corresponds to a random walker which combines competing long waiting times and L�eevy flight properties. Explicit

solutions are examined, and the corresponding fractional Fokker–Planck–Smoluchowski equation is presented. The

framework of fractional kinetic equations which control the systems relaxation to either Boltzmann–Gibbs equilibrium,

or a far from equilibrium L�eevy form is explored, putting the fractional approach in some perspective from the standard

non-equilibrium dynamics point of view, and its generalisation.
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1. Introduction

A cornerstone in the development of modern physics was the introduction of the concept of probability

into atomistic physics in Maxwell’s theory of gas kinetics [1], and in Boltzmann’s transport equation [2]. In

these theories, particles are usually viewed, from a stochastic standpoint, in a bath of equivalent particles,

giving rise to collisions, and eventually to systems equilibration, uniquely towards the Maxwell–Boltzmann

distribution

W ðvÞ ¼ ð2pkBT =mÞ�1=2e�mv
2=ð2kBT Þ ð1Þ

of velocities.
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Similarly, diffusion processes occur when there is a gradient in the distribution of a certain substance in

another substance. One can distinguish between (self)diffusion of a bulk of molecules of one sort in a bulk

of molecules with different physical properties (isotopes, etc.) and Brownian motion, the erratic motion of a

larger molecule in a bath of smaller molecules which continuously bombard the larger one such that the

latter experiences a net motion. Diffusion as a physical process of everyday experience is mostly a phe-

nomenon associated with the gaseous phase, such as the mixing of transparent air and brownish bromine
gas or the spreading of perfume in air. In liquids, diffusion is mostly too slow to be easily perceptible such as

the diffusion of sugar in a cup of tea which occurs on the time scale of days. However, on small scales like in

biological cells, Brownian motion dominates [3].

The first mathematical description of diffusion is due to Fick [4] whose ‘‘second law’’

oC
ot

¼ K
o2

ox2
Cðx; tÞ ð2Þ

for the concentration Cðx; tÞ of the substance of interest, which was based on Fourier’s 1822 law of heat

conduction. Here, K denotes the diffusion constant which is, in essence, a measure for the efficiency of the

spreading of the underlying substance.

The breakthrough in understanding diffusion processes came with the connection to random walks and,

ultimately, probability theory. Originally described as the ‘‘battling’’ of (dust) particles seen against the
sunlight in dark hallways of houses by Roman poet-philosopher Titus Lucretius Carus [5], re-discovered by

Dutch physicist-physician Jan Ingenhousz [6] as the jittery motion of fine charcoal dust on an alcohol surface

and later by Scottish botanist Robert Brown [7] as zig-zag motion of small pollen grains, the physical nature

of this process was investigated further both experimentally and theoretically [8]. It was Albert Einstein [9] in

his kinetic approach to diffusion who connected the diffusion equation with random walks, from a proba-

bilistic viewpoint. Accordingly, diffusion is governed by the linear parabolic partial differential equation

oW
ot

¼ K
o2

ox2
W ðx; tÞ ð3Þ

for the probability density function (pdf) W ðx; tÞ. The associated distribution W ðx; tÞdx is the probability to
find the random walker at position x; . . . ; xþ dx at time t. This is, the concentration picture becomes a

probabilistic approach, and Eqs. (2) and (3) can be related through the normalisation

W ðx; tÞ ¼ Cðx; tÞ=
R
Cðx; tÞdx. An important finding of Einstein was the relation (now referred to as Einstein

relation)

K ¼ kBT=ðmgÞ ð4Þ
between the diffusion constant K and the friction constant g experienced by the Brownian particle as an ef-

fective interaction with the bath particles. This relation was used by Perrin to determine the Avogadro/Los-

chmidt number by determination ofK, through recordings as shown in Fig. 1. Perrin’s work was a formidable

step in the connectionbetweenmicroscopic physics andmacroscopic quantities known from thermodynamics.
Perrin’s experiments were later refined byWestgren andKappler [11,12]. It should be noted that actually some

of Einstein’s results were found previously by Bachelier [13] in his thesis on stock market fluctuations.

The Green’s function of the diffusion equation (i.e., the solution for the d initial condition W0ðxÞ ¼ dðxÞ)
is given by the Gaussian

W ðx; tÞ ¼ ð4pKtÞ�1=2e�x2=ð4KtÞ; ð5Þ
which, in turn, produces the mean squared displacement

hx2ðtÞi ¼ 2Kt ð6Þ
with the typical linear time-dependence. The universality of the Gaussian solution (5) is guaranteed by the

central limit theorem which states that the normalised sum N�1=2PN
1 Xn of the independent random vari-
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able Xn with finite variance in the limit of large sample size N will be Gaussian-distributed, irrespectively of

the details of the distribution of the Xn [14,15].
In a broad variety of systems, however, it has been found that correlations in space or time give birth to

anomalous transport whose pdf is non-Gaussian and/or whose mean squared displacement is non-linear in

time or even diverges [16–18]. These systems include charge carrier transport in amorphous semiconductors

[19], aqueous solutions of gelatin [20], conducting carbon-black composites [21], tracer dispersion in con-

vection rolls and rotating flows [22], capillary surface waves [23], Richardson pair dispersion [24], solar
surface flow [25], the motion of bacteria and the flight of an albatross [26], microrheology in complex fluids

such as solutions of polyethylene oxide and actin [27], intracellular transport [28], statistics in econophysics

[29], transport in micelles [30], 2-D dusty plasmas [31], the dynamics in (bio)polymeric systems [32], the

NMR diffusometry in porous glasses and percolation clusters [33], laser cooling in quantum optical systems

[34], and subsurface and catchment transport of chemicals in aquifers [35], among a zoo of others.

In what follows, we introduce some common statistical concepts for the description of normal transport

processes and explore their possible extension to anomalous transport processes. We then consider a bi-

fractional diffusion equation which combines L�eevy jump statistics with a slowly decaying memory such that
x and t decouple. We present analytical solutions for the different regimes which are analysed numerically.

These results are put in a perspective with the systems equilibration in the presence of an external field, and

with L�eevy walks which couple space and time. Finally, we summarise and give a short outlook.

2. Brownian diffusion concepts

In this section we briefly list some approaches to the description of Brownian diffusion. In the next
section, we will then see how generalisations of some of these concepts give rise to anomalous diffusion.

(i) Langevin equation approach. The physical picture of a molecule which experiences ongoing bom-

bardments through bath molecules is embedded in the Langevin equation [15,36,37]

Fig. 1. Random walk trajectories recorded by Perrin [10]. Left: three designs obtained by tracing a small grain of putty at intervals of

30 s. Right: the starting point of each motion event is shifted to the origin. The figure illustrates the continuum approach of the jump

length distribution if only a large number of jumps is considered.
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dx
dt

¼ CðtÞ=g; ð7Þ

which describes the changes of the position due to the random force CðtÞ in time, mediated through the

friction constant g. The random force is additive, i.e., independent of x, and such that its mean CðtÞ ¼ 0

vanishes. Brownian motion corresponds to white Gaussian noise in the sense that the distribution of C,
pðCÞ, is Gaussian, i.e., the characteristic function of p is of the form e�ak

2
; and to the d-correlation

CðtÞCðt0Þ ¼ Ddðt � t0Þ: ð8Þ
Here, the ‘‘noise strength’’ D fulfils D ¼ 2gkBT=m due to the fluctuation–dissipation relation. Actually, Eq.

