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We study the equilibrium shapes of prime and composite knots confined to two dimensions. Using
scaling arguments we show that, due to self-avoiding effects, the topological details of prime knots are
localized on a small portion of the larger ring polymer. Within this region, the original knot configuration
can assume a hierarchy of contracted shapes, the dominating one given by just one small loop. This
hierarchy is investigated in detail for the flat trefoil knot, and corroborated by Monte Carlo simulations.
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The static and dynamic behavior of single polymer
chains, such as DNA, and multichain systems like gels and
rubbers, is strongly influenced by knots and permanent en-
tanglements [1,2]. Topological constraints are created with
probability one during the polymerization of long closed
chains [3,4]; more generally, knots and entanglements are
a ubiquitous element of higher molecular multichain melts
and solutions. This has profound consequences, reaching
far into biology and chemistry. For instance, knots in DNA
impede the separation of the two strands of the double
helix during transcription, and therefore the access to the
genetic code [5]. Chemically, even single closed polymers
may exhibit quite different properties if they have different
topology [6]. In the nanosciences, recent experimental
techniques allow single polymer molecules (with fixed
topology) to be probed and manipulated [7]. These tools
provide impetus for the theoretical understanding of the
behavior of macromolecules under topological constraints.
However, analytical studies, such as the statistical mechan-
ics of a knotted polymer, are difficult since topological
constraints require knowledge of the complete shape of
the curve. Such global constraints are hard to implement,
and a complete statistical mechanical description of
knots remains unattained; compare, for instance, Ref. [8].

The mathematical discipline of knot theory provides in-
variants for the classification of knots [2,9]. In particular,
different knots can be distinguished by their projections
onto a 2D plane, keeping track of crossings according to
which segment passes on top of another [2]. By a sequence
of so-called Reidemeister moves [2], which leave the topol-
ogy unchanged, the number of crossings can be reduced to
a minimum, which is a simple topological invariant [2].
For instance, in Fig. 1 we depict the minimal projection
of the trefoil knot, classified as 31, with its 3 crossings.
Such quasi-2D projections, which we call flat knots, can
be physically realized by compressing originally 3D knots
by forces normal to the projection plane. Examples in-
clude polymers adsorbed on a surface or membrane by
electrostatic or other adhesive forces [10]; or confined be-
tween parallel walls. In these cases the flat polymer knot
can still equilibrate in 2D. Another experimental realiza-
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tion comes from Ref. [11], in which macroscopic knotted
chains are flattened by gravity onto a vibrating plane. The
equilibrium shapes, and their scaling properties, of such
flat knots are studied in this paper. Flat knots have the ad-
ditional advantage of being easy to image by microscopy.
They are also more amenable to numeric studies than their
3D counterparts, and have in fact been already studied in
Refs. [12,13].

There is growing numerical evidence that prime knots
are tight in the sense that the topologically entangled re-
gion is statistically likely to be localized on a small portion
of the longer chain [13–15], consistent with the findings
of Ref. [4] in which the optimal size in random knotting is
studied. Indirect numerical evidence of this was originally
obtained by simulations indicating that the radius of gyra-
tion of a long polygon in 3D is asymptotically independent
of its knot type; while the presence of the knot increases
the number of configurations by a factor related to the num-
ber of positions of the tight region around the remaining
loop [15]. Simulations of 2D polygons in Ref. [13] provide
quite convincing visual evidence of localized knot regions.
In this paper, we quantify the tightness of flat knots, using
scaling arguments to obtain the power law size distribu-
tions for a hierarchy of possible equilibrium shapes. For
the trefoil, Fig. 1 shows this hierarchy of shapes and the
corresponding exponents for the distribution of knot size.

To get a feeling for the entropic origin of tight shapes,
consider first a simple flat, once-twisted ring of length L
with one crossing. This figure-eight shape consists of two
loops of variable lengths � and L 2 �, while the orienta-
tion of the crossing is irrelevant. In this sense, the crossing
can be replaced with a vertex with four outgoing legs, re-
sulting in the network GI depicted in Fig. 1. In fact, we
can more generally consider a sliding ring, or slip link [16],
holding close together two points of the chain to create the
figure-eight shape in d dimensions. Without self-avoiding
constraints (ideal chains), the number of configurations
vI��, L� scales as [1,17]

vI��, L� � mL�2d�2�L 2 ��2d�2, (1)

where, on a lattice, m is the effective connectivity constant
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FIG. 1. Standard minimal projection of the trefoil knot 31, followed by its different possible contractions, arranged according to
higher scaling orders. The uncontracted trefoil geometry is found at position III of the hierarchy. At I, the figure-eight structure
is drawn. The diagrams II–VI show the multiply connected knot region of total length � �

PN 21
i�1 si where the protruding legs

indicate the outgoing large loop of length sN � L 2 �. Below the individual contractions, we include the network exponents gG ,
the number m of independent integrations, and the exponents c defined via the PDF, p��� � �2c .
for Gaussian random walks. The average loop size is ��� �RL2a
a d� �vI��, L��

RL2a
a d� vI��, L� � L�2 due to sym-

metry, where a is a short-distance cutoff set by the lat-
tice constant. However, the corresponding probability
density function (PDF) is strongly peaked at � � 0 and
� � L, and a typical shape consists of one tight and one
large loop. In d � 2, the mean size of the smaller loop,
���, � L�jln�a�L�j, is still rather large. It is instructive
to compare to higher dimensions: one has weak localiza-
tion, ���, � a1�2L1�2, in d � 3, and strong localization,
���, � a, in d . 4. Thus, for ideal chains, tightness of
the smaller loop is more pronounced in higher dimensions.

To include self-avoiding interactions, we use results for
general polymer networks obtained by Duplantier [18],
and in Refs. [19,20]: In a network G consisting of N

chain segments of lengths s1, . . . , sN and total length L �PN
i�1 si , the number of configurations vG scales as [21]

vG �s1, . . . , sN � � mLs
gG21
N YG

µ
s1

sN
, . . . ,

sN 21

sN

∂
, (2)

where YG is a scaling function, and m is the effective con-
nectivity constant for self-avoiding walks. The exponent
gG is given by gG � 1 2 dnL 1

P
N$1 nNsN , where

n is the swelling exponent, L is the number of indepen-
dent loops, nN is the number of vertices with N outgoing
legs, and sN is an exponent associated with such a vertex.
In d � 2, sN � �2 2 N� �9N 1 2��64 [18].

The network GI corresponds to the parameters N � 2,
L � 2, n4 � 1, s1 � �, and s2 � L 2 �. By virtue of
Eq. (2), the number of configurations of GI with fixed �
follows the scaling form

vI��, L� � mL�L 2 ��gI21XI� �
L2� � , (3)

where gI � 1 2 2dn 1 s4. In the limit � ø L, vI��, L�
should reduce to the number vcrw�L� � mLL2dn of closed
random walks of length L which start and end at a given
point in space [17,22]. This implies XI�x� � xgI211dn as
x ! 0, such that
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vI��, L� � mL�L 2 ��2dn�2c, � ø L , (4)

where c � 2�gI 2 1 1 dn� � dn 2 s4. Using s4 �
219�16 and n � 3�4 in d � 2, we find c � 43�16 �
2.6875. In d � 3, s4 � 20.48 and n � 0.588, so that
c � 2.24 [19,22]. In both cases the result c . 2 im-
plies that the loop of length � is strongly localized in
the sense defined above. This justifies the a priori as-
sumption � ø L, and makes the analysis self-consistent.
Note that for self-avoiding chains, in d � 2 the localiza-
tion is even stronger than in d � 3, in contrast to the cor-
responding trend for ideal chains. We performed Monte
Carlo (MC) simulations of the 2D figure-eight structure
GI, in which the slip link was represented by three teth-
ered beads enforcing the sliding pair contact such that
the loops cannot fully retract (see Fig. 2). We used a

FIG. 2. Power law tails in PDFs for the size � of tight seg-
ments: As defined in the figure, we show results for the smaller
loop in a figure-eight structure, the overall size of the trefoil
knot, as well as the two leading contractions of the latter. The
insets show typical configurations of the small loop for a 2D
figure-eight (the arrow points to the slip link consisting of three
tethered beads), and the knot region of the flat trefoil.
188101-2
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2D hard-core bead-and-tether chain with 256 monomers,
starting off from a symmetric initial condition with � �
L�2. Self-crossings were prevented by keeping a maxi-
mum bead-to-bead distance of 1.38 times the bead diame-
ter, and a maximum step length of 0.15 times the bead
diameter. We estimate the simulation time to be well above
the Rouse relaxation time [1] of the chain. As shown in
Fig. 2, the size distribution for the small loop can be fitted
to a power law with exponent c � 2.7 6 0.1 [23], in good
agreement to the above prediction.

For the figure-eight shape GI, the probability for the
size of each loop is peaked at � ! 0 and � ! L. For
more complicated structures, the joint probability to find
the individual segments with given lengths si is expected to
peak at the edges of the higher-dimensional configuration
hyperspace. Some analysis is necessary to find the optimal
shapes; as presented here for the simplest nontrivial knot,
the (flat) trefoil knot 31 shown in Fig. 1 [24]. Each of the
three crossings is replaced with a vertex with four outgoing
legs, and the resulting network is assumed to separate into a
large loop and a multiply connected region which includes
the vertices. Let � �

P5
i�1 si be the total length of all

segments contained in the multiply connected knot region
(see Fig. 1, position III). Accordingly, the length of the
large loop is L 2 �. In the limit � ø L, the number of
configurations of the network GIII can be derived in a
similar way as above, yielding

v0
III � mL�L 2 ��2dn�gIII211dnW

µ
s1

�
,
s2

�
,
s3

�
,
s4

�

∂
,

(5)

where gIII � 1 2 4dn 1 3s4 and W is a scaling func-
tion. The prime on vIII indicates that the segment lengths
si are kept fixed. In order to obtain the number of individ-
ual configurations vIII��, L� for the case of the flat trefoil,
where only the total length � is fixed and the different seg-
ments fluctuate in length, we integrate v

0
III over all dis-

tributions of lengths si under the constraint
P5

i�1 si � �.
This leads to the result

vIII��, L� � mL�L 2 ��2dn�2c, (6)

with c � 2�gIII 2 1 1 dn� 2 m, where m � 4 corre-
sponds to the number of independent integrations over
si. Thus, c � 3dn 2 3s4 2 4 �

65
16 (see Fig. 1, posi-

tion III).
However, some care is necessary in performing these

integrations, since the scaling function W in Eq. (5) may
exhibit nonintegrable singularities if one or more of its ar-
guments tend to 0 or 1. The geometries corresponding to
these limits (edges of the configuration hyperspace) rep-
resent contractions of the original trefoil network GIII
in the sense that the length of one or more of the seg-
ments si is of the order of the short-distance cutoff a. If
such a short segment connects different vertices, they can-
not be resolved on larger length scales, but melt into a
single, new vertex, in the context of our scaling analy-
188101-3
sis [25]. Thus, each contraction corresponds to a differ-
ent network G , which may contain a vertex with up to
eight outgoing legs. For each of these networks, one can
calculate the corresponding exponent c in a similar way
as above, and using the relations 2N �

P
N$1 NnN and

L �
P

N$1
1
2 �N 2 2�nN 1 1, we obtain

c � 2 1
X

N$4

nN

∑
N
2

�dn 2 1� 1 �jsN j 2 dn�
∏

. (7)

Our scaling analysis relies on an expansion in a�� ø 1,
and the values of c determine a sequence of contractions
according to higher orders in a��: The smallest value of c
corresponds to the most likely contraction, while the others
represent corrections to this leading scaling behavior, and
are thus less and less probable (see Fig. 1). To lowest or-
der, the trefoil behaves like a large ring polymer at whose
fringe the pointlike knot region is located. At the next level
of resolution, it appears contracted to the figure-eight shape
GI. For more accurate data, the higher order shapes II to
VII may be found with decreasing probability. Interest-
ingly, the original uncontracted trefoil configuration ranks
third in the hierarchy of shapes. Note that the contractions
shown in Fig. 1 may occur in different topological vari-
ants. For instance, the smaller loop in contraction I could
be inside the larger loop. However, this does not make a
difference in terms of the scaling analysis.

These predictions were checked by MC simulations with
the same conditions as described above, to prevent inter-
section. The flat trefoil knot was prepared from a sym-
metric, harmonic 3D representation with 512 monomers,
which was collapsed and then kept on a hard wall by the
“gravitational” field V � 2kBTh�h� perpendicular to the
wall, where h is the height and h� was set to 0.3 times
the bead diameter [24]. Configurations corresponding to
contraction I are then selected by requiring that besides a
large loop, they contain only one segment larger than a
preset cutoff length (taken to be 5 monomers), and simi-
larly for contraction II. The size distributions for such con-
tractions, as well as for all possible knot shapes are shown
in Fig. 2. The tails of the distributions are indeed con-
sistent with the predicted power laws, although the data
(especially for contraction II) is too noisy for a definitive
statement.

Our scaling results pertain to all flat prime knots. In
particular, the dominating contribution for any prime knot
corresponds to the figure-eight contraction GI, as Eq. (7)
predicts a larger value of the scaling exponent c for any
network G other than GI. Accordingly, Fig. 3 demon-
strates the tightness of the prime knot 819. Composite
knots, however, can maximize the number of configura-
tions by splitting into their prime factors as indicated in
Fig. 3 for 31#31. Each prime factor is tight and located at
the fringe of one large loop, and accounts for an additional
factor of L for the number of configurations, as compared
to a ring of length L without a knot. Indeed, this gain in
entropy leads to the tightness of knots.
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FIG. 3. Typical equilibrium configurations of 256-monomer chains for the trefoil 31, the prime knot 819, and the composite knot
31#31 consisting of two trefoils, in d � 2. The initial conditions were symmetric.
In conclusion, we find that the trefoil knot, as well as
higher order prime and composite knots, are sharply lo-
calized when forced to lie flat. In the most likely shapes,
each prime factor is tightened into a loop (a figure-eight
contraction). It is natural to speculate that entropic factors
also confine 3D knots by power law distributions in size.
Direct checks of such behavior are hampered by the diffi-
culty of identifying the knotted region of a 3D curve [14].
One may instead search for indirect signatures of localized
knots in higher-order dependencies of gyration radius and
other polymeric quantities on length.
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