(7) corresponds to the high-friction limit of the phase-space Langevin equation [36]

d

dt
x ¼ v;

d

dt
v ¼ �gvþ F ðxÞ=mþ CðtÞ: ð7aÞ

Eq. (7) can be integrated immediately, and by realising that x2ðtÞ ¼ x20 þ g�2 R t
0

R t0
0

CðtÞCðt0Þdtdt0, one finds
with (8) the second moment (6) and the Einstein relation (4) [15,16,36].

(ii) Chapman–Kolmogoroff approach. Combining the Langevin equation (7a) with the fundamental

Chapman–Kolmogoroff equation from probability theory [38], one obtains the Klein–Kramers equation, a

bivariate Fokker–Planck equation in phase space whose low- and high-friction limits are the Rayleigh and

Fokker–Planck–Smoluchowski equations [39,40].

(iii) Random walk approach. In the simplest case, consider a 1-D lattice random walk with lattice spacing

a. If at a given location at time t, the walker must have just performed a jump from either the left or the
right. If only next-neighbour jumps are considered (being of the length of the lattice constant a), the

probability W ðxn; tÞ to find the walker at site xn ¼ xn	1 
 a at time t is defined through

W ðxn; tÞ ¼
1

2
W ðxn�1; t � DtÞ þ 1

2
W ðxnþ1; t � DtÞ: ð9Þ

This is actually the simplest form of a master equation [15]. In the continuum limit which has to be taken

such that a2=Dt remains finite, we obtain exactly the diffusion equation (3) in OðDtÞ and Oða2Þ, and with
K � a2=ð2DtÞ.

(iv) Master equation approach. The master equation [41] is the differential form of the Chapman–

Kolmogoroff equation [15]. A special form of a master equation, Eq. (9), shows its intimate connection to

random walk processes. Its general form is continuous and allows for distributions of jump lengths

[15,16,36].

(v) Continuity equation plus constitutive law. The more phenomenological approach to diffusion com-

bines the continuity equation

oW
ot

¼ � o

ox
Sðx; tÞ ð10Þ

with the constitutive equation (‘‘Fick’s first law’’)

Sðx; tÞ ¼ �K o

ox
W ðx; tÞ ð11Þ

to produce Eq. (3). Here, the probability current S is defined such that it drives the diffusing substance to

destroy the probability current [4,16].

(vi) Hamiltonian approach. This is a valuable approach to diffusion systems in the weak noise limit
underlined by Fogedby [42]. Let us consider the simplest case, given by the Langevin equation (7) with noise

correlation (8). With the ansatz W / e�S=K, one finds, in the weak noise limit, the Hamilton–Jacobi-type

equation
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o

ot
S þ Hðx; oS=oxÞ ¼ 0

for S.

By identifying the canonical momentum p ¼ oS=ox and energy E ¼ H , the ‘‘Hamiltonian’’ of the system

is given by H ¼ p2=2, and one can define the ‘‘action’’

Sðx; tÞ ¼
Z

p
dx
dt0

�
� H

�
dt0 ð12Þ

such that the principle of least action defines the canonical equations

dx
dt

¼ Kp;
dp
dt

¼ 0: ð13Þ

Generalisations to multidimensional, forced, and even non-linear systems are possible, and therefore the

dynamics can be investigated within the language of dynamical systems which allows for a detailed stability

analysis [42].

3. Pathways to anomalous diffusion

Let us now consider generalisations of these principles to cases of anomalous diffusion.

(i) Continuous time random walk (CTRW) approach. Possibly the most common approach to anomalous

diffusion with constant or vanishing external force is the generalised random walk framework, the CTRW

introduced by Montroll, and coworkers [43]. Following Klafter et al. [44], we consider random walks which

follow a multiple trapping scenario such that the walker gets occasionally trapped at some location. It is
immobilised for some waiting time t after which it is released and continues its random walk. Eventually, it

will be trapped again and so forth. Individual waiting times are distributed with the waiting time pdf wðtÞ.
In continuous space, the length x of each jump might be additionally distributed according to another pdf,

the jump length pdf kðxÞ. In Fourier–Laplace space defined through

W ðk; uÞ �
Z 1

0

Z 1

�1
e�ut�ikxW ðx; tÞdxdt;

it can be shown that the pdf W ðx; tÞ is given by

W ðk; uÞ ¼ 1� wðuÞ
u

1

1� Wðk; uÞ ; ð14Þ

where Wðx; tÞ is the jump distribution. If w and k are decoupled, Wðx; tÞ ¼ wðtÞkðxÞ; the coupled case will be
discussed below. In the usual diffusion limit k ! 0 and u ! 0, Eq. (14) can then be solved for the pdf W.

For instance, the Gaussian (5) is recovered for all those w and k which possess at least the first or second
moments, respectively, such as kðxÞ ¼ ð4p‘2Þ�1=2e�x2=ð4‘2Þ and wðtÞ ¼ se�t=s which correspond to

kðkÞ � 1� ‘2k2 and wðuÞ � 1� su. For all forms of wðtÞ and kðxÞ which possess diverging moments of first

or second order, the associated diffusion process is no longer Gaussian [16,44]. In particular, a waiting time

pdf wðtÞ with diverging first moment corresponds to a process with a slowly decaying memory due to the

fact that extremely long waiting times t are allowed with a fairly high probability; 1 similarly, a jump length

1 Note that is is sufficient to to have a wðtÞ with diverging characteristic waiting time to produce a non-Gaussian pdf W ðx; tÞ, even for
a kðxÞ with existing second moment. Conversely, a process with existing characteristic waiting time but diverging step length variance is
still Markoffian [16].
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pdf kðxÞ with diverging second moment allows for extremely long jumps, a process called a L�eevy flight

[16,17]. These processes are discussed in more detail at hand of the bi-fractional diffusion equation in the

following section.

(ii) Generalised master equation approach. CTRWalks correspond exactly to a generalised master

equation [45], this is, a master equation with a memory kernel

W ðx; tÞ ¼
Z 1

1
dx0
Z t

0

dt0Kðx; x0; t � t0ÞW ðx0; t0Þ; ð15Þ

in which the kernel K determines the jump length and the waiting times. Actually, in the form (15), also

arbitrary external force fields can be incorporated [46].

(iii) Langevin equation approach. Fogedby [47] shows that on parametrising the random walk with its arc

length s along the trajectory, the position of the random walker is xðsÞ ¼
R s
0
xðs0Þds0 where xðs0Þ denotes the

length of the ‘‘sth’’ step. This corresponds to the Langevin equation

dx
ds

¼ xðsÞ; ð16Þ

where the arc length s takes on the role of time which, in turn, is connected to the actual clock time t

through the analogous Langevin equation

dt
ds

¼ tðsÞ ð17Þ

involving the waiting times t, so that the coupled Eqs. (16) and (17) constitute an alternative formulation of

CTRWs. It is shown in [47] how certain solution types can be obtained from this formalism.
For a pure L�eevy flight, one can directly infer the corresponding space-fractional diffusion and Fokker–

Planck equation from the Langevin equation with L�eevy noise [48], compare [49].

(iv) Generalised Chapman–Kolmogoroff equation approach. In [50], it was demonstrated how a continuous

time generalised version of the Chapman–Kolmogoroff equation gives rise to different regimes of anom-

alous diffusion. For instance, to obtain the subdiffusive domain, the associated multiple trapping process is

viewed as trapping periods interrupting a dynamics defined in terms of the standard Langevin equation.

Due to its fundamental nature, the generalised Chapman–Kolmogorov equation contains a large pool of

stochastic processes from which the types discussed herein can be distilled under certain assumptions [50].
(v) Characteristic functional approach. Vlad et al. [51] employ a characteristic functional approach

combined with the Huber complex relaxation model to study L�eevy-type processes in the one- and, inter-

estingly, many-body picture. A special case of this approach is the space-fractional Fokker–Planck equa-

tion discussed in the following.

(vi) Generalised Hamiltonian approach? Due to the temporally and spatially non-local nature of gener-

alised diffusion processes of the type discussed herein, a direct generalisation of the above sketched

Hamiltonian approach is not feasible. It might be an interesting point for future work to find some gen-

eralised least action principle associated with memory or L�eevy flight processes.
Trajectories vs the pdf W ðx; tÞ. The pdf W ðx; tÞ is an averaged quantity which controls the probability to

find the random walking test particle at some position x at time t, after a large number of steps. In contrast,

a given trajectory, the spatial route followed by the random walker in a particular sequence of steps (like the

Perrin images in Fig. 1), keeps track of the microscopic motion of the particle. The trajectory contains less

information than the x–t diagram of the kinetics (in which waiting times correspond to horizontal ‘‘stag-

nation lines’’), as it is independent of the time spent on a given segment of the path. It is therefore entirely

dominated by the jump length distribution k. In Fig. 2, we compare the two types of trajectories created by
a k with and without a finite variance. It is prominent how singular long jumps separate the trajectory into
clusters in L�eevy flights. These, when magnified, show an equivalent structure, this statistical self-similarity
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giving rise to a fractal graph dimension of the L�eevy trajectory [16]. The connection between the generalised

central limit theorem whose limit distributions are L�eevy stable distributions are reviewed in the detailed

report by Bouchaud and Georges [17].

4. Bi-fractional diffusion and wave equations

Consider a diffusion process which combines long-tailed waiting time and L�eevy flight properties, i.e., a
decoupled CTRW process with waiting time and jump length pdfs which do not possess a first and second

moment, respectively. If we assume that both t and x are identically distributed random variables whose

distributions fall into the basin of the generalised central limit theorem [16,17,52] it follows that the

characteristic functions of w and k are given by

wðuÞ �
Z 1

0

wðtÞe�ut dt ¼ e�saua ð18Þ

with 0 < a6 1 and2

kðkÞ �
Z 1

�1
kðxÞeikx dx ¼ e�rljkjl ð19Þ

with 0 < l6 2, respectively. Eq. (18) defines a one-sided L�eevy distribution which corresponds to the as-
ymptotic behaviour wðtÞ � ðt=sÞ�1�a

=s for 0 < a < 1, and therefore to a diverging characteristic waiting

time

T �
Z 1

0

twðtÞdt: ð20Þ

Fig. 2. L�eevy trajectory with L�eevy index 1.5 consisting of 7000 steps. The lines connect successive locations of the random walker,

illustrating the clustering nature which gives rise to the fractal graph dimension (compare [16]). The small trajectory corresponds to a

Gaussian random walk with the same number of steps. The space-filling character in this 2-D case contrasts the fractal structure of the

L�eevy trajectory.

2 We only consider symmetric forms for k. The more general skewed case is discussed in [53].
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In the limit a ! 1, Eq. (18) reduces to the limiting exponential wðuÞ ¼ e�us, and therefore to the d-form
wðtÞ ¼ dðt � sÞ of the waiting time pdf, and the characteristic waiting time T ¼ s. In this limit, Markoffian

dynamics is recovered. Similarly, Eq. (19) defines a symmetric L�eevy distribution which gives rise to the

asymptotic power-law behaviour kðxÞ � ðjxj=rÞ�1�l
=r (0 < l < 2) such that the jump length variance

X2 �
Z 1

�1
x2kðxÞdx ð21Þ

diverges. For l6 1, even the corresponding first moment jXj �
R1
�1 jxjkðxÞdx diverges. In the limit l ¼ 2,

Eq. (19) defines the Gaussian jump length distribution kðxÞ ¼ ð4pr2Þ�1=2 expð�x2=ð4r2ÞÞ with variance

X2 ¼ 2r2.

The jump pdf Wðx; tÞ ¼ kðxÞwðtÞ in the diffusion limit therefore takes on the asymptotic form

Wðk; uÞ ¼ 3DwðuÞkðkÞ � 1� ðusÞa � ðrjkjÞl: ð22Þ
With relation (14), we obtain the Fourier–Laplace transform

W ðk; uÞ ¼ 1=u
1þ Kl

a u�ajkjl ð23Þ

of the propagator W ðx; tÞ where we defined Kl
a � rl=sa.

Multiplying with the denominator of the right-hand side of Eq. (23), we get

W ðk; uÞ � 1

u
¼ �Kl

a u
�ajkjlW ðk; uÞ: ð24Þ

Noting that the Fourier transform of the initial condition W0ðxÞ ¼ dðxÞ is 1, this equation immediately

yields the bi-fractional equation

W ðx; tÞ � W0ðxÞ ¼ Kl
a 0D�a

t Dl
xW ðx; tÞ ð25Þ

in the so-called integral form (for the fractional time-integral on the right-hand side), see definitions (30) and
(33) below. Applying an ordinary differentiation in time, we arrive at the differential form of Eq. (25), the

bi-fractional diffusion equation

oW
ot

¼ Kl
a 0D1�a

t Dl
xW ðx; tÞ ð26Þ

for 0 < a < 1 and 0 < l6 2. The generalised diffusion constant bears dimension ½Kl
a � ¼ cml s�a. We will

discuss Eq. (26) and its solution in more detail in the following section. 3 The mean squared displacement

corresponding to Eqs. (25) and (26) is obtained to follow the power-law form

x2ðtÞ
� �

¼ 2K2
a

ta

Cð1þ aÞ ð27Þ

for l ¼ 2; otherwise, it diverges. 4

Formally, the bi-fractional diffusion equation can be extended into the parameter range 1 < a < 2 (see

below for more details on restrictions). In this regime, the bi-fractional wave equation [55] 5; 6

o2W
ot2

¼ Kl
a 0D2�a

t Dl
xW ðx; tÞ ð28Þ

3 Note that Eqs. (25) and (26) can also be written in the decoupled form 0Da
t W ðx; tÞ � t�aW0ðxÞ

Cð1�aÞ ¼ Kl
a
o2

ox2W ðx; tÞ: By the explicit

occurrence of the initial value term W0ðxÞ ¼ W ðx; 0Þ, the normalisation is preserved, as 0Da
t 1 ¼ t�a=Cð1� aÞ [54].

4 I.e., the properties of T and X2 translate to the macroscopic level of the process, signifying the scale-invariant nature of the long

power-law tails.
5 The space-fractional operator enters analogously to the above discussion.
6 Note that we chose a different notation from [55] for matter of consistency.
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with the generalised ‘‘velocity’’ yields. Thus, in the limit a ¼ 2 and l ¼ 2, Eq. (28) reduces to the standard

wave equation

o2W
ot2

¼ c2
o2

ox2
W ðx; tÞ ð29Þ

with c2 � K2
2 , which describes ballistic propagation with hx2ðtÞi ¼ c2t2. The fractional wave equation can be

obtained as an overdamped, force-free limit of two complementary fractional Klein–Kramers models

discussed to some extent below. Here, we want to concentrate on its properties.

In Eqs. (25), (26) and (28), the fractional Riemann–Liouville operator is defined through the fractional

integral [54]

0D�a
t W ðx; tÞ ¼ 1

CðaÞ

Z t

0

dt0
W ðx; t0Þ
ðt � t0Þ1�a ; a 2 Rþ ð30Þ

combined with the ordinary differential operator such that

0Dn�a
t W ðx; tÞ ¼ on

otn 0D�a
t W ðx; tÞ

� 	
; nP a ^ n 2 N: ð31Þ

The Riemann–Liouville fractional integral fulfils the important propertyZ 1

0

e�ut
0
D�a
t f ðtÞ

� 	
dt ¼ u�af ðuÞ ð32Þ

under Laplace transformation by which from (24) we identified the fractional time derivative in Eq. (25).

Conversely, the spatiofractal operator Dl
x is defined in terms of the Fourier transformZ 1

�1
Dl

xW ðx; tÞeikx dx ¼ �jkjlW ðk; tÞ: ð33Þ

Dl
x is sometimes called fractional Riesz operator, and in one dimension it is, up to the argument, equivalent

to the Weyl fractional operator [54].

We note that both generalised equations (26) and (28) reduce to the standard diffusion equation (3) in the
limit a ¼ 1 and l ¼ 2, as can be seen from the limit forms of the fractional operators. Both Eq. (25) and the

integral form of Eq. (28) in the limit l ¼ 2 correspond to the fractional diffusion equation introduced by

Schneider and Wyss [56]. The combined bi-fractional form was considered by Saichev and Zaslavsky [57].

The space-fractional case was derived by Seshadri and West [58]. The time-fractional wave equation was

originally derived by West et al. [59]. Its properties were studied in [55] where the counter-moving two-

hump character of the solution was stressed. More recently, the combined space- and time-fractional form

was put forward by West and Nonnenmacher [60], and it was investigated by Mainardi et al. [53] and by

Luchko and Gorenflo [61]. As the latter references investigate the mathematical properties of Eqs. (26) and
(28) in seminal fashion, we restrict our discussion to some more fundamental properties, and prefer to

concentrate on the physical embedding and implications of these model equations. Moreover, some new

special cases are given particular consideration. In this sense, our treatise complements the recent study by

Barkai who focuses on the differences between the CTRW solution and the solution of the fractional model

if one departs from the k ! 0 and u ! 0 limits usually taken to derive fractional equations [62].

5. Solution of the bi-fractional diffusion and wave equations

In this section, we discuss the solution of Eqs. (26) and (28). We concentrate at first on the slow range

0 < a < 1, and then continue to the fast range 1 < a < 2. Some interesting special cases and the calculation

of moments follow.
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5.1. Slow case 0 < a6 1 and arbitrary 0 < l6 2

Rewriting Eq. (23) in the form

W ðk; uÞ ¼ u
�

þ Ku1�ajkjl
	�1

; ð34Þ

we recognise the definition of the Mittag-Leffler function in Laplace space [63] which immediately leads to

W ðk; tÞ ¼ Eað � KjkjltaÞ: ð35Þ
This form describes the mode relaxation of the bi-fractional equations (26) and (28) for a fixed Fourier

mode k, and therefore generalises the exponential mode relaxation in the Brownian limit a ¼ 1. We

note that (35) is symmetric in k, as it should. The Mittag-Leffler function Ea has the series expansion

[63]

Eað � AtaÞ ¼
X1
n¼0

� Atað Þn

Cð1þ anÞ ð36Þ

and is the natural generalisation of the exponential function which is contained in (36) in the limit a ¼ 1. In

the range 0 < a < 1, the Mittag-Leffler function possesses also the Ata � 1 expansion [63]

Eað � AtaÞ ¼
X1
n¼0

� Atað Þ�1�n

Cð1� a � anÞ : ð37Þ

In this 0 < a < 1 domain, it consequently interpolates between the initial stretched exponential law

exp

�
� Ata

Cð1þ aÞ

�
ð38Þ

and the terminal inverse power-law form

Eað � AtaÞ � 1

AtaCð1� aÞ : ð39Þ

In particular, the mode relaxation (35) is strictly monotonic.

To obtain the propagator in ðx; tÞ space, one could Fourier- and Laplace-invert the Taylor series of

expression (23) term by term. Alternatively, one can use the identification

W ðk; uÞ ¼ 1

u
H 1;1

1;1 Kl
a u

�ajkjl ð0; 1Þ
ð0; 1Þ

����
� 

ð40Þ

with the Fox function H 1;1
1;1 (the general definition of Fox functions is given in Appendix A) and employ the

theorems for Fourier- and Laplace-inversion [64]. Here, we already have the ðk; tÞ-representation in terms

of the Mittag-Leffler function. The latter is connected to the Fox function through Eq. (A.13). Starting off
from

W ðk; tÞ ¼ H 1;1
1;2 Kl

a t
ajkjl ð0; 1Þ

ð0; 1Þ; ð0; aÞ

����
� 

; ð41Þ

we perform the Fourier-inversion ð2pÞ�1
R1
�1 f ðkÞe�ikx dk ¼ p�1 R1

0
f ðkÞ cosðkxÞdk where the reduction to

the cosine transform is possible due to the point symmetry of W ðk; tÞ. Employing the rule (A.12), we find
the exact representation

W ðx; tÞ ¼ 1

ljxj
ffiffiffi
p

p H 2;1
2;3

jxj
ð2Kl

a taÞ1=l
1; 1l

� �
; 1; a

l

� �
1
2
; 1
2

� 	
; 1; 1l

� �
; 1; 1

2

� 	
������

2
4

3
5: ð42Þ
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Eq. (42) also solves the fractional wave equation (28), and is therefore the most general solution of the

space- and time-fractional diffusion/wave equation. In the latter case, certain restrictions prevail, see below.

Solution (42) reduces to the special case for l ¼ 2,

W ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK1

a t
a

p H 2;0
1;2

x2

2K1
a ta

1� a
2
; a

� 	
ð0; 1Þ; 1

2
; 1

� 	����
� 

; ð43Þ

which was considered by Schneider and Wyss [56] for both subdiffusion and sub-ballistic superdiffusion.

The series expansion of the most general solution (42) reads

W ðx; tÞ ¼ 1

l
ffiffiffi
p

p
jxj 2

X1
n¼0

C 1� 2
l

1
2
þ n

� �� �
C 2

l
1
2
þ n

� �� �
n!C 1

2
þ n

� 	
C 1� 2a

l
1
2
þ n

� �� � ð

0
@ � 1Þnz1þ2n

þl
X1
n¼0

C 1
2
� l

2
½1þ n�

� 	
C l

2
½nþ 1�

� 	
C 1� a½nþ 1�ð Þ

ð � 1Þnzlð1þnÞ
1
A ð44Þ

and therefore the initial behaviour is

W ðx; tÞ �
4Cð1�1=lÞCð1=lÞ

plCð1�a=lÞ 2Kl
a tað Þ1=l

; 1 < l < 2;

Cð1=2�l=2Þffiffi
p

p
Cðl=2ÞCð1�aÞjxj1�l2Kl

a ta
; 0 < l < 1

8<
: ð45Þ

depending on whether l?1, for z ¼ jxj=ð2Kl
a t

aÞ1=l � 1. Thus, albeit the convergence to a constant in the

l ¼ 2 case for 0 < a < 1, in the additionally space-fractional case, the pdf diverges at x ¼ 0 for 0 < l < 1.

The Cauchy propagator l ¼ 1 is a borderline case which converges to a constant and therefore belongs to

the generic behaviour of the 1 < l < 2 regime.

An alternative way to represent the solution, especially for the purpose of numerical evaluation, can be
obtained as follows. Regard the solution of the Markoffian (a ¼ 1), but spatially fractional Eq. (26) which

we denote W1ðx; tÞ. By help of relation (23), it is straightforward to show that this Markoffian solution is

connected to the non-Markoffian, Waðx; tÞ for arbitrary a, through the scaling relation [65,66]

Waðx; uÞ ¼ ua�1W1ðx;Kl
1 u

a=Kl
a Þ: ð46Þ

This is equivalent to the generalised Laplace transformation

Waðx; uÞ ¼ ua�1
Z 1

0

e�K
l
1
uat=Kl

a dt; ð47Þ

from which, in turn, the relation

Waðx; tÞ ¼
Z 1

0

Eðs; tÞW1ðx; sÞds ð48Þ

follows where the kernel Eðs; tÞ is given by the modified one-sided L�eevy distribution [66]

Eðs; tÞ ¼ t
as
Lþa

t

ðs�Þ1=a

 !
ð49Þ

¼ 1

as
H 1;0
1;1

ðs�Þ1=a

t

ð1; 1Þ
ð1; 1aÞ

����
" #

ð50Þ

¼ 1

s

X1
n¼0

ð�1Þn

Cð1� a � anÞn!
s�

ta

� �1þn

; ð51Þ
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with s� ¼ Kl
1 s=K

l
a . From the series expansion of the Fox function, special representations can be obtained

for given a. For instance, for a ¼ 1=2, we find

Eðs; tÞ ¼ 1ffiffiffiffiffi
pt

p e�ðs�Þ2=ð4tÞ: ð52Þ

This representation can then be used to obtain the general solution from the purely space-fractional

solution

W1ðx; tÞ ¼
1

ljxj
ffiffiffi
p

p H 1;1
1;2

jxj
2Kl

1 t
1; 1l

� �
1
2
; 1
2

� 	
; 1; 1

2

� 	
�����

" #
: ð53Þ

Expression (53) reduces to the Cauchy propagator

W ðx; tÞ ¼ 1

2pK1
1 t

1

1þ x2=ðK1
1 tÞ

ð54Þ

in the limit l ¼ 1. From this, we used Eq. (52) to plot Fig. 3. Here, we see the generic behaviour of both

L�eevy flight and long-tailed-memory systems. The former is expressed in the slow power-law tails, straight

lines in the double-logarithmic plot. The latter causes the persistence of the initial condition (that part of the

probability density which corresponds to a random walker which has not moved since t ¼ 0) which is visible

as distinct and sharp cusps.

Fig. 3. Propagator W ðx; tÞ of the space- and time-fractional diffusion equation (26) in the Cauchy case l ¼ 1 and for a ¼ 1=2. The

dimensionless time steps have been chosen as 0.1, 1, 10. The cusp shape at the origin is reminiscent of the (persistent) initial condition

(top). In the log10–log10 representation (bottom), the power-law tails are distinct.
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5.2. Enhanced case 16 a6 l6 2

For all combinations of the L�eevy indices 0 < a6 1 and 0 < l6 2, the solution of the fractional diffusion

equations (26) is a proper pdf, i.e., it is non-negative everywhere. This can be easily proved: take any L�eevy
distribution, i.e., the solution of (26) for a ¼ 1. This is non-negative per se. The transformation (48) is
defined in terms of a one-sided L�eevy distribution, and from the representation in Laplace space, the po-

sitivity of the general solution is obvious.

This is no longer true for all cases in which a > 1. For instance, for the combination a ¼ 3=2 and l ¼ 1,

one can find the exact representation

W ðx; tÞ ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K1

3=2t
3

q
3x2 2 F2 1; 1;

5

6
;
7

6
;

 
�
4K1

3=2t
3

27x2

!
;

which becomes negative close to the origin. Instead, one can prove that the inequality [53]

16 a6 l < 2 ð55Þ
has to be fulfilled in order to ensure the non-negativity of the general solution (42). This is a non-trivial

restriction of the allowed parameter space. Particularly, the first-order moment of the absolute value of the
position coordinate, hjxðtÞji always exists. From the Fox function representation, the special role of the

limiting case a ¼ l can already be anticipated as here the essential parameter becomes M ¼ 0, according to

definition (A.5). Moreover, it was already shown by Schneider and Wyss [56] that the purely time-fractional

equation for superdiffusion produces a proper pdf only in one space-dimension (l ¼ 2).

There exists a similar expression of the enhanced solution in terms of the wave equation solution, as we

reported for the case of subdiffusion in Eqs. (46) and (47), see [55] for details.

It is characteristic for the case with 0 < a < 1 to have sharp cusps at the origin, reminiscent of the

persistent initial condition. In the present case 1 < a < 2, the region around the origin becomes depleted
and two counter-moving humps appear. For l ¼ 2, we display this behaviour in Fig. 4. Note that from Eq.

(44) and with the constraint (55), the pdf is finite at x ¼ 0.

The Mittag-Leffler representation (35) of the propagator remains valid in the range 1 < a < 2. However,

the behaviour of this function changes. Instead of the completely monotonic decay, stretched exponential

fashion turning over to inverse power-law form, oscillations occur. It was shown by Mainardi and Gorenflo

[67] that the Mittag-Leffler function Eað�ktaÞ for k 2 Rþ can be decomposed into the sum

Eað�saÞ ¼ faðsÞ þ gaðsÞ; ð56Þ

Fig. 4. Superdiffusion with Gaussian jump length distribution, for a ¼ 3=2. The antipersistence of the initial condition mirrors the

countermoving humps. The wings of the pdf decay exponentially fast. The qualitative behaviour in this linear plot is hardly distin-

guishable from the neutral-fractional case displayed in Fig. 6, except for the finiteness at the origin.
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where we employ the rescaled time s � k1=at. Here, fa decays completely monotonically, whereas ga contains

oscillations. In particular, one has [67]

faðsÞ ¼
XN
n¼1

ð�1Þn�1s�na
Cð1� naÞ þOðs�ðNþ1ÞaÞ; s ! 1 ð57Þ

and

gaðsÞ ¼
2

a
e�j cosðp=aÞjs cos s sin

p
a

� �� �
ð58Þ

such that the oscillations die out exponentially fast, and fa approaches 0 in power-law fashion, from below.

The occurrence of oscillations in the characteristic function of the propagator, W ðk; tÞ, stems

from the countermotion of the humps. In fact, for the wave equation (29), the travelling wave solution
1
2
ðdðx �

ffiffiffiffiffiffi
K1
2

p
tÞ þ dðxþ

ffiffiffiffiffiffi
K1
2

p
tÞÞ gives rise to the purely oscillatory characteristic function W ðk; tÞ ¼

cosð�
ffiffiffiffiffiffiffiffiffiffi
K1
2k2

p
tÞ.

5.3. The neutral-fractional case

A case of special interest corresponds to the choice a ¼ l which belongs to the neutral-fractional class

defined in [53]. For this choice, we can simplify expression (42) via the duplication rule (A.14), to obtain

W ðx; tÞ ¼ 1

ljxjH
1;1
2;2

21=2jxj
Kl

lð Þ1=lt

1; 1l

� �
; 1; 1

2

� 	
1; 1l

� �
; 1; 1

2

� 	
������

2
4

3
5; ð59Þ

which has the series expansion

W ðx; tÞ ¼ 1

jxj
X1
n¼0

ð�1Þ
C l

2
½1þ n�

� 	
C 1� l

2
½1þ n�

� 	 21�1=ljxj
Kl

lð Þ1=lt

 !ð1=lÞð1þnÞ

: ð60Þ

The solution (59) is a borderline case of an H-function as the parameter M ¼ 0, compare Eq. (A.5). To

obtain the asymptotic behaviour for large argument, we can use theorem (A.6) to invert the argument and

derive the expansion

W ðx; tÞ � 1

jxj
X1
n¼1

ð�1Þn

C 1þ l
2
n

� 	
C � l

2
n

� 	� 21�1=ljxj
Kl

lð Þ1=lt

 !1
lð1þnÞ

ð61Þ

�
Kl

l t
l

2l=2jxj1þl þ � � � ; ð62Þ

in particular, the typical L�eevy-type inverse power law behaviour of index�1� l is reproduced.

Let us compare the three different neutral-fractional regimes:

(i) Firstly, the simplest neutral-fractional case is the Cauchy propagator (54) for the parameter combina-

tion a ¼ l ¼ 1. We note in particular that this propagator converges to the value ð2pK1
1 tÞ

�1
at x ¼ 0.

(ii) Secondly, consider the example a ¼ l ¼ 1=2. In this special case, we find that the H-function represen-

tation can be reduced to the simple form

W ðx; tÞ ¼ 2

jxj
z1=2ffiffiffi

2
p

p þ 2pz1=2 þ
ffiffiffi
2

p
pz

) z ¼ jxj

2 K1=2
1=2

� �2
t
: ð63Þ
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In Fig. 5, we show the typical behaviour of this solution. The two regimes for small and large argument

can be seen in the asymptotic behaviour

W ðx; tÞ �
1

pK1=2

1=2
t1=2jxj1=2

; z� 1;

2K1=2

1=2
t1=2

pjxj3=2
; z� 1

8><
>: ð64Þ

obtained from Eq. (63), according to which the pdf diverges at the origin as � jxj�1=2; for large jxj it
falls off like � jxj�3=2.

(iii) This behaviour can be compared with the complementary case a ¼ l ¼ 3=2, for which we obtain the

equally simple form

W ðx; tÞ ¼
ffiffiffi
2

p

3pjxj
z3=2 þ z3 þ z9=2

1þ z6
) z ¼ 21=3jxj

K3=2
3=2

� �2=3
t
: ð65Þ

From the propagator expression (65), we infer the asymptotic behaviour

Fig. 5. Anomalous diffusion for the neutral-fractional case a ¼ l ¼ 1=2. Top: Linear axes, bottom: double-logarithmic scale. Di-

mensionless times, top: 0.2, 1, 100; bottom: 0.1, 10, 1000. The dashed lines in the bottom plot indicate the slopes )1/2 and )3/2. Note
the divergence at the origin.
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W ðx; tÞ �
4
ffiffi
2

p
jxj1=2

3pK3=2

3=2
t3=2

; z � 1;ffiffi
2

p
K3=2

3=2
t3=2

12pjxj1þ3=2
; z � 1:

8><
>: ð66Þ

This case is plotted in Fig. 6. Here, we find the opposite behaviour: complete depletion at x ¼ 0.

Thus, the neutral-fractional case enforces a remarkable behaviour on the (P�oolya) returning probability,
i.e., the probability to be at the origin at t > 0 after preparation of the system: in the subdiffusive case

0 < a ¼ l < 1, the returning probability W ð0; tÞ diverges, whereas in the superdiffusive case 1 < a ¼ l < 2,

it vanishes identical to zero. Only the Cauchy borderline case a ¼ l ¼ 1 converges to a typical returning
behaviour, W ð0; tÞ ¼ 1=ð2pK1

1 tÞ.

5.4. Fractional order moments

For 0 < l < 2, the mean squared displacement hx2ðtÞi of the solution (42) diverges. However, it is

possible to calculate fractional order moments defined through

hjxðtÞjdi ¼
Z 1

�1
jxjdW ðx; tÞdx: ð67Þ

Fig. 6. Anomalous diffusion for the neutral-fractional case a ¼ l ¼ 3=2. Top: Linear axes, bottom: double-logarithmic scale. Both

plots are drawn for the dimensionless times 0.5, 1 and 2. The dashed lines in the bottom plot indicate the slopes 1/2 and )5/2. Note the
complete depletion at the origin.
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Using the definition of the Mellin transform

f ðsÞ ¼
Z 1

0

ts�1f ðtÞdt; ð68Þ

we find with the property (A.3) that

jxjdðtÞ
D E

¼ 21þd=l

lp1=2
ðKl

a t
aÞd=l

C 1
2
þ d

2

� 	
C 1þ d

l

� �
C � d

l

� �
C � d

2

� 	
C 1þ ad

l

� � : ð69Þ

This expression is positive as necessarily d < l.
Special cases included in the result (69) contain the normalisation

lim
d!0

hjxjdðtÞi ¼ 1; ð70Þ

anomalous diffusion with regular space derivative,

lim
l;d!2

hjxjdðtÞi ¼ 2K2
a t

a

Cð1þ aÞ ; ð71Þ

and the neutral-fractional case

lim
a!l

hjxjdðtÞi ¼
21�dþd=l sin p

2
ð2þ dÞ

� 	
l sin p

l ðd þ lÞ
� � Kl

l t
� �d

: ð72Þ

6. Fractional Fokker–Planck equations

In the preceding two sections, we have dealt with the combination of space- and time-fractional gen-

eralisations of the diffusion equation. Now, we proceed to consider the same kind of process which is

subject to an external force. The corresponding space- and time-fractional Fokker–Planck equation in the

subdiffusive domain 0 < a6 1 reads

oW
ot

¼ 0D1�a
t

o

ox
V 0ðxÞ
mga

�
þ Dl

xK
l
a

�
W ðx; tÞ; ð73Þ

which was derived in [68] and further discussed in [46]. Here, ga is the generalised friction coefficient and

V ðxÞ ¼ �
R x F ðx0Þdx0 is the external potential which gives rise to the force F ðxÞ. In the purely time-fractional

case, Eq. (73) was proposed in [65] and later derived in [50]. The purely space-fractional case was originally

derived by Fogedby [48] and studied by Jespersen et al. [49].

Consider first the temporal behaviour imposed by Eq. (73) which can be extracted through the method of

separation of variables [36]. Introducing the product ansatz W ðx; tÞ ¼ T ðtÞuðxÞ, the two eigenequations

dTn
dt

¼ �kn 0D1�a
t TnðtÞ; ð74Þ

o

ox
V 0ðxÞ
mga

�
þ Dl

xK
l
a

�
unðxÞ ¼ �knuðxÞ ð75Þ

yield. The temporal eigenequation (74) corresponds to the fractional relaxation equation discussed in [64]

which is solved by the Mittag-Leffler function

TnðtÞ ¼ Eað � kntaÞ ð76Þ
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and therefore corresponds to the mode relaxation of the fractional diffusion equation. The spatial eigen-

equation (75) for l ¼ 2 is identical to the one of the standard Fokker–Planck equation. For non-patho-

logical external potentials, the eigenvalues can be arranged such that 06 k1 < k2; . . ., and for a non-trivial

force the lowest eigenvalue is k0 ¼ 0 such that a stationary solution exists.

For the l ¼ 2 case, the stationary solution WstðxÞ � limt!1 W ðx; tÞ is given by the exponential form

WstðxÞ ¼ Ne�V
0ðxÞ=ðmgaK

2
a Þ ð77Þ

from which, by comparison with the Gibbs–Boltzmann distribution, the generalised Einstein relation

K2
a ¼ kBT

mga

ð78Þ

can be inferred. Moreover, in the presence of the constant force field F0, the first moment hxðtÞiF0 is related
to the second moment hx2ðtÞi0 in the absence of a force through the linear response relation [65]

hxðtÞiF0 ¼
F0
2

hx2ðtÞi0
kBT

: ð79Þ

These are typical Gibbs–Boltzmann equilibrium properties connected to the fluctuation–dissipation theo-

rem and linear response.

In the L�eevy case 0 < l < 2, a stationary solution for non-trivial external fields does exist; however, this

stationary solution decays inverse power-law fashion such that for external potentials which fall off at most

like the harmonic Ornstein–Uhlenbeck potential the stationary solution has the L�eevy index l [49], and for

any steeper potential V / jxj�b
, it falls off with the index b [69]. In particular, it is therefore far off standard

Gibbs–Boltzmann equilibrium, and no immediate generalisation of the Einstein–Stokes or the linear re-

sponse relations can be found. It remains open what the exact meaning of such stationarity solutions from a

thermodynamics point of view is. It should be mentioned that the generalised q-statistics approach (Tsallis

entropy) [70] leads to non-linear generalisations of the Fokker–Planck equation, and therefore to a different

kind of stochastic process.

In the enhanced diffusive case corresponding to the fractional wave equation (28), two approaches have

been reported in [71,72], which base on generalisations of the Klein–Kramers equation. Both reduce to the

fractional wave equation (28) in the force-free limit. They are based on a Drude-like picture or a collision
model, respectively, i.e., the test particle moves with a certain velocity for times governed by a long-tailed

wðtÞ. Both models predict equilibration of the velocity distribution towards the Maxwell–Boltzmann dis-

tribution (1). Roughly speaking, however, the force is supposed to act constantly in [71] whereas it cor-

responds to ‘‘point-like’’ interactions in [72]. It is interesting to note that the model in [72] leads to

equilibration towards the Gibbs–Boltzmann distribution in position space, whereas [71] predicts that there

is no stationary solution in x-space. This might correspond to the ever-spreading cutoffs in the tails of the

pdf, as found for the L�eevy walk approach mentioned below. In fact, it is claimed in [71] that the underlying
equation produces lower-order moments of L�eevy walks in an external potential.

7. Lévy walk-type description

The above transport models were based on the diffusion limit (in essence, the k ! 0, u ! 0 limit) of the

decoupled form Wðx; tÞ of the jump pdf. It is an essential consequence of this model that for L�eevy-type jump
length statistics, the mean squared displacement hx2ðtÞi diverges. An alternative formulation of CTRWs is

to consider coupled forms of the jump pdf, i.e., [44,45,73,74]

Wðx; tÞ ¼ wðtÞp1ðxjtÞ ¼ kðxÞp2ðtjxÞ: ð80Þ
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This is, for either a given jump length pdf kðxÞ, the corresponding waiting time pdf becomes a conditional
probability, wðtÞp1ðxjtÞ, or vise versa. In essence, the introduction of the coupling enforces a time cost to an
individual jump: long jumps are penalised by a larger time cost. This statement becomes more transparent

by looking at the most prominent example for coupled jump pdfs, the d-coupling [44]

Wðx; tÞ ¼ Cjxj�jd jxj
�

� mtb
	
: ð81Þ

We could thus call the decoupled case a kinematic formulation and L�eevy walks a dynamic formulation of
anomalous random walks. (In the last sentence, we included the word anomalous as for Brownian random

walks there is no difference between the two approaches.) If there is no external field, L�eevy walks within the
CTRW formalism give rise to a finite mean squared displacement [44] and a pdf which successively ap-

proaches a L�eevy stable distribution, its wings however cut off by two spikes which correspond to particles

moving at maximum velocity (ballistic motion for b ¼ 1) [75]. It is a matter of current investigations how

L�eevy walks in extended fields can be formulated in terms of dynamic equations.

8. Conclusions

We have summarised a number of approaches to the stochastic behaviour immanent to Brownian

motion and explored possible generalisations to anomalous transport cases. Such STRANGE KINETICSTRANGE KINETICS is

characteristic for a large, and growing, number of systems which exhibit some form of disorder, and they

are typically of power-law form. This, in turn, suggests that the stochastic-dynamical processes in these

systems are governed by the generalised central limit theorem, predicting L�eevy stable forms for either the

jump length pdf or the waiting time pdf, or both. In the present work, we have dealt with such kinds of
systems which decouple in space and time.

In these asymptotic power-law cases, fractional equations can be formulated on the level of deterministic

equations (i.e., on the noise-averaged level), as a direct and natural generalisation to the standard deter-

ministic equations such as the diffusion equation. The immediateness of this generalisation is especially

obvious in the Fourier/Laplace transformed versions. As operator equations, fractional equations can be

readily dealt with. Whereas in the force-free case, they are asymptotically equivalent to other formulations

like the CTRW, the clear advantage of the fractional approach is seen if descriptions in phase space and in

the presence of external force fields are sought. Here, the disadvantage of the other approaches is the
question of how to implement a given form of the external force and how to calculate the corresponding

moments or the pdf.

The present investigation being mainly based on the force-free limit, is therefore of a more fundamental

nature, trying to forge together the different, in a way complementary, effects arising from long-tailed dis-

tributions in either time or space. We have considered the fractional diffusion equation with both a Rie-

mann–Liouville fractional operator in time and a Riesz–Weyl fractional operator in space. In this course,

two simple and, to our best knowledge, hitherto unknown special cases of neutral-fractional kind were

found. For all cases, the Fox function representation can be used to obtain closed form analytical solutions.
It is typical for these systems that they relax according to the Mittag-Leffler pattern which ultimately

reaches a slow inverse power-law form such that stationarity is reached by a process with diverging

characteristic time scale. Moreover, in cases of L�eevy jump length statistics, this equilibrium is of L�eevy stable
or more steep inverse power-law character. Thus, a still open question concerns the physical meaning of the

‘‘equilibrium’’ of such additive (extensive) processes which ultimately deviate from the exponential Gibbs–

Boltzmann form.

It was pointed out by Berry [76] that transport on fractals should be governed by ‘‘diffractals’’, i.e., by

properties which involve fractal parameters in both space- and time-evolution. Such diffractals are char-
acterised by a short-wave limit in which ever finer details of similarity structure are explored by the
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propagating waves. A physical interpretation of this phenomenon is given by Berry [76], and more recently

West and Nonnenmacher [60] discussed this problem on the basis of a fractional calculus approach.

However, there are numerous open questions to be discussed within the mathematical physics of exotic

transport processes with non-existing internal time- and space-scales.
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Appendix A. The Fox H-function

The class of Fox or H-functions comprises a large class of special functions known in mathematical

physics, such as Meijer’s G-function, (generalised) Bessel functions, (generalised) hypergeometric functions

or the (generalised) Mittag-Leffler functions, just to mention a few. Due to the known series representation

given below (and an analogous expression for large argument), special representations can be obtained

from the given theorems, or by evaluating these series in symbolic mathematics programs.

The Fox or H-function is defined in terms of the Mellin–Barnes type integral [77–80]

Hm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

����
� 

¼ 1

2pi

Z
L

vðsÞzs ds; ðA:1Þ

where m, n, p and q are integers satisfying 06 n6 p and 16m6 q, and

vðsÞ ¼
Qm

1 Cðbj � BjsÞ
Qn

1 Cð1� aj þ AjsÞQq
mþ1 Cð1� bj þ BjsÞ

Qp
nþ1 Cðaj � AjsÞ

: ðA:2Þ

Equivalently, it can be defined by its Mellin transformZ 1

0

Hm;n
p;q az

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

����
� 

zs�1 dz ¼ a�svðsÞ: ðA:3Þ

Here, the parameters have to be defined such that Aj > 0 and Bj > 0 and

ajðbh þ mÞ 6¼ Bhðaj � k � 1Þ; ðA:4Þ
where m; k ¼ 0; 1; 2; . . ., h ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ;m. L is a contour which separates the poles of

Cðbj � BjsÞ for j ¼ 1; 2; . . . ;m from those of Cð1� aj þ AjsÞ for j ¼ 1; 2; . . . ; n [79]. The H-function is an-

alytic in z if either (i) z 6¼ 0 and M > 0 or (ii) 0 < jzj < B�1 and M ¼ 0, where

M ¼
Xq
j¼1

Bj �
Xp
j¼1

Aj and B ¼
Yp
j¼1

AAjj
Yq
j¼1

B�Bj
j : ðA:5Þ

The H-function possesses a number of interesting properties from which we list the ones we employed in

our presentation [79]:

(i) If M ¼ 0, it is sometimes useful to apply the inversion theorem

Hm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

����
� 

¼ Hn;m
q;p

1

z
ð1� b1;B1Þ; ð1� b2;B2Þ; . . . ; ð1� bq;BqÞ
ð1� a1;A1Þ; ð1� a2;A2Þ; . . . ; ð1� ap;ApÞ

����
� 

ðA:6Þ
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to switch the argument into its inverse.

(ii) If one of the ðaj;AjÞ (j ¼ 1; . . . ; n) is equal to one of the ðbj;BjÞ (j ¼ mþ 1; . . . ; q), or likewise one of the
ðbj;BjÞ (j ¼ 1; . . . ;m) is equal to one of the ðaj;AjÞ (j ¼ nþ 1; . . . ; p), the H-function reduces to one of

the lower order according to the following scheme:

Hm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq�1;Bq�1Þ; ða1;A1Þ

����
� 

¼ Hm;n�1
p�1;q�1 z

ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; . . . ; ðbq�1;Bq�1Þ

����
� 

ðA:7Þ

if nP 1 and q > m. Note that the parameter pairs are symmetric in the four groups defined through m, n,

p and q.

(iii) If k > 0,

Hm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

����
� 

¼ kHm;n
p;q z

ða1; kA1Þ; ða2; kA2Þ; . . . ; ðap; kApÞ
ðb1; kB1Þ; ðb2; kB2Þ; . . . ; ðbq; kBqÞ

����
� 

: ðA:8Þ

(iv) The multiplication rule reads

zrHm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

�����
" #

¼ Hm;n
p;q z

ða1 þ rA1;A1Þ; ða2 þ rA2;A2Þ; . . . ; ðap þ rAp;ApÞ
ðb1 þ rB1;B1Þ; ðb2 þ rB2;B2Þ; . . . ; ðbq þ rBq;BqÞ

�����
" #

: ðA:9Þ

(v) If the poles of
Qm

j¼1 Cðbj � BjsÞ are simple, the following series expansion is valid:

Hm;n
p;q z

ða1;A1Þ;ða2;A2Þ;...;ðap;ApÞ
ðb1;B1Þ;ðb2;B2Þ;...;ðbq;BqÞ

����
� 

¼
Xm
h¼1

X1
m¼0

Qm
j¼1;j6¼hC bj�Bj bhþm

Bh

� �Qn
j¼1C 1�ajþAj bhþm

Bh

� �
Qq

j¼mþ1C 1�bjþBj bhþm
Bh

� �Qp
nþ1C aj�Aj bhþm

Bh

� � ð�1ÞmzðbhþmÞ=Bh

m!Bh
:

ðA:10Þ
(vi) For similar conditions, the asymptotic expansion for large argument (jzj ! 1) holds [78]:

Hm;n
p;q z

ða1;A1Þ; ða2;A2Þ; . . . ; ðap;ApÞ
ðb1;B1Þ; ðb2;B2Þ; . . . ; ðbq;BqÞ

����
� 

¼
X1
m¼0

res vðsÞzsð Þ @ s ¼ aj � 1� m
Aj

; j ¼ 1; 2; . . . ; n: ðA:11Þ

(vii) Under Fourier cosine transformation, the H-function transforms asZ 1

0

Hm;n
p;q x

ðap;ApÞ
ðbq;BqÞ

����
� 

cosðkxÞdx

¼ p
k
Hnþ1;m
qþ1;pþ2 k

ð1� bq;BqÞ; 1; 1
2

� 	
ð1; 1Þ; ð1� ap;ApÞ; 1; 1

2

� 	
�����

" #
: ðA:12Þ

(viii) The Mittag-Leffler function is a special case of the H-function

Eað�zÞ ¼ H 1;1
1;2 z

ð0; 1Þ
ð0; 1Þ; ð0; aÞ

����
� 

: ðA:13Þ

Moreover, the duplication rule

2p1=2Cð2zÞ ¼ 22zCðzÞC z
�

þ 1

2

�
ðA:14Þ

of the C-function is frequently used to simplify expressions for special H-functions.
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